

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl020-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Pin	Number							
Pin Name	20-Pin QFN	20-Pin SSOP	28-Pin QFN/ UQFN	28-Pin SPDIP/ SSOP/SOIC	36-Pin VQFN	40-Pin UQFN	Pin Type	Buffer Type	Description		
PGEC1	2	5	2	5	36	39	Ι	ST	ICSP Port 1 programming clock input		
PGEC2	19	2	19	22	25	28	I	ST	ICSP Port 2 programming clock input		
PGEC3	7	10	12	15	16	16	I	ST	ICSP Port 3 programming clock input		
PGED1	1	4	1	4	35	38	I/O	ST/DIG	ICSP Port 1 programming data		
PGED2	20	3	18	21	24	27	I/O	ST/DIG	ICSP Port 2 programming data		
PGED3	6	9	11	14	15	15	I/O	ST/DIG	ICSP Port 3 programming data		
PWRLCLK	7	10	9	12	10	10	I	ST	Real-Time Clock 50/60 Hz clock input		
RA0	19	2	27	2	33	36	I/O	ST/DIG	PORTA digital I/O		
RA1	20	3	28	3	34	37	I/O	ST/DIG	PORTA digital I/O		
RA2	4	7	6	9	7	7	I/O	ST/DIG	PORTA digital I/O		
RA3	5	8	7	10	8	8	I/O	ST/DIG	PORTA digital I/O		
RA4	7	10	9	12	10	10	I/O	ST/DIG	PORTA digital I/O		
RA9	_	_	_	_	11	11	I/O	ST/DIG	PORTA digital I/O		
RB0	1	4	1	4	35	38	I/O	ST/DIG	PORTB digital I/O		
RB1	2	5	2	5	36	39	I/O	ST/DIG	PORTB digital I/O		
RB2	3	6	3	6	1	1	I/O	ST/DIG	PORTB digital I/O		
RB3	_		4	7	2	2	I/O	ST/DIG	PORTB digital I/O		
RB4	6	9	8	11	9	9	I/O	ST/DIG	PORTB digital I/O		
RB5	_	_	11	14	15	15	I/O	ST/DIG	PORTB digital I/O		
RB6	_		12	15	16	16	I/O	ST/DIG	PORTB digital I/O		
RB7	8	11	13	16	17	17	I/O	ST/DIG	PORTB digital I/O		
RB8	9	12	14	17	18	18	I/O	ST/DIG	PORTB digital I/O		
RB9	10	13	15	18	19	20	I/O	ST/DIG	PORTB digital I/O		
RB10	_	—	18	21	24	27	I/O	ST/DIG	PORTB digital I/O		
RB11	_	_	19	22	25	28	I/O	ST/DIG	PORTB digital I/O		
RB12	12	15	20	23	26	29	I/O	ST/DIG	PORTB digital I/O		
RB13	13	16	21	24	27	30	I/O	ST/DIG	PORTB digital I/O		
RB14	14	17	22	25	28	31	I/O	ST/DIG	PORTB digital I/O		
RB15	15	18	23	26	29	32	I/O	ST/DIG	PORTB digital I/O		
RC0	—	_	_	_	3	3	I/O	ST/DIG	PORTC digital I/O		
RC1	_	_	_	_	4	4	I/O	ST/DIG	PORTC digital I/O		
RC2	_	_	—	—	5	5	I/O	ST/DIG	PORTC digital I/O		
RC3	—	_	_	_	14	14	I/O	ST/DIG	PORTC digital I/O		
RC8	_	_	_	_	20	21	I/O	ST/DIG	PORTC digital I/O		
RC9	_	_	16	19	21	22	I/O	ST/DIG	PORTC digital I/O		
REFCLKI	10	13	15	18	19	20	I	ST	Reference clock input		
REFCLKO	15	18	23	26	29	32	0	DIG	Reference clock output		
Legend:	0 15 18 23 26 29 32 O DIG Reference clock output ST = Schmitt Trigger input buffer DIG = Digital input/output ANA = Analog level input/output										

TABLE 1-1: PIC32MM0064GPL036 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer

DIG = Digital input/output

ANA = Analog level input/output

NOTES:

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-1, HS	R/W-1, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0
31:24	PORIO	PORCORE		—	BCFGERR	BCFGFAIL	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	—	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
15:8	_	_		—	—	_	CMR	_
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR	SWR	_	WDTO	SLEEP	IDLE ⁽²⁾	BOR	POR

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	PORIO: VDD POR Flag bit
	Set by hardware at detection of a VDD POR event. 1 = A Power-on Reset has occurred due to VDD voltage 0 = A Power-on Reset has not occurred due to VDD voltage
bit 30	PORCORE: Core Voltage POR Flag bit
	Set by hardware at detection of a core POR event. 1 = A Power-on Reset has occurred due to core voltage 0 = A Power-on Reset has not occurred due to core voltage
bit 29-28	Unimplemented: Read as '0'
bit 27	BCFGERR: Primary Configuration Registers Error Flag bit
	 1 = An error occurred during a read of the Primary Configuration registers 0 = No error occurred during a read of the Primary Configuration registers
bit 26	BCFGFAIL: Primary/Secondary Configuration Registers Error Flag bit
	1 = An error occurred during a read of the Primary and Alternate Configuration registers0 = No error occurred during a read of the Primary and Alternate Configuration registers
bit 25-10	Unimplemented: Read as '0'
bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = A Configuration Mismatch Reset has occurred0 = A Configuration Mismatch Reset has not occurred
bit 8	Unimplemented: Read as '0'
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed0 = Software Reset was not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT time-out has occurred
	0 = WDT time-out has not occurred
Note 1:	User software must clear bits in this register to view the next detection.

2: The IDLE bit will also be set when the device wakes from Sleep mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0						
31:24	_	_		_	_		_	WDTR						
00.40	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0						
23:16	SWNMI	—	_	_	GNMI	—	CF	WDTS						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	NMICNT<15:8>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				NMIC	NT<7:0>									

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER⁽¹⁾

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 WDTR: Watchdog Timer Time-out in Run Mode Flag bit
 - 1 = A Run mode WDT time-out has occurred and caused an NMI
 - 0 = WDT time-out has not occurred
 - Setting this bit will cause a WDT NMI event and NMICNT<15:0> will begin counting.
- bit 23 SWNMI: Software NMI Trigger bit
 - 1 = An NMI has been generated
 - 0 = An NMI was not generated
- bit 22-20 Unimplemented: Read as '0'
- bit 19 **GNMI:** Software General NMI Trigger bit
 - 1 = A general NMI has been generated
 - 0 = A general NMI was not generated
- bit 18 Unimplemented: Read as '0'
- bit 17 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected clock failure and caused an NMI
 - 0 = FSCM has not detected clock failure
 - Setting this bit will cause a CF NMI event, but will not cause a clock switch to the FRC.
- bit 16 WDTS: Watchdog Timer Time-out in Sleep Mode Flag bit
 - 1 = WDT time-out has occurred during Sleep mode and caused a wake-up from Sleep
 0 = WDT time-out has not occurred during Sleep mode
 Setting this bit will cause a WDT NMI.

bit 15-0 NMICNT<15:0>: NMI Reset Counter Value bits

These bits specify the reload value used by the NMI Reset counter. FFFFh-0001h = Number of SYSCLK cycles before a device Reset occurs⁽²⁾ 0000h = No delay between NMI assertion and device Reset event

- Note 1: Writes to this register require an unlock sequence. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: If a Watchdog Timer NMI event (when not in Sleep mode) is cleared before this counter reaches '0', no device Reset is asserted. This NMI Reset counter is only applicable to the Watchdog Timer NMI event.

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 59. "Oscillators with DCO" (DS60001329) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The PIC32MM0064GPL036 family oscillator system has the following modules and features:

- On-Chip PLL with User-Selectable Multiplier and Output Divider to Boost Operating Frequency on Select Internal and External Oscillator Sources
- Primary High-Frequency Crystal Oscillator
- Secondary Low-Frequency and Low-Power Crystal Oscillator
- On-Chip Fast RC (FRC) Oscillator with User-Selectable Output Divider
- Software-Controllable Switching between Various Clock Sources
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Flexible Reference Clock Output (REFO)

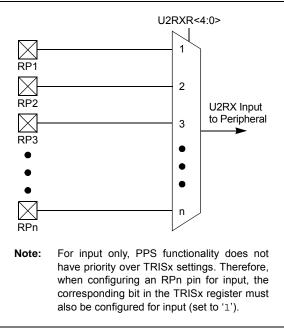
A block diagram of the oscillator system is provided in Figure 8-1.

8.1 Fail-Safe Clock Monitor (FSCM)

The PIC32MM0064GPL036 family oscillator system includes a Fail-Safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the FRC oscillator and triggers a Non-Maskable Interrupt (NMI). When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.

In Sleep mode, both the SYSCLK and the FSCM halt, which prevents FSCM detection.

9.8.4 INPUT MAPPING


The RPINRx registers are used to assign the peripheral input to the required remappable pin, RPn (refer to the peripheral inputs and the corresponding RPINRx registers listed in Table 9-2). Each RPINRx register contains sets of 5-bit fields. Programming these bits with the remappable pin number will connect the peripheral to this RPn pin. Example 9-1 and Figure 9-2 illustrate the remappable pin selection for the U2RX input.

EXAMPLE 9-1: UART2 RX INPUT ASSIGNMENT TO RP9/RB14 PIN

RPINR9bits.U2RXR	=	9;	11	connect UART2 RX
			//	input to RP9 pin

FIGURE 9-2: REMA

REMAPPABLE INPUT EXAMPLE FOR U2RX

TABLE 9-2: INPUT PIN SELECTION

Input Name	Function Name	Register	Function Bits
External Interrupt 4	INT4	RPINR1	INT4R<4:0>
MCCP1 Input Capture	ICM1	RPINR2	ICM1R<4:0>
SCCP2 Input Capture	ICM2	RPINR2	ICM2R<4:0>
SCCP3 Input Capture	ICM3	RPINR3	ICM3R<4:0>
Output Compare Fault A	OCFA	RPINR5	OCFAR<4:0>
Output Compare Fault B	OCFB	RPINR5	OCFBR<4:0>
CCP Clock Input A	TCKIA	RPINR6	TCKIAR<4:0>
CCP Clock Input B	TCKIB	RPINR6	TCKIBR<4:0>
UART2 Receive	U2RX	RPINR9	U2RXR<4:0>
UART2 Clear-to-Send	U2CTS	RPINR9	U2CTSR<4:0>
SPI2 Data Input	SDI2	RPINR11	SDI2R<4:0>
SPI2 Clock Input	SCK2IN	RPINR11	SCK2INR<4:0>
SPI2 Slave Select Input	SS2IN	RPINR11	SS2INR<4:0>
CLC Input A	CLCINA	RPINR12	CLCINAR<4:0>
CLC Input B	CLCINB	RPINR12	CLCINBR<4:0>

TABLE 9-5: PORTB REGISTER MAP

ess		0								Bits									
Virtual Address (BF80_#) Reclister	Register Name ⁽²⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2700	ANSELB	31:16	_	—	—	—	—	_	_	—	-	_	—	—	—	—	—	_	0000
2700	ANGLLD	15:0		ANSB<	15:12>		—	—	—	—	_	_	—	—		ANSB<	:3:0> (1)		FOOF
2710	TRISB	31:16	—	_	_	_	—	_	_	_			_	_	_	_	_	_	0000
2710	IRISD	15:0	TRISB<15:0> ⁽¹⁾ F														FFFF		
2720	PORTB	31:16	—	_	_	_	—	_	_	_			_	_	_	_	_	_	0000
2720	FURID	15:0								RB<15:0	_{)>} (1)								0000
2730	LATB	31:16	—	_	_	_	—	_	_	_			_	_	_	_	_	_	0000
2730	LAID	15:0	0 LATB<15:0> ⁽¹⁾ 01														0000		
2740	ODCB	31:16	—	—	—	—	—	—	_	—	_	_	—	—	—	—	—	_	0000
2740		15:0								ODCB<15	:0>(1)				-			_	0000
2750	CNPUB	31:16	_	_	_	—	—	_	_		—	_	—		—	—			0000
2750		15:0	CNPUB<15:0> ⁽¹⁾ 00													0000			
2760	CNPDB	31:16	_	_	—	—	—	_	_	—	_	_	—	—	—	—	—	—	0000
2100		15:0	CNPDB<15:0> ⁽¹⁾													0000			
2770	CNCONB	31:16	_			_	—	—	_		_					—			0000
2110	ONCOME	15:0	ON	—	—	—	CNSTYLE	—	—	—	—	—	—	—	—	—	—	—	0000
2780	CNEN0B	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2100	ONLIND	15:0								CNIEB<1	5:0>(1)								0000
2790	CNSTATB	31:16	—	—	—	—	—		_	—	—	—	—	—	—	—	—		0000
2100	enten ni b	15:0								CNSTATB<	15:0> (1)								0000
27A0	CNEN1B	31:16	—	—	—	—	—		_	—	—	—	—	—	—	—	—		0000
2.7.0	SILLIND	15:0								CNIE1B<1	5:0>(1)								0000
27B0	27B0 CNFB	31:16	—	—	—	—	—		_	—	—	—	—	—	—	—	—		0000
	15:0								CNFB<15	:0>(1)								0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits<11:10,6:5,3> are not implemented in 20-pin devices.

2: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

TABLE 9-6: PORTC REGISTER MAP

DS60001324B-pa
age
84

ess		n	Bits																
Virtual Address (BF80_#) Register Name ⁽³⁾	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2800	ANSELC	31:16	_	_	_	_	_	_		_		_	_	-	—	—		_	0000
		15:0	—	_	_				_	_	—			_	—	_	ANSC<	1:0> ^(1,2)	0003
2810	TRISC	31:16	_	—	—	_	_	_	—	—	—	_	—	_	—	—	—	—	0000
-0.0		15:0	_	—	—	_	_	_	TRISC	:9:8> (1,2)	—	_	—	_		TRISC<	3:0> (1,2)		030F
2820	PORTC	31:16	_	—	_	_	_	_	—	—	—	_	—	_	—	—	—	—	0000
2020	TORTO	15:0	—				_	_	RC<9	:8> ^(1,2)	—	_		_		RC<3:	0> (1,2)		0000
2830	LATC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2000	EATO	15:0	—				_	_	LATC<	9:8> (1,2)	—	_		_		LATC<	3:0> (1,2)		0000
2840	ODCC	31:16	—				_	_	_	_	—	_		_		_	_	—	0000
2040	0000	15:0	—				_	_	ODCC<	:9:8> (1,2)	—	_		_		ODCC<	3:0> (1,2)		0000
2850	CNPUC	31:16	—				_	_	_	_	—	_		_		_	_	—	0000
2000		15:0	—	—	—	—	_	_	CNPUC	<9:8>(1,2)	—	_	—	_		CNPUC	<3:0>(1,2)		0000
2860	CNPDC	31:16	—	—	—	_	—	—	—	—	—	_	—	_	—	—	-	—	0000
2000	CINFDC	15:0	—	—	—	—	—	—	CNPDC	<9:8>(1,2)	—	_	—	_		CNPDC<	<3:0> (1,2)		0000
2870	CNCONC	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000
2070	CINCOINC	15:0	ON ⁽¹⁾	—	—	—	CNSTYLE ⁽¹⁾	—	—	—	—	_	—	_	—	—	—	—	0000
2880	CNEN0C	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000
2000	CINEINUC	15:0	_	—	—	—	_	_	CNIE0C	<9:8>(1,2)	—		_	I		CNIE0C4	<3:0>(1,2)		0000
2890	CNSTATC -	31:16	_	—	—	—	_	_	_	—	—		_	I	—	_		_	0000
2090	CINGTATE	15:0	—	—	—	—	_	_	CNSTAT	C<9:8>(1,2)	—	—	—			CNSTATO	<3:0>(1,2)		0000
28A0	CNEN1C	31:16	_	-	_	-	-	_	_	—	—	_	_	I	_	-		_	0000
2040	CINENTO	15:0	_	-	-	-	—	_	CNIE1C	<9:8>(1,2)	_					CNIE1C	<3:0>(1,2)		0000
28B0	CNFC	31:16	_	-	—	-	—	_	—	—	—				_	—	_	—	0000
20BU	CINFC	15:0	_	—	—	—	_	_	CNFC<	:9:8> (1,2)	_					CNFC<	3:0>(1,2)		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. **Note 1:** Bits<15,11,9:8,3:0> are not implemented in 20-pin devices.

2: Bits<8,3:0> are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

11.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 62. "Dual Watchdog Timer" (DS60001365) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. When enabled, the Watchdog Timer (WDT) can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

Some of the key features of the WDT module are:

- Configuration or Software Controlled
- User-Configurable Time-out Period
- Different Time-out Periods for Run and Sleep/Idle modes
- Operates from LPRC Oscillator in Sleep/Idle modes
- Different Clock Sources for Run mode
- · Can Wake the Device from Sleep or Idle

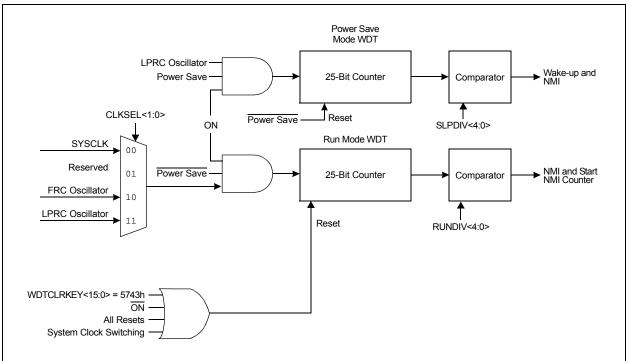


FIGURE 11-1: WATCHDOG TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1			
31:24	OENSYNC	-	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN			
00.40	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	ICGSM	1<1:0>	_	AUXOL	JT<1:0>	ICS<2:0>					
45.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0			
15:8	PWMRSEN	ASDGM	_	SSDG	—	_	_	—			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	ASDG<7:0>										

REGISTER 12-2: CCPxCON2: CAPTURE/COMPARE/PWMx CONTROL 2 REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **OENSYNC:** Output Enable Synchronization bit

- 1 = Update by output enable bits occurs on the next Time Base Reset or rollover
- 0 = Update by output enable bits occurs immediately
- bit 30 Unimplemented: Read as '0'
- bit 29-24 OC<F:A>EN: Output Enable/Steering Control bits⁽¹⁾
 - 1 = OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
 - 0 = OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin

bit 23-22 ICGSM<1:0>: Input Capture Gating Source Mode Control bits

- 11 = Reserved
- 10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
- 01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
- 00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events
- bit 21 Unimplemented: Read as '0'
- bit 20-19 AUXOUT<1:0>: Auxiliary Output Signal on Event Selection bits
 - 11 = Input capture or output compare event; no signal in Timer mode
 - 10 = Signal output depends on module operating mode
 - 01 = Time base rollover event (all modes)
 - 00 = Disabled
- bit 18-16 ICS<2:0>: Input Capture Source Select bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = CLC2 output
 - 100 = CLC1 output
 - 011 = Reserved
 - 010 = Comparator 2 output
 - 001 = Comparator 1 output
 - 000 = ICMx pin (remappable)
- bit 15 **PWMRSEN:** CCPx PWM Restart Enable bit
 - 1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended
 - 0 = ASEVT must be cleared in software to resume PWM activity on output pins
- Note 1: OCFEN through OCBEN (bits<29:25>) are implemented in MCCP modules only.

REGISTER 15-1: RTCCON1: RTCC CONTROL 1 REGISTER (CONTINUED)

- bit 11 WRLOCK: RTCC Registers Write Lock bit⁽²⁾
 - 1 = Registers associated with accurate timekeeping are locked
 - 0 = Registers associated with accurate timekeeping may be written to by user
- bit 10-8 Unimplemented: Read as '0'
- bit 7 RTCOE: RTCC Output Enable bit

1 = RTCC clock output is enabled; signal selected by OUTSEL<2:0> is presented on the RTCC pin 0 = RTCC clock output is disabled

- bit 6-4 OUTSEL<2:0>: RTCC Signal Output Selection bits
 - 111 = Reserved
 - •••
 - 011 = Reserved
 - 010 = RTCC input clock source
 - 001 = Seconds clock
 - 000 = Alarm event
- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** The counter decrements on any alarm event. The counter is prevented from rolling over from '00' to 'FF' unless CHIME = 1.
 - 2: To clear this bit, an unlock sequence is required. Refer to Section 23.4 "System Registers Write Protection" for details.

PIC32MM0064GPL036 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N

REGISTER 18-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER

Legend:

Ecgenia.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	G4D4T: Gate 4 Data Source 4 True Enable bit 1 = The Data Source 4 signal is enabled for Gate 4 0 = The Data Source 4 signal is disabled for Gate 4
bit 30	G4D4N: Gate 4 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 4 0 = The Data Source 4 inverted signal is disabled for Gate 4
bit 29	G4D3T: Gate 4 Data Source 3 True Enable bit 1 = The Data Source 3 signal is enabled for Gate 4 0 = The Data Source 3 signal is disabled for Gate 4
bit 28	G4D3N: Gate 4 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 4 0 = The Data Source 3 inverted signal is disabled for Gate 4
bit 27	G4D2T: Gate 4 Data Source 2 True Enable bit 1 = The Data Source 2 signal is enabled for Gate 4 0 = The Data Source 2 signal is disabled for Gate 4
bit 26	G4D2N: Gate 4 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 4 0 = The Data Source 2 inverted signal is disabled for Gate 4
bit 25	G4D1T: Gate 4 Data Source 1 True Enable bit 1 = The Data Source 1 signal is enabled for Gate 4 0 = The Data Source 1 signal is disabled for Gate 4
bit 24	G4D1N: Gate 4 Data Source 1 Negated Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 4 0 = The Data Source 1 inverted signal is disabled for Gate 4
bit 23	G3D4T: Gate 3 Data Source 4 True Enable bit 1 = The Data Source 4 signal is enabled for Gate 3 0 = The Data Source 4 signal is disabled for Gate 3
bit 22	G3D4N: Gate 3 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 3 0 = The Data Source 4 inverted signal is disabled for Gate 3
bit 21	G3D3T: Gate 3 Data Source 3 True Enable bit 1 = The Data Source 3 signal is enabled for Gate 3 0 = The Data Source 3 signal is disabled for Gate 3

19.1 Comparator Control Registers

TABLE 19-1: COMPARATOR 1 AND 2 REGISTER MAP

ess		n	Bits												ú				
Virtual Address (BF80_#)	Virtual Addr (BF80_#) Register Name ⁽¹⁾ Bit Range		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	OMOTAT	31:16	—	_	—	—	_	—	—	—	_	-	-	—	—	_	C2EVT	C1EVT	0000
0900	CMSTAT	15:0	_	_	SIDL	_	_	_	_	CVREFSEL	_	_	_	_	_	_	C2OUT	C10UT	0000
0910	CM1CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0910	CINICON	15:0	ON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
0930	CM2CON	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
0930	CIMZCON	15:0	ON	COE	CPOL	—	_		CEVT	COUT	EVPO	L<1:0>	-	CREF		_	CCH	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

22.3 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not take effect and read values are invalid.

To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). To prevent accidental configuration changes under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK bit in PMDCON register (PMDCON<11>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes. To set or clear PMDLOCK, an unlock sequence must be executed. Refer to Section 23.4 "System Registers Write Protection" for details.

Table 22-1 lists the module disable bits and locations for all modules.

Peripheral	PMDx Bit Name	Register Name and Bit Location
Analog-to-Digital Converter (ADC)	ADCMD	PMD1<0>
Voltage Reference (VR)	VREFMD	PMD1<12>
High/Low-Voltage Detect (HLVD)	HLVDMD	PMD1<20>
Comparator 1 (CMP1)	CMP1MD	PMD2<0>
Comparator 2 (CMP2)	CMP2MD	PMD2<1>
Configurable Logic Cell 1 (CLC1)	CLC1MD	PMD2<24>
Configurable Logic Cell 2 (CLC2)	CLC2MD	PMD2<25>
Multiple Outputs Capture/Compare/PWM/ Timer1 (MCCP1)	CCP1MD	PMD3<8>
Single Output Capture/Compare/PWM/Timer2 (SCCP2)	CCP2MD	PMD3<9>
Single Output Capture/Compare/PWM/Timer3 (SCCP3)	CCP3MD	PMD3<10>
Timer1 (TMR1)	T1MD	PMD4<0>
Universal Asynchronous Receiver Transmitter 1 (UART1)	U1MD	PMD5<0>
Universal Asynchronous Receiver Transmitter 2 (UART2)	U2MD	PMD5<1>
Serial Peripheral Interface 1 (SPI1)	SPI1MD	PMD5<8>
Serial Peripheral Interface 2 (SPI2)	SPI2MD	PMD5<9>
Real-Time Clock and Calendar (RTCC)	RTCCMD	PMD6<0>
Reference Clock Output (REFCLKO)	REFOMD	PMD6<8>
Programmable Cyclic Redundancy Check (CRC)	CRCMD	PMD7<3>

TABLE 22-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

NOTES:

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

25.0 INSTRUCTION SET

The PIC32MM0064GPL036 family instruction set complies with the MIPS[®] Release 3 instruction set architecture. Only microMIPS32[™] instructions are supported. The PIC32MM0064GPL036 family does not have the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note:	Refer to the "MIPS® Architecture for	-							
	Programmers Volume II-B: The								
	microMIPS32 [™] Instruction Set" at								
	www.imgtec.com for more information.								

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MM0064GPL036 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MM0064GPL036 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

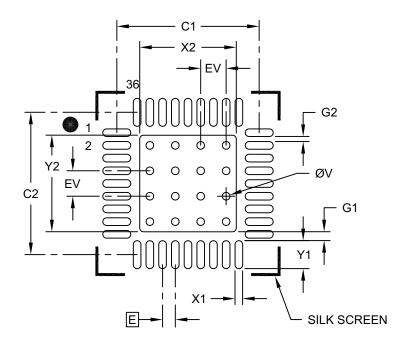
+

Ambient temperature under bias Storage temperature	
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any general purpose digital or analog pin (not 5.5V tolerant) with respect to Vs	s0.3V to (VDD + 0.3V)
Voltage on any general purpose digital or analog pin (5.5V tolerant) with respect to Vss:	
When VDD = 0V:	-0.3V to +4.0V
When VDD \geq 2.0V:	-0.3V to +6.0V
Voltage on AVDD with respect to Vss	ser of: 4.0V or (VDD + 0.3V))
Voltage on AVss with respect to Vss	0.3V to +0.3V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽¹⁾	
Maximum output current sunk by I/O pin	11 mA
Maximum output current sourced by I/O pin	
Maximum output current sunk by I/O pin with increased current drive strength (RA3, RB8,	RB9 and RB15) 17 mA
Maximum output current sourced by I/O pin with increased current drive strength (RA3, RB8, F	RB9 and RB15)24 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽¹⁾	

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 26-1).

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 26-4: OPERATING CURRENT (IDD)⁽²⁾


Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Parameter No.	Typical ⁽¹⁾	Max	Units	Vdd	Conditions				
DC19	0.45	0.65	mA	2.0V	Fsys = 1 MHz				
DC19	0.45	0.65	mA	3.3V					
DC23	2.5	3.5	mA	2.0V	Fsys = 8 MHz				
	2.5	3.5	mA	3.3V	1 3 1 3 - 0 101 12				
DC24	7.0	9.2	mA	2.0V	Fsys = 25 MHz				
	7.0	9.2	mA	3.3V	1 STS - 25 WI 12				
DC25	0.26	0.35	mA	2.0V	Fsys = 32 kHz				
	0.26	0.35	mA	3.3V	TSTS - 52 NIZ				

Note 1: Data in the "Typical" column is at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Base IDD current is measured with:
 - Oscillator is configured in EC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 010 and POSCMOD<1:0> (FOSCSEL<9:8>) = 00)
 - + OSC1 pin is driven with external square wave with levels from 0.3V to VDD 0.3V
 - OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
 - FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
 - Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
 - Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
 - Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - NOP instructions are executed

36-Terminal Very Thin Plastic Quad Flatpack No-Lead (M2) - 6x6x0.9 mm Body [VQFN] SMSC Legacy "Sawn Quad Flatpack No-Lead [SQFN]"

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.50 BSC	
Optional Center Pad Width	X2			3.80
Optional Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.60	
Contact Pad Spacing	C2		5.60	
Contact Pad Width (X36)	X1			0.30
Contact Pad Length (X36)	Y1			1.10
Contact Pad to Center Pad (X36)	G1	0.35		
Space Between Contact Pads (X32)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2272B-M2