

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl028-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

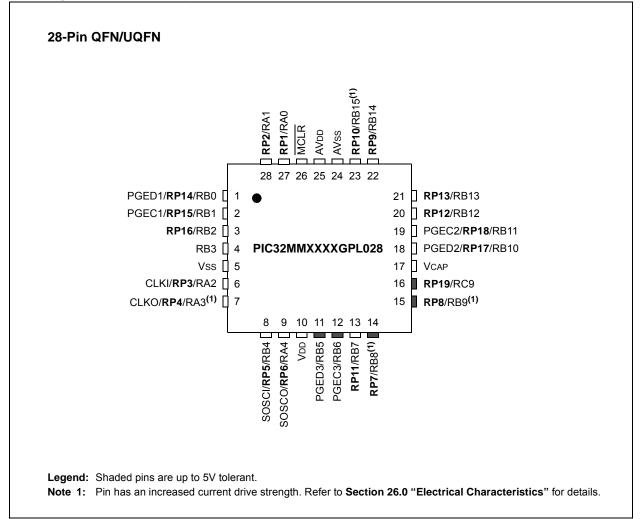
Analog Features

- Two Analog Comparators with Input Multiplexing
- Programmable High/Low-Voltage Detect (HLVD)
- 5-Bit DAC with Output Pin

- Up to 14-Channel, Software-Selectable 10/12-Bit SAR Analog-to-Digital Converter (ADC):
 - 12-bit, 200K samples/second conversion rate (single Sample-and-Hold)
 - 10-bit, 300K samples/second conversion rate (single Sample-and-Hold)
- Sleep mode operation
- Band gap reference input feature
- Windowed threshold compare feature
- Auto-scan feature
- Brown-out Reset (BOR)

		(bytes)	(Kbytes)	O/PPS	Maximum	Maximum				ppak hera		-	(Channels)					
Device	Pins	Program Memory (Kbytes)	Data Memory (Kb	General Purpose I/O/PPS	16-Bit Timers Max	PWM Outputs Max	UART ⁽¹⁾ /LIN/J2602	16-Bit Timers	MCCP ⁽³⁾	SCCP ⁽⁴⁾	СГС	SPI ⁽²⁾ /I ² S	10/12-Bit ADC (Cha	Comparators	CRC	RTCC	JTAG	Packages
PIC32MM0016GPL020	20	16	4	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0032GPL020	20	32	8	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0064GPL020	20	64	8	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0016GPL028	28	16	4	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SSOP/SOIC/ QFN/UQFN
PIC32MM0032GPL028	28	32	8	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SSOP/ SOIC/ QFN/UQFN
PIC32MM0064GPL028	28	64	8	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SPDIP/SSOP/ SOIC/QFN/ UQFN
PIC32MM0016GPL036	36/40	16	4	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN
PIC32MM0032GPL036	36/40	32	8	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN
PIC32MM0064GPL036	36/40	64	8	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN

TABLE 1: PIC32MM0064GPL036 FAMILY DEVICES


Note 1: UART1 has assigned pins. UART2 is remappable.

2: SPI1 has assigned pins. SPI2 is remappable.

3: MCCP can be configured as a PWM with up to 6 outputs, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

4: SCCP can be configured as a PWM with 1 output, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

Pin Diagrams (Continued)

TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN QFN/UQFN DEVICES

Pin	Function	Pin	Function
1	PGED1/AN2/C1IND/C2INB /RP14 /RB0	15	TMS/REFCLKI/ RP8 /T1CK/T1G/U1RTS/U1BCLK/SDO1/C2OUT/OCM1B/ INT2/RB9 ⁽¹⁾
2	PGEC1/AN3/C1INC/C2INA/ RP15 /RB1	16	RP19/RC9
3	AN4/C1INB/ RP16 /RB2	17	VCAP
4	AN11/C1INA/RB3	18	PGED2/TDO/ RP17 /RB10
5	Vss	19	PGEC2/TDI/ RP18 /RB11
6	OSC1/CLKI/AN5/ RP3 /OCM1C/RA2	20	AN7/LVDIN/ RP12 /RB12
7	OSC2/CLKO/AN6/ RP4 /OCM1D/RA3 ⁽¹⁾	21	AN8/ RP13 /RB13
8	SOSCI/ RP5 /RB4	22	CDAC1/AN9/ RP9 /RTCC/U1TX/SDI1/C1OUT/INT1/RB14
9	SOSCO/SCLKI/ RP6 /PWRLCLK/RA4	23	AN10/REFCLKO/RP10/U1RX/SS1/FSYNC1/INT0/RB15 ⁽¹⁾
10	VDD	24	AVss
11	PGED3/RB5	25	AVdd
12	PGEC3/RB6	26	MCLR
13	RP11/RB7	27	VREF+/AN0/ RP1 /OCM1E/INT3/RA0
14	TCK/ RP7 /U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾	28	Vref-/AN1/ RP2 /OCM1F/RA1

Note 1: Pin has an increased current drive strength.

			Pin	Number				1	
Pin Name	20-Pin QFN	20-Pin SSOP	28-Pin QFN/ UQFN	28-Pin SPDIP/ SSOP/SOIC	36-Pin VQFN	40-Pin UQFN	Pin Type	Buffer Type	Description
RP1	19	2	27	2	33	36	I/O	ST/DIG	Remappable peripherals (input or output)
RP2	20	3	28	3	34	37	I/O	ST/DIG	
RP3	4	7	6	9	7	7	I/O	ST/DIG	
RP4	5	8	7	10	8	8	I/O	ST/DIG	
RP5	6	9	8	11	9	9	I/O	ST/DIG	
RP6	7	10	9	12	10	10	I/O	ST/DIG	
RP7	9	12	14	17	18	18	I/O	ST/DIG	
RP8	10	13	15	18	19	20	I/O	ST/DIG	
RP9	14	17	22	25	28	31	I/O	ST/DIG	
RP10	15	18	23	26	29	32	I/O	ST/DIG	
RP11	8	11	13	16	17	17	I/O	ST/DIG	
RP12	12	15	20	23	26	29	I/O	ST/DIG	
RP13	13	16	21	24	27	30	I/O	ST/DIG	
RP14	1	4	1	4	35	38	I/O	ST/DIG	
RP15	2	5	2	5	36	39	I/O	ST/DIG	
RP16	3	6	3	6	1	1	I/O	ST/DIG	
RP17		—	18	21	24	27	I/O	ST/DIG	
RP18	—	—	19	22	25	28	I/O	ST/DIG	
RP19	—	—	16	19	21	22	I/O	ST/DIG	
RP20	—	—	—	—	11	11	I/O	ST/DIG	
RTCC	14	17	22	25	28	31	0	DIG	Real-Time Clock alarm/seconds output
SCK1	9	12	14	17	18	18	I/O	ST/DIG	SPI1 clock (input or output)
SCLKI	7	10	9	12	10	10	Ι	ST	Secondary Oscillator external clock input
SDI1	14	17	22	25	28	31	Ι	ST	SPI1 data input
SDO1	10	13	15	18	19	20	0	DIG	SPI1 data output
SOSCI	6	9	8	11	9	9	—	—	Secondary Oscillator crystal
SOSCO	7	10	9	12	10	10	—	—	Secondary Oscillator crystal
SS1	15	18	23	26	29	32	Ι	ST	SPI1 slave select input
T1CK	10	13	15	18	19	20	Ι	ST	Timer1 external clock input
T1G	10	13	15	18	19	20	Ι	ST	Timer1 clock gate input
тск	9	12	14	17	18	18	Ι	ST	JTAG clock input
TDI	13	16	19	22	25	28	Ι	ST	JTAG data input
TDO	12	15	18	21	24	27	0	DIG	JTAG data output
TMS	10	13	15	18	19	20	Ι	ST	JTAG mode select input
U1BCLK	10	13	15	18	19	20	0	DIG	UART1 IrDA [®] 16x baud clock output
U1CTS	9	12	14	17	18	18	Ι	ST	UART1 transmission control input
U1RTS	10	13	15	18	19	20	0	DIG	UART1 reception control output
U1RX	15	18	23	26	29	32	Ι	ST	UART1 receive data input
U1TX	14	17	22	25	28	31	0	DIG	UART1 transmit data output
Legend:	ST = Sc	hmitt Tric	ger input	buffer	DIG = Dig	nital input	t/output		ANA = Analog level input/output

PIC32MM0064GPL036 FAMILY PINOUT DESCRIPTION (CONTINUED) **TABLE 1-1:**

Legend: ST = Schmitt Trigger input buffer

DIG = Digital input/output

ANA = Analog level input/output

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

2.1 Basic Connection Requirements

Getting started with the PIC32MM0064GPL036 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, even if the ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pin (see Section 2.4 "Capacitor on Internal Voltage Regulator (VCAP)")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSC1 and OSC2 pins, when external oscillator source is used (see Section 2.7 "External Oscillator Pins")

The following pin(s) may be required as well:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS, is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of $0.1 \ \mu F$ (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances, as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

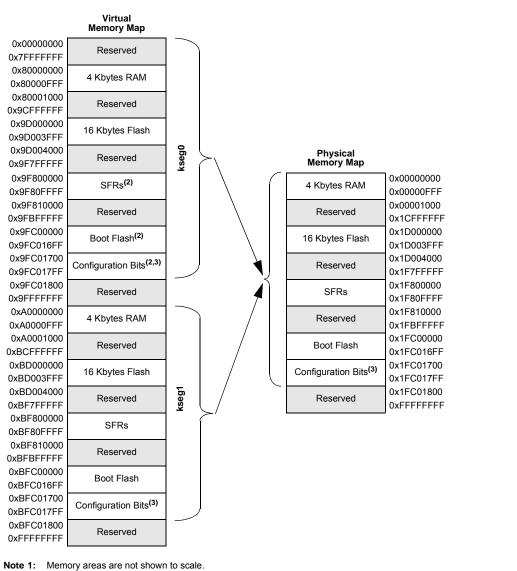

Register Number	Register Name	Function
0-3	Reserved	Reserved in the microAptiv™ UC.
4	UserLocal	User information that can be written by privileged software and read via RDHWR, Register 29.
5-6	Reserved	Reserved in the microAptiv UC.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-Privileged mode.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the microAptiv UC.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status/ IntCtl/ SRSCtl/ SRSMap1/ View_IPL/ SRSMAP2	Processor status and control; interrupt control and shadow set control.
13	Cause ⁽¹⁾ / View_RIPL	Cause of last exception.
14	EPC ⁽¹⁾	Program Counter at last exception.
15	PRId/ EBase/ CDMMBase	Processor identification and revision; exception base address; Common Device Memory Map Base register.
16	CONFIG/ CONFIG1/ CONFIG2/ CONFIG3/ CONFIG7	Configuration registers.
7-22	Reserved	Reserved in the microAptiv UC.
23	Debug/ Debug2/ TraceControl/ TraceControl2/ UserTraceData1/ TraceBPC ⁽²⁾	EJTAG Debug register. EJTAG Debug Register 2. EJTAG Trace Control register. EJTAG Trace Control Register 2. EJTAG User Trace Data 1 register. EJTAG Trace Breakpoint register.
24	DEPC ⁽²⁾ / UserTraceData2	Program Counter at last debug exception. EJTAG User Trace Data 2 register.
25	PerfCtl0/ PerfCnt0/ PerfCtl1/ PerfCnt1	Performance Counter 0 control. Performance Counter 0. Performance Counter 1 control. Performance Counter 1.
26	ErrCtl	Software parity check enable.
27	CacheErr	Records information about SRAM parity errors.
28-29	Reserved	Reserved in the PIC32 core.
30	ErrorEPC ⁽¹⁾	Program Counter at last error.
31	DeSAVE ⁽²⁾	Debug Handler Scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used in debug.

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 16 Kbytes OF PROGRAM MEMORY⁽¹⁾

2: This region should be accessed from kseg1 space only.

3: Primary Configuration bits area is located at the address range, from 0x1FC01780 to 0x1FC017E8. Alternate Configuration bits area is located at the address range, from 0x1FC01700 to 0x1FC01768. Refer to Section 4.1 "Alternate Configuration Bits Space" for more information.

5.2 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		0								Bi	ts								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2380	NVMCON ⁽¹⁾	31:16	_																0000
2300	INVINCOIN.	15:0	WR	WREN WRERR LVDERR — — — — — — 0000											0000				
2390	NVMKEY	31:16		NVMKEY<31:0>															
2390		15:0		NVMKEY<31:0>											0000				
23A0	NVMADDR ⁽¹⁾	31:16		NVMADDR<31:0>											0000				
2370	NUMADOR	15:0								NVINADD	1(\$01.02								0000
23B0	NVMDATA0	31:16								NVMDAT	A0<31·0>								0000
2020		15:0									10 101.01								0000
23C0	NVMDATA1	31:16								NVMDAT	A1<31·0>								0000
2000		15:0									11.01.0								0000
23D0	NVMSRCADDR	31:16							N	VMSRCA	DDR<31:0	>							0000
2020		15:0																	0000
23E0	NVMPWP ⁽¹⁾	31:16	PWPULOCK	WPULOCK — — — — PWP<23:16> 8000										8000					
-0-0		15:0								PWP<	15:0>								0000
23F0	NVMBWP ⁽¹⁾	31:16	—	—	—	—	_	_		_	_	_	—	_	_	_	_	—	0000
2010		15:0	BWPULOCK	_	_	—	—		BWP<2:0>		_	_	—	_	_	_	_	—	8700

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
31:24		NVMKEY<31:24>											
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
23:16				NVMKE	Y<23:16>								
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
15:8				NVMKE	EY<15:8>								
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
7:0				NVMK	NVMKEY<7:0>								

REGISTER 5-2: NVMKEY: NVM PROGRAMMING UNLOCK REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMKEY<31:0>: NVM Unlock Register bits

These bits are write-only and read as '0' on any read.

REGISTER 5-3: NVMADDR: NVM FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.04	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0 R/		R/W-0	R/W-0	R/W-0						
31:24		NVMADDR<31:24>												
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16		NVMADDR<23:16>												
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8				NVMAD	DR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				NVMAD)DR<7:0>									

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMADDR<31:0>: NVM Flash Address bits

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)
Page Erase	Address identifies the page to erase (NVMADDR<10:0> are ignored).
Row Program	Address identifies the row to program (NVMADDR<7:0> are ignored).
Double-Word Program	Address identifies the double-word (64-bit) to program (NVMADDR<1:0> bits are ignored).

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽³⁾
 - 111 and 110 = Reserved (selects internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV))
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Reserved
 - 010 = Primary Oscillator (POSC) (XT, HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (FOSCSEL<2:0>).
- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified
- bit 6-5 Unimplemented: Read as '0'
- bit 4 SLPEN: Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 CF: Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- bit 2 Unimplemented: Read as '0'
- bit 1 SOSCEN: Secondary Oscillator (SOSC) Enable bit⁽⁴⁾
 - 1 = Enables Secondary Oscillator
 - 0 = Disables Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit⁽²⁾
 - 1 = Initiates an oscillator switch to a selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: The Reset value for this bit depends on the setting of the IESO (FOSCSEL<7>) Configuration bit. When IESO = 1, the Reset value is '1'. When IESO = 0, the Reset value is '0'.
 - **3:** The Reset value for these bits matches the setting of the FNOSC<2:0> (FOSCSEL<2:0>) Configuration bits.
 - 4: The Reset value for this bit matches the setting of the SOSCEN (FOSCSEL<6>) Configuration bit.

REGISTER 12-2: CCPxCON2: CAPTURE/COMPARE/PWMx CONTROL 2 REGISTER (CONTINUED)

- bit 14 ASDGM: CCPx Auto-Shutdown Gate Mode Enable bit
 - 1 = Waits until the next Time Base Reset or rollover for shutdown to occur
 - 0 = Shutdown event occurs immediately
- bit 13 Unimplemented: Read as '0'
- bit 12 SSDG: CCPx Software Shutdown/Gate Control bit
 - 1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting the ASDGM bit still applies)
 - 0 = Normal module operation
- bit 11-8 Unimplemented: Read as '0'
- bit 7-0 ASDG<7:0>: CCPx Auto-Shutdown/Gating Source Enable bits
 - 1xxx xxxx = Auto-shutdown is controlled by the OCFB pin (remappable)
 - x1xx xxxx = Auto-shutdown is controlled by the OCFA pin (remappable)
 - xx1x xxxx = Auto-shutdown is controlled by CLC1 for MCCP1/SCCP2 and by CLC2 for SCCP3
 - xxx1 xxxx = Auto-shutdown is controlled by the SCCP2 output for MCCP1 and by MCCP1 for SCCP2/SCCP3
 - xxxx 1xxx = Auto-shutdown is controlled by the SCCP3 output for MCCP1/SCCP2 and by SCCP2 for SCCP3
 - xxxx x1xx = Reserved
 - xxxx xx1x = Auto-shutdown is controlled by Comparator 2
 - xxxx xxx1 = Auto-shutdown is controlled by Comparator 1
- Note 1: OCFEN through OCBEN (bits<29:25>) are implemented in MCCP modules only.

REGISTER 18-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

bit 10-8 DS3<2:0>: Data Selection MUX 3 Signal Selection bits

For CLC1:

- 111 = SCCP3 compare match event
- 110 = SCCP2 compare match event
- 101 = SCCP2 OCM2 output
- 100 = UART1 RX input
- 011 = SPI1 SDO output
- 010 = Comparator 2 output
- 001 = CLC1 output
- 000 = CLCINA I/O pin

For CLC2:

- 111 = SCCP3 compare match event
- 110 = SCCP2 compare match event
- 101 = SCCP2 OCM2 output
- 100 = UART2 RX input
- 011 = SPI2 SDO output
- 010 = Comparator 2 output
- 001 = CLC2 output
- 000 = CLCINA I/O pin
- bit 7 Unimplemented: Read as '0'
- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits

For CLC1:

- 111 = Reserved
- 110 = MCCP1 compare match event
- 101 = Reserved
- 100 = ADC End-of-Conversion (EOC) event
- 011 = UART1 TX output
- 010 = Comparator 1 output
- 001 = CLC2 output
- 000 = CLCINB I/O pin

For CLC2:

- 111 = Reserved
- 110 = MCCP1 compare match event
- 101 = Reserved
- 100 = ADC End-of-Conversion event
- 011 = UART2 TX output
- 010 = Comparator 1 output
- 001 = CLC1 output
- 000 = CLCINB I/O pin

bit 3 Unimplemented: Read as '0'

- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = MCCP1 OCM1C output
 - 110 = MCCP1 OCM1B output
 - 101 = MCCP1 OCM1A output
 - 100 = REFCLKO output
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (FSYS)
 - 000 = CLCINA I/O pin

20.1 CDAC Control Registers

TABLE 20-1: CDAC REGISTER MAP

ess		Jge								Bits									6
Virtual Addre (BF80_#)	Register Name ⁽¹⁾		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	DACICON	31:16	_	—	—	_	_	—	_	-	—	—	—		D	ACDAT<4:	0>		0000
0980	DAC1CON	15:0	ON		—			_		DACOE		_	—	_	—	_	REFSE	L<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively.

TABLE 22-3: PERIPHERAL MODULE DISABLE REGISTER MAP

ess		Ċ,								Bits									
Virtual Address (BF80_#)	Virtual Addr (BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2C00	PMDCON	31:16	—	-		_	_	_		_			—		_		—	_	0000
2000	FINDCON	15:0	—	_	—	—	PMDLOCK	—	—	—	-	—	—	—	—	_	—	—	0000
2C10	PMD1	31:16	—	_	—	—	—	—	—	—	-	—	—	HLVDMD	—	_	—	—	FFEF
2010	FINIDT	15:0	_			VREFMD	—	—		—			—		_		—	ADCMD	EFFE
2C20	PMD2	31:16	_			_	—	—	CLC2MD	CLC1MD			—		_		—	_	FCFF
2020	FINDZ	15:0	_			_	—	—		—			—		_		CMP2MD	CMP1MD	FFFC
2C30	PMD3	31:16	_			_	—	—		—			—		_		—	_	FFFF
2030	FIND3	15:0	_			_	—	CCP3MD	CCP2MD	CCP1MD			—		_		—	_	F8FF
2C40	PMD4	31:16	_			_	—	—		—			—		_		—	_	FFFF
2040	FIVID4	15:0	_			_	—	—		—			—		_		—	T1MD	FFFE
2C50	PMD5	31:16	_			_	—	—		—			—		_		r	r	FFFC
2000	FINDS	15:0	—	—	_	—	—	—	SPI2MD	SPI1MD	_	_	—	_	—	_	U2MD	U1MD	FCFC
2C60	PMD6	31:16	—	_	—	—	—	—	—	—	-	—	—	—	—	_	—	—	FFFF
2000	FIVIDO	15:0	_			_	_	_		REFOMD			_		_		_	RTCCMD	FEFE
2C70	PMD7	31:16	_	-		—	—	_		_	_		-		_	_	-	—	FFFF
2070		15:0	_	-		—	—	_		_	_		-		CRCMD	_	-	—	FFF7

Legend: — = unimplemented, read as '1'; r = reserved bit, maintain as '1'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

TABLE 23-5: RAM CONFIGURATION, DEVICE ID AND SYSTEM LOCK REGISTERS MAP

ess		Bits						(1)											
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹
2000	050001	31:16	_	_	—	_	—	—	-	—	EXECADDR<7:0>				0000				
3B00	CFGCON	15:0		_	_	_	_	_	_	_	_	_	_	_	JTAGEN	_	_	_	000x
3B20	DEVID	31:16		VER	<3:0>							ID<27:16>						xxxx	
3620	DEVID	15:0		ID<15:0>					.15:0> ::						xxxx				
3B30	SYSKEY	31:16								SYSKEY	<31.0>								0000
3630	STOKET	15:0								STORET	<31.02								0001

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

PIC32MM0064GPL036 FAMILY

REGISTER 23-10: ANCFG: BAND GAP CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	—		_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	—		_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—		—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS, HC	R/W-0, HS, HC	U-0
7:0	_		_			VBGADC	VBGCMP	_

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

- bit 2 **VBGADC:** ADC Band Gap Enable bit
 - 1 = ADC band gap is enabled
 - 0 = ADC band gap is disabled

bit 1 **VBGCMP:** Comparator Band Gap Enable bit

- 1 = Comparator band gap is enabled
- 0 = Comparator band gap is disabled
- bit 0 Unimplemented: Read as '0'

TABLE 26-22: RESET, BROWN-OUT RESET AND SLEEP MODES TIMING SPECIFICATIONS

Operati	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)										
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions				
SY10	TMCL	MCLR Pulse Width (Low)	2	—	_	μs					
SY13	Tioz	I/O High-Impedance from MCLR Low	_	1	_	μs					
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μs	$VDD \leq VBOR$				
SY45	TRST	Reset State Time	_	25	_	μs					
SY71	Twake ⁽²⁾	Wake-up Time with Main Voltage Regulator	_	22	_	μs	Sleep wake-up with VREGS = 0, RETEN = 0, RETVR = 1				
			_	3.8	—	μs	Sleep wake-up with VREGS = 1, RETEN = 0, RETVR = 1				
SY72	Twakelvr ⁽²⁾	Wake-up Time with Retention Low-Voltage Regulator	_	163	—	μs	Sleep wake-up with VREGS = 0, RETEN = 1, RETVR = 0				
				23	_	μs	Sleep wake-up with VREGS = 1, RETEN = 1, RETVR = 0				

Note 1: Data in the "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The parameters are measured with the external clock source (EC). To get the full wake-up time, the oscillator start-up time must be added.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

20-Lead SSOP

Example PIC32MM0016 GPL020 \$ 1610017 ()

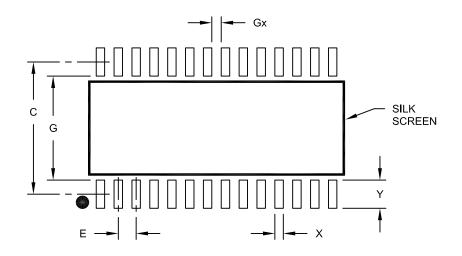
20-Lead QFN

Example 32MM0016 GPL020 1610017

28-Lead SPDIP

28-Lead SOIC (7.5 mm)

Example


Example

Legend:	XXX	Customer-specific information
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	*	All packages are Pb-free
ł	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES: