

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl028-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 20-PIN SSOP DEVICES

Pin	Function	Pin	Function
1	MCLR	11	RP11 /RB7
2	PGEC2/VREF+/AN0/ RP1 /OCM1E/INT3/RA0	12	TCK/ RP7 /U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾
3	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	13	TMS/REFCLKI/ RP8 /T1CK/T1G/ <mark>U1RTS</mark> /U1BCLK/SDO1/C2OUT/OCM1B/ INT2/RB9 ⁽¹⁾
4	PGED1/AN2/C1IND/C2INB/ RP14 /RB0	14	VCAP
5	PGEC1/AN3/C1INC/C2INA/ RP15 /RB1	15	TDO/AN7/LVDIN/ RP12 /RB12
6	AN4/ RP16 /RB2	16	TDI/AN8/ RP13 /RB13
7	OSC1/CLKI/AN5/C1INB/RP3/OCM1C/RA2	17	CDAC1/AN9/RP9/RTCC/U1TX/SDI1/C1OUT/INT1/RB14
8	OSC2/CLKO/AN6/C1INA/ RP4 /OCM1D/RA3 ⁽¹⁾	18	AN10/REFCLKO/RP10/U1RX/SS1/FSYNC1/INT0/RB15 ⁽¹⁾
9	PGED3/SOSCI/ RP5 /RB4	19	AVss/Vss
10	PGEC3/SOSCO/SCLKI/ RP6 /PWRLCLK/RA4	20	AVdd/Vdd

Note 1: Pin has an increased current drive strength.

Pin Diagrams (Continued)

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN SPDIP/SSOP/SOIC DEVICES

Pin	Function	Pin	Function
1	MCLR	15	PGEC3/RB6
2	VREF+/AN0/RP1/OCM1E/INT3/RA0	16	RP11 /RB7
3	VREF-/AN1/ RP2 /OCM1F/RA1	17	TCK/ RP7 /U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾
4	PGED1/AN2/C1IND/C2INB/RP14/RB0	18	TMS/REFCLKI/ RP8 /T1CK/T1G/U1RTS/U1BCLK/SDO1/C2OUT/OCM1B/INT2/RB9 ⁽¹⁾
5	PGEC1/AN3/C1INC/C2INA/RP15/RB1	19	RP19/RC9
6	AN4/C1INB/ RP16 /RB2	20	VCAP
7	AN11/C1INA/RB3	21	PGED2/TDO/ RP17 /RB10
8	Vss	22	PGEC2/TDI/ RP18 /RB11
9	OSC1/CLKI/AN5/RP3/OCM1C/RA2	23	AN7/LVDIN/ RP12 /RB12
10	OSC2/CLKO/AN6/RP4/OCM1D/RA3 ⁽¹⁾	24	AN8/ RP13 /RB13
11	SOSCI/ RP5 /RB4	25	CDAC1/AN9/ RP9 /RTCC/U1TX/SDI1/C1OUT/INT1/RB14
12	SOSCO/SCLKI/RP6/PWRLCLK/RA4	26	AN10/REFCLKO/ RP10 /U1RX/SS1/FSYNC1/INT0/RB15 ⁽¹⁾
13	VDD	27	AVss
14	PGED3/RB5	28	AVDD

Note 1: Pin has an increased current drive strength.

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the documents listed below,								
	browse the documentation section of the								
	Microchip web site (www.microchip.com).								

- Section 1. "Introduction" (DS60001127)
- Section 5. "Flash Programming" (DS60001121)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupts" (DS60001108)
- Section 10. "Power-Saving Modes" (DS60001130)
- Section 14. "Timers" (DS60001105)
- Section 19. "Comparator" (DS60001110)
- Section 21. "UART" (DS61107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS61106)
- Section 25. "12-Bit Analog-to-Digital Converter (ADC) with Threshold Detect" (DS60001359)
- Section 28. "RTCC with Timestamp" (DS60001362)
- Section 30. "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS60001381)
- Section 33. "Programming and Diagnostics" (DS61129)
- Section 36. "Configurable Logic Cell" (DS60001363)
- Section 45. "Control Digital-to-Analog Converter (CDAC)" (DS60001327)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 59. "Oscillators with DCO" (DS60001329)
- Section 60. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS60001336)
- Section 62. "Dual Watchdog Timer" (DS60001365)

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. This data sheet contains device-specific information for the PIC32MM0064GPL036 family devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MM0064GPL036 family of devices.

Table 1-1 lists the pinout I/O descriptions for the pins shown in the device pin tables.

FIGURE 1-1: PIC32MM0064GPL036 FAMILY BLOCK DIAGRAM

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 16 Kbytes OF PROGRAM MEMORY⁽¹⁾

2: This region should be accessed from kseg1 space only.

3: Primary Configuration bits area is located at the address range, from 0x1FC01780 to 0x1FC017E8. Alternate Configuration bits area is located at the address range, from 0x1FC01700 to 0x1FC01768. Refer to Section 4.1 "Alternate Configuration Bits Space" for more information.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ¢)	Register Name ⁽¹⁾	ge								Bits	6								ts
Virtual Add (BF80_₫		Bit Ranç	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Res
F4.00	IPC8	31:16	_	—	—	_	_			_	—	—	—	CCT3IP<2:0>		•	CCT3IS	<1:0>	0000
FICU		15:0		_	_		CCP3IP<2:0>		CCP3IS<1:0>		_	_	_	CCT2IP<2:0>			CCT2IS	<1:0>	0000
5400	IDOO	31:16 — — — SPI2RXIP<2:0>		>	SPI2RX	S<1:0>	_	_	_	S	PI2TXIP<2:0	>	SPI2TXIS	6<1:0>	0000				
FIDU	IPC9	15:0	_	_	_		SPI2EIP<2:0>	>	SPI2EIS	S<1:0>	_	_	—		_	_	_	_	0000
F1F0		31:16	_	_		_	_	_	_				—		U2EIP<2:0>		U2EIS<	:1:0>	0000
FIEU	IPC IU	15:0	_	_			U2TXIP<2:0>		U2TXIS	6<1:0>			—	ι	J2RXIP<2:0>		U2RXIS	<1:0>	0000
F4F0	10044	31:16			-		CPCIP<2:0>		CPCIS	<1:0>	-	-	—		NVMIP<2:0>		NVMIS•	<1:0>	0000
F IFU	IPC11	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

2: These bits are not available on 20-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/ 6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	—	_	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	
7.0	R-0, HS, HC	U-0	R-0, HS, HC	R-0, HS, HC	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	SPLLRDY	—	LPRCRDY	SOSCRDY	—	POSCRDY	SPDIVRDY	FRCRDY

REGISTER 8-5: CLKSTAT: CLOCK STATUS REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 **Unimplemented:** Read as '0'

bit 7

- SPLLRDY: PLL Lock bit 1 = PLL is locked and ready 0 = PLL is not locked
- bit 6 Unimplemented: Read as '0'
- bit 5 LPRCRDY: LPRC Oscillator Ready bit 1 = LPRC oscillator is stable and ready 0 = LPRC oscillator is not stable
- bit 4 **SOSCRDY:** Secondary Oscillator (SOSC) Ready bit
 - 1 = SOSC is stable and ready
 - 0 = SOSC is not stable
- bit 3 Unimplemented: Read as '0'
- bit 2 **POSCRDY:** Primary Oscillator (POSC) Ready bit
 - 1 = POSC is stable and ready
 - 0 = POSC is not stable
- bit 1 SPDIVRDY: System PLL (with postscaler, SPLLDIV) Clock Ready Status bit
 - 1 = SPLLDIV is stable and ready
 - 0 = SPLLDIV is not stable
- bit 0 FRCRDY: Fast RC (FRC) Oscillator Ready bit
 - 1 = FRC oscillator is stable and ready
 - 0 = FRC oscillator is not stable

TABLE 12-1: MCCP/SCCP REGISTER MAP (CONTINUED)

ress t)	50	e									Bits								
Virtual Add (BF80_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0260	CCD2DA	31:16	—	_	_	_	—	_		_	—	1	—	_	_	_		—	0000
0200	CUFZRA	15:0	CMPA<15:0> 00													0000			
0270	CCD2DD	31:16	—	_	—	—	—	_		—	_		_		_	_		—	0000
0270	CCF 2KB	15:0		CMPB<15:0> 0													0000		
0280	CCD2RUE	31:16		CCP2 BUFH<15:0> 0												0000			
0200	CCF2B0	15:0	CCP2 BUFL<15:0>													0000			
0200	31:1		OPSSRC	RTRGEN	—	—		OPS<	3:0>		TRIGEN	ONESHOT	ALTSYNC			SYNC<4:0	>		0000
0300	CCF3CONT	15:0	ON	—	SIDL	CCPSLP	TMRSYNC	C	LKSEL<2:0	>	TMRPS<1:0>		T32	CCSEL	CCSEL MOD<3:0>			0000	
0210		31:16	OENSYNC	—	—	—	-	_	_	OCAEN	ICGS	ICGSM<1:0>		AUXO	AUXOUT<1:0> ICS<2:0>			0100	
0310	CCP3CONZ	15:0	PWMRSEN	ASDGM	_	SSDG	_	_	_	—				ASD	G<7:0>				0000
0220		31:16	OETRIG	0	SCNT<2:)>	_	_	_	POLACE - PSSACE<1:0>			_	_	0000				
0320	CCP3CON3	15:0	_	_	_	-	_	_	_	—	_	_	_	_	_	_	_	_	0000
0220	CODSETAT	31:16	—	—	—	—	_	_		—	—		—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP	0000
0330	CCF35TAI	15:0	—	—	—	—	_	ICGARM		—	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
0240	CODSTND	31:16								CCP3	TMRH<15:	0>							0000
0340	CCP3TIVIR	15:0								CCP3	8 TMRL<15:)>							0000
0250	CCD2DD	31:16								CCP	3 PRH<15:0	>							0000
0350	COFJER	15:0								CCP	3 PRL<15:0	>							0000
0260	CCD2DA	31:16	—	—	—	—	_	_		—	—		—		—	—		—	0000
0360	CCP3RA	15:0								CI	/IPA<15:0>								0000
0270	000000	31:16	_	_	_	-	_	_	_	—	_	_	_	_	_	_	_	_	0000
0370	CCP3RB	15:0								CN	/IPB<15:0>								0000
0200		31:16								CCP3	BUFH<15:)>							0000
0380	CCP3BUF	15:0								CCP3	3 BUFL<15:()>							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 12-4: CCPxSTAT: CAPTURE/COMPARE/PWMx STATUS REGISTER (CONTINUED)

bit 3	SCEVT: Single Edge Compare Event Status bit
	1 = A single edge compare event has occurred
	0 = A single edge compare event has not occurred
bit 2	ICDIS: Input Capture Disable bit
	 1 = Event on input capture pin does not generate a capture event 0 = Event on input capture pin will generate a capture event
bit 1	ICOV: Input Capture Buffer Overflow Status bit
	1 = The input capture FIFO buffer has overflowed
	0 = The input capture FIFO buffer has not overflowed
bit 0	ICBNE: Input Capture Buffer Status bit
	1 = The input capture buffer has data available
	0 = The input capture buffer is empty

Note 1: This is not a physical bit location and will always read as '0'. A write of '1' will initiate the hardware event.

REGISTER 14-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 - Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Data is being received
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to the empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	URYDA: LIARTy Receive Buffer Data Available bit (read-only)

- bit 0 URXDA: UARTx Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	_	—	—	—	—	—	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	_	_	_	—	—	—	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	_	—	—	—	—	—	—			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		CH0NA<2:0>			CH0SA<4:0> ⁽¹⁾						

REGISTER 16-5: AD1CHS: ADC INPUT SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-8 Unimplemented: Read as '0'
- bit 7-5 CH0NA<2:0>: Negative Input Select bits
 - 111-001 = Reserved 000 = Negative input is AVss
- bit 4-0 CH0SA<4:0>: Positive Input Select bits⁽¹⁾
 - 11111 = Reserved
 - 11110 = Positive input is AVDD
 - 11101 = Positive input is AVss
 - 11100 = Positive input is Band Gap Reference (VBG)
 - 11011-01110 = Reserved
 - 01101 = Positive input is $AN13^{(2,3)}$
 - 01100 = Positive input is AN12^(2,3)
 - 01011 = Positive input is AN11⁽²⁾
 - 01010 = Positive input is AN10
 - 01001 = Positive input is AN9
 - 01000 = Positive input is AN8
 - 00111 = Positive input is AN7
 - 00110 = Positive input is AN6
 - 00101 = Positive input is AN5 00100 = Positive input is AN4
 - 00011 = Positive input is AN3
 - 00011 = Positive input is AN3 00010 = Positive input is AN2
 - 00010 = Positive input is AN2 00001 = Positive input is AN1
 - 00000 = Positive input is AN0
- **Note 1:** The CH0SA<4:0> positive input selection is only used when CSCNA (AD1CON2<10>) = 0 and ASEN (AD1CON5<15>) = 0. The AD1CSS bits specify the positive inputs when CSCNA = 1 or ASEN = 1.
 - 2: This option is not implemented in the 20-pin devices.
 - 3: This option is not implemented in the 28-pin devices.

REGISTER 18-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

bit 10-8 DS3<2:0>: Data Selection MUX 3 Signal Selection bits

For CLC1:

- 111 = SCCP3 compare match event
- 110 = SCCP2 compare match event
- 101 = SCCP2 OCM2 output
- 100 = UART1 RX input
- 011 = SPI1 SDO output
- 010 = Comparator 2 output
- 001 = CLC1 output
- 000 = CLCINA I/O pin

For CLC2:

- 111 = SCCP3 compare match event
- 110 = SCCP2 compare match event
- 101 = SCCP2 OCM2 output
- 100 = UART2 RX input
- 011 = SPI2 SDO output
- 010 = Comparator 2 output
- 001 = CLC2 output
- 000 = CLCINA I/O pin
- bit 7 Unimplemented: Read as '0'
- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits

For CLC1:

- 111 = Reserved
- 110 = MCCP1 compare match event
- 101 = Reserved
- 100 = ADC End-of-Conversion (EOC) event
- 011 = UART1 TX output
- 010 = Comparator 1 output
- 001 = CLC2 output
- 000 = CLCINB I/O pin

For CLC2:

- 111 = Reserved
- 110 = MCCP1 compare match event
- 101 = Reserved
- 100 = ADC End-of-Conversion event
- 011 = UART2 TX output
- 010 = Comparator 1 output
- 001 = CLC1 output
- 000 = CLCINB I/O pin

bit 3 Unimplemented: Read as '0'

- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = MCCP1 OCM1C output
 - 110 = MCCP1 OCM1B output
 - 101 = MCCP1 OCM1A output
 - 100 = REFCLKO output
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (FSYS)
 - 000 = CLCINA I/O pin

19.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM. The comparator module provides two dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+). The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 19-1. Each comparator has its own control register, CMxCON (Register 19-2), for enabling and configuring its operation. The output and event status of two comparators is provided in the CMSTAT register (Register 19-1).

PIC32MM0064GPL036 FAMILY

REGISTER 19-2: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 AND 2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	—	—	—	—	_	—
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC
	ON	COE	CPOL	—	—	—	CEVT	COUT
7:0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	EVPOL<1:0>		_	CREF	_		CCH	<1:0>

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Enable bit
 - 1 = Comparator is enabled
 - 0 = Comparator is disabled

bit 14 COE: Comparator Output Enable bit

- 1 = Comparator output is present on the CxOUT pin
 - 0 = Comparator output is internal only
- bit 13 CPOL: Comparator Output Polarity Select bit
 - 1 = Comparator output is inverted
 - 0 = Comparator output is not inverted

bit 12-10 Unimplemented: Read as '0'

- bit 9 CEVT: Comparator Event bit
 - 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared
 - 0 = Comparator event has not occurred
- bit 8 **COUT:** Comparator Output bit

 $\frac{\text{When CPOL} = 0:}{1 = \text{VIN} + \text{VIN}-}$ 0 = VIN + VIN- $\frac{\text{When CPOL} = 1:}{1 = \text{VIN} + \text{VIN}-}$

0 = VIN + > VIN -

NOTES:

24.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

24.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

24.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

NOTES:

TABLE 26-24: MCCP/SCCP TIMING REQUIREMENTS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param. No.	Symbol	Characteristics ⁽¹⁾		Min	Max	Units	Conditions
TMR10	Тскн	TCKIx High Time	Synchronous	1		TPBCLK	Must also meet Parameter TMR15
			Asynchronous	10	_	ns	
TMR11	TCKL	TCKIx Low Time	Synchronous	1		TPBCLK	Must also meet Parameter TMR15
			Asynchronous	10	_	ns	
TMR15	Тскр	TCKIx Input Period	Synchronous	2	_	TPBCLK	
			Asynchronous	20	_	ns	
TMR20	TCKEXTMRL	Delay from External TCKIx Clock Edge to Timer Increment		_	1	TPBCLK	

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensior	n Limits	MIN	NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	.100 BSC					
Top to Seating Plane	Α	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eВ	_	_	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A