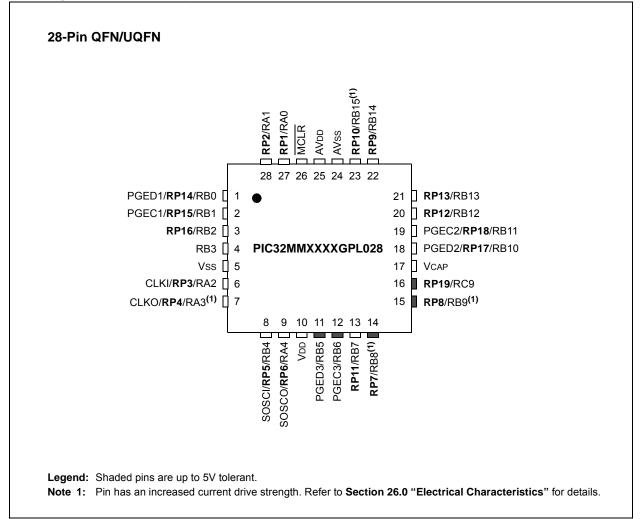


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl020-e-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

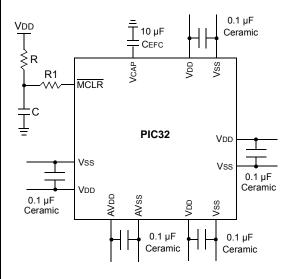


TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN QFN/UQFN DEVICES

Pin	Function	Pin	Function
1	PGED1/AN2/C1IND/C2INB /RP14 /RB0	15	TMS/REFCLKI/ RP8 /T1CK/T1G/U1RTS/U1BCLK/SDO1/C2OUT/OCM1B/ INT2/RB9 ⁽¹⁾
2	PGEC1/AN3/C1INC/C2INA/ RP15 /RB1	16	RP19/RC9
3	AN4/C1INB/ RP16 /RB2	17	VCAP
4	AN11/C1INA/RB3	18	PGED2/TDO/ RP17 /RB10
5	Vss	19	PGEC2/TDI/ RP18 /RB11
6	OSC1/CLKI/AN5/ RP3 /OCM1C/RA2	20	AN7/LVDIN/ RP12 /RB12
7	OSC2/CLKO/AN6/ RP4 /OCM1D/RA3 ⁽¹⁾	21	AN8/ RP13 /RB13
8	SOSCI/ RP5 /RB4	22	CDAC1/AN9/ RP9 /RTCC/U1TX/SDI1/C1OUT/INT1/RB14
9	SOSCO/SCLKI/ RP6 /PWRLCLK/RA4	23	AN10/REFCLKO/ RP10 /U1RX/SS1/FSYNC1/INT0/RB15 ⁽¹⁾
10	VDD	24	AVss
11	PGED3/RB5	25	AVdd
12	PGEC3/RB6	26	MCLR
13	RP11/RB7	27	VREF+/AN0/ RP1 /OCM1E/INT3/RA0
14	TCK/ RP7 /U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾	28	Vref-/AN1/ RP2 /OCM1F/RA1

Note 1: Pin has an increased current drive strength.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

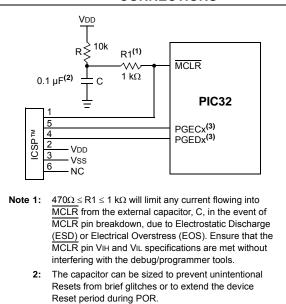
2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging


Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS^(1,2,3)

^{3:} No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.4 Capacitor on Internal Voltage Regulator (VCAP)

A low-ESR (<1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. The recommended value of the CEFC capacitor is 10 μ F. On the printed circuit board, it should be placed as close to the VCAP pin as possible. If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to this capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_	_	—	_		_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_	—	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1
7:0		_	_	_			_	NF

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CP0 REGISTER 16, SELECT 5

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 NF: Nested Fault bit

1 = Nested Fault feature is implemented

PIC32MM0064GPL036 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	—	-	—	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	_	_	—	_	_
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	_				_	SBOREN ⁽³⁾	RETEN ⁽²⁾	VREGS ⁽²⁾

REGISTER 6-4: PWRCON: POWER CONTROL REGISTER⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31-3 Unimplemented: Read as '0'
- bit 2 SBOREN: BOR During Sleep Control bit⁽³⁾
 - 1 = BOR is turned on
 - 0 = BOR is turned off
- bit 1 **RETEN:** Output Level of the Regulator During Sleep Selection bit⁽²⁾
 - 1 = Writing a '1' to this bit will cause the main regulator to be put in a low-power state during Sleep mode 0 = Writing a '0' to this bit will have no effect
- bit 0 VREGS: Voltage Regulator Standby Enable bit⁽²⁾
 - 1 = Voltage regulator will remain active during Sleep mode
 - 0 = Voltage regulator will go to Standby mode during Sleep mode
- Note 1: Writes to this register require an unlock sequence. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: Refer to Section 22.4 "On-Chip Voltage Regulator Low-Power Modes" for details.
 - 3: This bit is enabled only when the BOREN<1:0> Configuration bits (FPOR<1:0>) are set to '01'.

REGISTER 8-3: REFO1CON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽³⁾
 - 1111 = Reserved

 - •
 - .
 - 1010 = Reserved
 - 1001 = REFCLKI pin
 - 1000 = Reserved
 - 0111 = System PLL output (not divided)
 - 0110 = Reserved
 - 0101 = Secondary Oscillator (SOSC)
 - 0100 = Low-Power RC Oscillator (LPRC)
 - 0011 = Fast RC Oscillator (FRC)
 - 0010 = Primary Oscillator (POSC)
 - 0001 = Instruction/System Clock (SYSCLK)
 - 0000 = Instruction/System Clock (SYSCLK)
- **Note 1:** Do not write to this register when the ON bit is not equal to the ACTIVE bit.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000.
 - 3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.

9.9 I/O Ports Control Registers

TABLE 9-4: PORTA REGISTER MAP

ess		æ									Bits								
Virtual Address (BF80_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2600	ANSELA	31:16	_	_	_	_	—	_	—	—	_	—	_	—	—	—	_	—	0000
2000	/ NOLL/	15:0	_	—	—	—	—			_	_	_	_	_		ANSA	<3:0>		000F
2610	TRISA	31:16	_	_	—	—	—		—	_	_	_	_	—	—	—	_	_	0000
2010	INIOA	15:0	_	—	—	—	—	_	TRISA9 ^(1,2)	_	—	—	_			TRISA<4:0>			021F
2620	PORTA	31:16	_	_	—	—	—		—	_	_	_	_	—	—	—	_	_	0000
2020	1 OKIA	15:0	_	—	—	—	—		RA9 ^(1,2)	_	_	_	_			RA<4:0>			xxxx
2630	LATA	31:16	_	—	—	—	—			_	_	_	_	—	—	_	_	_	0000
2000	DAIX	15:0	_	—	—	—	—		LATA9 ^(1,2)	_	_	_	_			LATA<4:0>			0000
2640	ODCA	31:16	_	—	—	—	—			_	_	_	_	—	—	_	_	_	0000
2040	000/1	15:0	_	—	—	—	—		ODCA9 ^(1,2)	_	_	_	_		ODCA<4:0>				0000
2650	CNPUA	31:16	_	—	—	—	—			_	_	_	_	—	—	_	_	_	0000
2000		15:0	_	—	—	—	—		CNPUA9 ^(1,2)	_	_	_	_		(CNPUA<4:0>			0000
2660	CNPDA	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0	—	—	—	—	—	_	CNPDA9 ^(1,2)	—	—	—	—		0	CNPDA<4:0>			0000
2670	CNCONA	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2010		15:0	ON	—	—	—	CNSTYLE			_	_	_	_	_	—	_	_	_	0000
2680	CNEN0A	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0	—	—	—	—	—	_	CNIEA9 ^(1,2)	—	—	—	—			CNIEA<4:0>			0000
2690	CNSTATA	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2000	01101/11/1	15:0	—	—	—	—	—	_	CNSTATA9(1,2)	—	—	—	—		С	NSTATA<4:0	>		0000
26A0	CNEN1A	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
20/10	SNENIA	15:0	—	—	—	—	—	_	CNIE1A9 ^(1,2)	—	_	—	_		CNIE1A<4:0> 00				0000
26B0	CNFA	31:16	—	—	—	—	—	_		—	_	—	_	—	—	—	_	—	0000
2000		15:0	_	—	—	—	—	_	CNFA9 ^(1,2)		_	—	-			CNFA<4:0>			0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

TABLE 9-5: PORTB REGISTER MAP

ess		0								Bits									
Virtual Address (BF80_#)	Register Name ⁽²⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2700	ANSELB	31:16	_	—	—	—	—	_	_	—	-	_	—	—	—	—	—	_	0000
2700	ANGLLD	15:0		ANSB<	15:12>		—	—	—	—	_	_	—	—		ANSB<	:3:0> (1)		FOOF
2710	TRISB	31:16	—	_	_	_	—	_	_	_			_	_	_	_	_	_	0000
2710	IRISD	15:0								TRISB<15	_{:0>} (1)								FFFF
2720	PORTB	31:16	—	_	_	_	—	_	_	_			_	_	_	_	_	_	0000
2720	FURID	15:0	RB<15:0> ⁽¹⁾ 0000										0000						
2730	LATB	31:16	—	_	_	_	—	_	_	_			_	_	_	_	_	_	0000
2750	LAID	15:0	0 LATB<15:0> ⁽¹⁾ 0(0000						
2740	ODCB	31:16	—	—	—	—	—	—	_	—	_	—	—	—	—	—	—	_	0000
2740	ODCB	15:0	15:0 ODCB<15:0> ⁽¹⁾									0000							
2750	CNPUB	31:16	_	_	_	—	—	_	_		—	_	—		—	—			0000
2750		15:0		-	-	-				CNPUB<1	5:0> (1)			-	-		-	-	0000
2760	CNPDB	31:16	_	_	—	—	—	—	_	—	_	_	—	—	—	—	—	—	0000
2100		15:0								CNPDB<1	5:0> (1)								0000
2770	CNCONB	31:16	_			_	—	—	_		_					—			0000
2110	ONCOME	15:0	ON	—	—	—	CNSTYLE	—	—	—	—	—	—	—	—	—	—	—	0000
2780	CNEN0B	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2100	ONLIND	15:0								CNIEB<1	5:0>(1)								0000
2790	CNSTATB	31:16	—	—	—	—	—		_	—	—	—	—	—	—	—	—		0000
2100	enten ni b	15:0								CNSTATB<	15:0> (1)								0000
27A0	CNEN1B	31:16	—	—	—	—	—		_	—	—	—	—	—	—	—	—		0000
2.7.0												0000							
27B0	CNFB	31:16	—	—	—	—	—		_	—	—	—	—	—	—	—	—		0000
2.00	0.110	15:0 CNFB<15:0> ⁽¹⁾ 0000																	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits<11:10,6:5,3> are not implemented in 20-pin devices.

2: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

14.1 UART Control Registers

TABLE 14-1: UART1 AND UART2 REGISTER MAP

ess										E	lits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	U1MODE ⁽¹⁾	31:16		_	—	_	_	_		—	SLPEN	ACTIVE	_	_		CLKSE	L<1:0>	OVFDIS	0000
0000	ONNODE	15:0	ON		SIDL	IREN	RTSMD	—	UEN≤	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0610	U1STA ⁽¹⁾	31:16				UART1 M	ASK<7:0>							UART1 AD	DR<7:0>				0000
0010	UISIA	15:0	0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA							0110									
0620	U1TXREG	31:16	—		—					_		—	_	_		—	_	_	0000
0020	UTIAREG	15:0	—		—					TX8			U	ART1 Trans	mit Registe	er			0000
0630	U1RXREG	31:16	—		—					_		—	_	_		—	_	_	0000
0030	UIRAREG	15:0	—		—					RX8			U.	ART1 Rece	ive Registe	er			0000
0640	U1BRG ⁽¹⁾	31:16	—		_					_		_	_	_		_	—	_	0000
0040	UIBKG.	15:0							Bau	d Rate Ger	nerator Pre	scaler							0000
0680	U2MODE ⁽¹⁾	31:16	—	-	—	—	—	—	_	—	SLPEN	ACTIVE	—	—	_	CLKSE	L<1:0>	OVFDIS	0000
0000	U2IVIODE: /	15:0	ON		SIDL	IREN	RTSMD		UEN∙	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0690	U2STA ⁽¹⁾	31:16				UART2 M	ASK<7:0>							UART2 AD	DR<7:0>				0000
0090	0231A.7	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
06A0	U2TXREG	31:16	—		—					_		—	_	_		—	_	_	0000
UOAU	UZIAREG	15:0	—		—					TX8	3 UART2 Transmit Register					0000			
06B0	U2RXREG	31:16			—			_				—	_	_		—	_		0000
0080	UZKAREG	15:0			—			_		RX8	X8 UART2 Receive Register					0000			
				0000															
06C0	UZBRG''	15:0							Bau	d Rate Ger	nerator Pre	scaler							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 14-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 11	RTSMD: Mode Selection for UxRTS Pin bit 1 = UxRTS pin is in Simplex mode
	0 = UxRTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits ⁽¹⁾
	 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
bit 7	WAKE: Enable Wake-up on Start Bit Detect During Sleep Mode bit
	1 = Wake-up is enabled0 = Wake-up is disabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	1 = Loopback mode is enabled0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	RXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = High-Speed mode – 4x baud clock is enabled 0 = Standard Speed mode – 16x baud clock is enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit
	1 = 2 Stop bits 0 = 1 Stop bit

Note 1: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 9.8 "Peripheral Pin Select (PPS)" for more information).

PIC32MM0064GPL036 FAMILY

REGISTER 15-3: RTCSTAT: RTCC STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	_	—	_	—	—	_	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_		—	_	_	—	—
7.0	U-0	U-0	R-0, HS, HC	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	_	_	ALMEVT	_	_	SYNC	ALMSYNC	HALFSEC

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-6 Unimplemented: Read as '0'

bit 5 ALMEVT: Alarm Event bit

- 1 = An alarm event has occurred
- 0 = An alarm event has not occurred

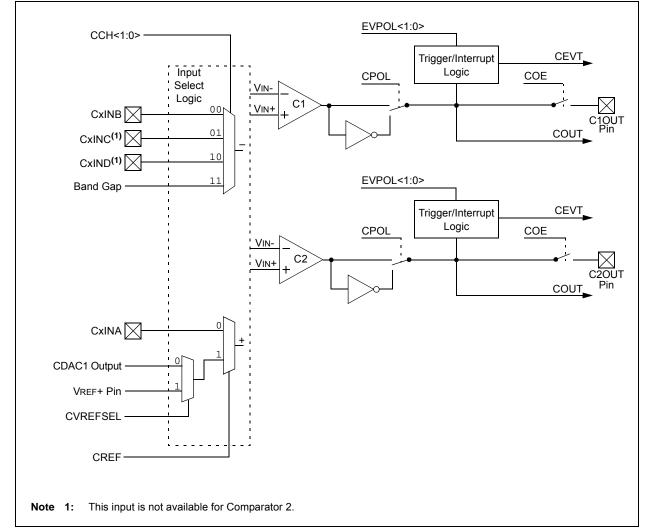
bit 4-3 Unimplemented: Read as '0'

- bit 2 SYNC: Synchronization Status bit
 - 1 = Time registers may change during software read
 - 0 = Time registers may be read safely

bit 1 ALMSYNC: Alarm Synchronization status bit

- 1 = Alarm registers (ALMTIME and ALMDATE) and RTCCON1 should not be modified; the ALRMEN and ALMRPT<7:0> bits may change during software read
- 0 = Alarm registers and Alarm Control registers may be modified safely

bit 0 HALFSEC: Half Second Status bit


- 1 = Second half of 1-second period
- 0 = First half of 1-second period

19.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM. The comparator module provides two dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+). The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 19-1. Each comparator has its own control register, CMxCON (Register 19-2), for enabling and configuring its operation. The output and event status of two comparators is provided in the CMSTAT register (Register 19-1).

19.1 Comparator Control Registers

TABLE 19-1: COMPARATOR 1 AND 2 REGISTER MAP

ess		0	Bits											ŝ					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	OMOTAT	31:16	—	_	—	—	_	—	—	—	_	-	-	—	—	_	C2EVT	C1EVT	0000
0900	CMSTAT	15:0	_	_	SIDL	_	_	_	_	CVREFSEL	_	_	_	_	_	_	C2OUT	C10UT	0000
0910	CM1CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0910	CINICON	15:0	ON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
0930	CM2CON	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
	CM2CON	15:0	ON	COE	CPOL	_	_		CEVT	COUT	EVPO	L<1:0>	-	CREF		_	CCH	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

25.0 INSTRUCTION SET

The PIC32MM0064GPL036 family instruction set complies with the MIPS[®] Release 3 instruction set architecture. Only microMIPS32[™] instructions are supported. The PIC32MM0064GPL036 family does not have the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note:	Refer to the "MIPS® Architecture for	-
	Programmers Volume II-B: The	
	microMIPS32 [™] Instruction Set" at	
	www.imgtec.com for more information.	

Operatin	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param. No.	Symbol	Characteristics	Min.	Max.	Units	Conditions		
Dl60a	licl	Input Low Injection Current	0	₋₅ (1,4)	mA	This parameter applies to all pins.		
DI60b	Іісн	Input High Injection Current	0	+5 ^(2,3,4)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins and SOSCI. Maximum IICH current for these exceptions is 0 mA.		
DI60c	∑ІІСТ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁵⁾	+20 ⁽⁵⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins, (IICL + IICH) $\leq \sum$ IICT		

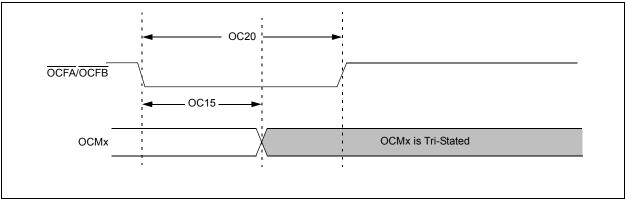
Note 1: VIL Source < (Vss - 0.3). Characterized but not tested.

2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.

3: Digital 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

4: Injection currents can affect the ADC results.

5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit.


TABLE 26-22: RESET, BROWN-OUT RESET AND SLEEP MODES TIMING SPECIFICATIONS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2	—	_	μs	
SY13	Tioz	I/O High-Impedance from MCLR Low	_	1	_	μs	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μs	$VDD \leq VBOR$
SY45	TRST	Reset State Time	_	25	_	μs	
SY71	Twake ⁽²⁾	Wake-up Time with Main Voltage Regulator	_	22	_	μs	Sleep wake-up with VREGS = 0, RETEN = 0, RETVR = 1
			_	3.8	—	μs	Sleep wake-up with VREGS = 1, RETEN = 0, RETVR = 1
SY72	Twakelvr ⁽²⁾	Wake-up Time with Retention Low-Voltage Regulator	_	163	—	μs	Sleep wake-up with VREGS = 0, RETEN = 1, RETVR = 0
				23	_	μs	Sleep wake-up with VREGS = 1, RETEN = 1, RETVR = 0

Note 1: Data in the "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The parameters are measured with the external clock source (EC). To get the full wake-up time, the oscillator start-up time must be added.

TABLE 26-27: MCCP AND SCCP PWM MODE TIMING REQUIREMENTS

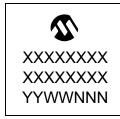
Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Max	Units			
OC15	Tfd	Fault Input to PWM I/O Change	_	30	ns			
OC20	TFLT	Fault Input Pulse Width	10		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

27.1 Package Marking Information (Continued)

28-Lead SSOP

28-Lead QFN


28-Lead UQFN

36-Lead VQFN

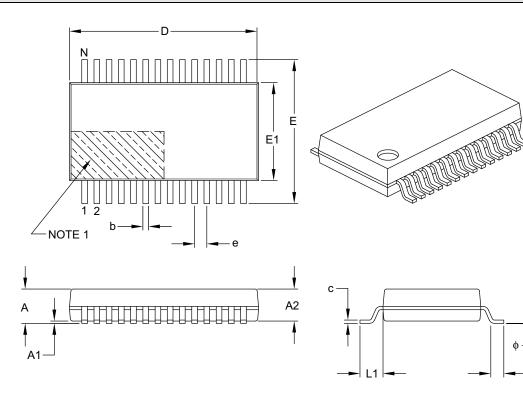
40-Lead UQFN

Example

Example

Example

Example



Example

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
Dimensio	Dimension Limits			MAX		
Number of Pins	Ν					
Pitch	е	0.65 BSC				
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	Е	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	с	0.09	-	0.25		
Foot Angle	¢	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain info	rmation, e.g., on pricing or delivery, refer to the factory or the listed sales o	office.
Family Key Feature Set _ Pin Count Tape and Reel Flag		Example: PIC32MM0064GPL036-I/M2: PIC32 General Purpose Device with MIPS32 [®] microAptiv™ UC Core, 64-Kbyte Program Memory, 36-Pin Package.
Architecture	MM = MIPS32 [®] microAptiv™ UC CPU Core	
Flash Memory Size	0016 = 16 Kbytes 0032 = 32 Kbytes 0064 = 64 Kbytes	
Family	GP = General Purpose Family	
Key Feature	L = Up to 25 MHz operating frequency with basic peripheral set of 2 UART and 2 SPI modules	
Pin Count	020 = 20-pin 028 = 28-pin 036 = 36/40-pin	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	