

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl020t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the documents listed below,					
	browse the documentation section of the					
	Microchip web site (www.microchip.com).					

- Section 1. "Introduction" (DS60001127)
- Section 5. "Flash Programming" (DS60001121)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupts" (DS60001108)
- Section 10. "Power-Saving Modes" (DS60001130)
- Section 14. "Timers" (DS60001105)
- Section 19. "Comparator" (DS60001110)
- Section 21. "UART" (DS61107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS61106)
- Section 25. "12-Bit Analog-to-Digital Converter (ADC) with Threshold Detect" (DS60001359)
- Section 28. "RTCC with Timestamp" (DS60001362)
- Section 30. "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS60001381)
- Section 33. "Programming and Diagnostics" (DS61129)
- Section 36. "Configurable Logic Cell" (DS60001363)
- Section 45. "Control Digital-to-Analog Converter (CDAC)" (DS60001327)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 59. "Oscillators with DCO" (DS60001329)
- Section 60. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS60001336)
- Section 62. "Dual Watchdog Timer" (DS60001365)

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	r-0
31:24		K23<2:0>			KU<2:0>			_
00.40	r-0	R-0	R-1	R-0	r-0	r-0	r-0	R-1
23:16	—	UDI	SB	MDU	_	—	_	DS
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-1
15:8	BE	AT<1:0>		AR<2:0> MT<			2:1>	
7.0	R-1	r-0	r-0	r-0	r-0	R/W-0	R/W-1	R/W-0
7:0	MT<0>	_	_	_	_		K0<2:0>	

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend: r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 Reserved: This bit is hardwired to '1' to indicate the presence of the CONFIG1 register

DIUST	Reserved. This bit is hardwired to \pm to indicate the presence of the CC
bit 30-28	K23<2:0>: Cacheability of the kseg2 and kseg3 Segments bits
	010 = Cache is not implemented
bit 27-25	KU<2:0>: Cacheability of the kuseg and useg Segments bits
	010 = Cache is not implemented
bit 24-23	Reserved: Must be written as zeros; returns zeros on reads
bit 22	UDI: User-Defined bit
	0 = CorExtend user-defined instructions are not implemented
bit 21	SB: SimpleBE bit
	1 = Only simple byte enables are allowed on the internal bus interface
bit 20	MDU: Multiply/Divide Unit bit
	0 = Fast, high-performance MDU
bit 19-17	Reserved: Must be written as zeros; returns zeros on reads
bit 16	DS: Dual SRAM Interface bit
	1 = Dual instruction/data SRAM interface
bit 15	BE: Endian Mode bit
	0 = Little-endian
bit 14-13	AT<1:0>: Architecture Type bits
	00 = MIPS32 [®]
bit 12-10	AR<2:0>: Architecture Revision Level bits
	001 = MIPS32 Release 2
bit 9-7	MT<2:0>: MMU Type bits
	011 = Fixed mapping
bit 6-3	Reserved: Must be written as zeros; returns zeros on reads

bit 2-0 **K0<2:0>:** kseg0 Coherency Algorithm bits 010 = Cache is not implemented

© 2015-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	—		—
00.40	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R-1
23:16	—	IPLW<1:0>		MMAR<2:0>			MCU	ISAONEXC
45.0	R-0	R-1	R-1	R-1	U-0	U-0	U-0	R-0
15:8	ISA<	:1:0>	ULRI	RXI	—	—	_	ITL
7.0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-0
7:0	_	VEIC	VINT	SP	CDMM	_	_	TL

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Reserved: This bit is hardwired as '0'
bit 30-23	Unimplemented: Read as '0'
bit 22-21	IPLW<1:0>: Width of the Status IPL and Cause RIPL bits
	01 = IPL and RIPL bits are 8 bits in width
bit 20-18	MMAR<2:0>: microMIPS™ Architecture Revision Level bits
	000 = Release 1
bit 17	MCU: MIPS [®] MCU ASE Implemented bit
	1 = MCU ASE is implemented
bit 16	ISAONEXC: ISA on Exception bit
	1 = microMIPS is used on entrance to an exception vector
bit 15-14	ISA<1:0>: Instruction Set Availability bits
	01 = Only microMIPS is implemented
bit 13	ULRI: UserLocal Register Implemented bit
	1 = UserLocal Coprocessor 0 register is implemented
bit 12	RXI: RIE and XIE Implemented in PageGrain bit
	1 = RIE and XIE bits are implemented
bit 11-9	Unimplemented: Read as '0'
bit 8	ITL: Indicates that iFlowtrace™ Hardware is Present bit
	0 = The iFlowtrace hardware is not implemented in the core
bit 7	Unimplemented: Read as '0'
bit 6	VEIC: External Vector Interrupt Controller bit
	1 = Support for an external interrupt controller is implemented.
bit 5	VINT: Vector Interrupt bit
	1 = Vector interrupts are implemented
bit 4	SP: Small Page bit
	0 = 4-Kbyte page size
bit 3	CDMM: Common Device Memory Map bit
	1 = CDMM is implemented
bit 2-1	Unimplemented: Read as '0'
bit 0	TL: Trace Logic bit
	0 = Trace logic is not implemented

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMDATAx<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMDATAx<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMDATAx<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				NVMDA	NVMDATAx<7:0>							

REGISTER 5-4: NVMDATAX: NVM FLASH DATA x REGISTER (x = 0-1)

Legend:				
R = Readable bit	ble bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMDATAx<31:0>: NVM Flash Data x bits

Double-Word Program: Writes NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the least significant instruction word.

REGISTER 5-5: NVMSRCADDR: NVM SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	NVMSRCADDR<31:24>								
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	NVMSRCADDR<23:16>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	NVMSRCADDR<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				NVMSRC	ADDR<7:0>				

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMSRCADDR<31:0>: NVM Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

NOTES:

9.1 CLR, SET and INV Registers

Every I/O module register has a corresponding CLR (Clear), SET (Set) and INV (Invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

9.2 Parallel I/O (PIO) Ports

All port pins have 14 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. The LATx register controls the pin level when it is configured as an output. Reads from the PORTx register read the port pins, while writes to the port pins write the latch, LATx. The I/Os state reflected in the PORTx register is synchronized with the system clock and delayed by 3 system clock cycles.

9.3 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, the port pins can also be individually configured for either digital or open-drain outputs. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V), on any desired 5V tolerant pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

9.4 Configuring Analog and Digital Port Pins

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared. The ANSELx register has a default value of 0xFFFF. Therefore, all pins that share analog functions are analog (not digital) by default. If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is used by an analog peripheral, such as the ADC or comparator module.

9.5 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

9.6 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC32MM devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 9-1.

TABLE 9-1 :	CHANGE NOTIFICATION
	EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	<u> </u>	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

TABLE 9-6: PORTC REGISTER MAP

DS60001324B-pa
age
84

ess		n								Bits									
Virtual Address (BF80_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2800	ANSELC	31:16	_	_	_	_	_	_		_		_	_	-	—	—		_	0000
		15:0	—	_	_				_	_	—			_	—	_	ANSC<	1:0> ^(1,2)	0003
2810	TRISC	31:16	_	—	_	_	_	_	—	—	—	_	—	_	—	—	—	—	0000
-0.0		15:0	_	—	_	_	_	_	TRISC	:9:8> (1,2)	—	_	—	_		TRISC<	3:0> (1,2)		030F
2820	PORTC	31:16	_	—	_	_	_	_	—	—	—	_	—	_	—	—	—	—	0000
2020	TORTO	15:0	—				_	_	RC<9	:8> ^(1,2)	—	_		_		RC<3:	0> (1,2)		0000
2830	LATC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2000	EATO	15:0	—				_	_	LATC<	9:8> (1,2)	—	_		_		LATC<	3:0> (1,2)		0000
2840	ODCC	31:16	—				_	_	_	_	—	_		_		_	_	—	0000
2040	0000	15:0	—				_	_	ODCC<	:9:8> (1,2)	—	_		_		ODCC<	3:0> (1,2)		0000
2850	CNPUC	31:16	—				_	_	_	_	—	_		_		_	_	—	0000
2000		15:0	—	—	—	—	_	_	CNPUC	<9:8>(1,2)	—	_	—	_		CNPUC	<3:0>(1,2)		0000
2860	CNPDC	31:16	—	—	—	_	—	—	—	—	—	_	—	_	—	—	-	—	0000
2000	CINFDC	15:0	—	—	—	—	—	—	CNPDC	<9:8>(1,2)	—	_	—	_		CNPDC<	<3:0> (1,2)		0000
2870	CNCONC	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000
2070	CINCOINC	15:0	ON ⁽¹⁾	—	—	—	CNSTYLE ⁽¹⁾	—	—	—	—	_	—	_	—	—	—	—	0000
2880	CNEN0C	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000
2000	CINEINUC	15:0	_	—	—	—	_	_	CNIE0C	<9:8>(1,2)	—		_	I		CNIE0C4	<3:0>(1,2)		0000
2890	CNSTATC -	31:16	_	—	—	—	_	_	_	—	—		_	I	—	_		_	0000
2090	CINGTATE	15:0	—	—	—	—	_	_	CNSTAT	C<9:8>(1,2)	—	—	—			CNSTATO	<3:0>(1,2)		0000
28A0	CNEN1C	31:16	_	-	_	-	-	_	_	—	—	_	_	I	_	-		_	0000
2040	CINENTO	15:0	_	-	-	-	—	_	CNIE1C	<9:8>(1,2)	_					CNIE1C	<3:0>(1,2)		0000
28B0	CNFC	31:16	_	-	—	-	—	_	—	—	—				_	—	_	—	0000
20BU	CINFC	15:0	_	—	—	—	_	_	CNFC<	:9:8> (1,2)	_					CNFC<	3:0> ^(1,2)		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. **Note 1:** Bits<15,11,9:8,3:0> are not implemented in 20-pin devices.

2: Bits<8,3:0> are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 17-1: CRCCON: CRC CONTROL REGISTER (CONTINUED)

- bit 2 MOD: CRC Calculation Mode bit
 - 1 = Alternate mode
 - 0 = Legacy mode
- bit 1-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	X<31:24>												
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	X<23:16>												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8				X<1	5:8>								
7.0	R/W-0 R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	U-0						
7:0				X<7:1>				_					

REGISTER 17-2: CRCXOR:CRC XOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 X<31:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

23.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Programming and Diagnostics" (DS61129) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

23.1 Configuration Bits

PIC32MM0064GPL036 family devices contain a Boot Flash Memory (BFM) with an associated configuration space. All Configuration Words are listed in Table 23-3 and Table 23-4; Register 23-1 through Register 23-6 describe the configuration options.

23.2 Code Execution from RAM

PIC32MM0064GPL036 family devices allow executing the code from RAM. The starting boundary of this special RAM space can be adjusted using the EXECADDR<7:0> bits in the CFGCON register with a 1-Kbyte step. Writing a non-zero value to these bits will move the boundary, effectively reducing the total amount of program memory space in RAM. Refer to Table 23-5 and Register 23-7 for more information.

23.3 Device ID

The Device ID identifies the device used. The ID can be read from the DEVID register. The Device IDs for PIC32MM0064GPL036 family devices are listed in Table 23-1. Also refer to Table 23-5 and Register 23-8 for more information.

TABLE 23-1: DEVICE IDs FOR PIC32MM0064GPL036 FAMILY DEVICES

-	-
Device	DEVID
PIC32MM0016GPL020	0x06B04053
PIC32MM0032GPL020	0x06B0C053
PIC32MM0064GPL020	0x06B14053
PIC32MM0016GPL028	0x06B02053
PIC32MM0032GPL028	0x06B0A053
PIC32MM0064GPL028	0x06B12053
PIC32MM0016GPL036	0x06B06053
PIC32MM0032GPL036	0x06B0E053
PIC32MM0064GPL036	0x06B16053

23.4 System Registers Write Protection

The critical registers in the PIC32MM0064GPL036 family devices are protected (locked) from an accidental write. If the registers are locked, a special unlock sequence is required to modify the content of these registers.

To unlock the registers, the following steps should be done:

- 1. Disable interrupts prior to the system unlock sequence.
- 2. Execute the system unlock sequence by writing the key values of 0xAA996655 and 0x556699AA to the SYSKEY register, in two back-to-back assembly or 'C' instructions.
- 3. Write the new value to the required register.
- 4. Write a non-key value (such as 0x0000000) to the SYSKEY register to perform a lock.
- 5. Re-enable interrupts.

The registers that require this unlocking sequence are listed in Table 23-2.

Register Name	Register Description	Peripheral
OSCCON	Oscillator Control	Oscillator
SPLLCON	System PLL Control	Oscillator
OSCTUN	FRC Tuning	Oscillator
PMDCON	Peripheral Module Disable Control	PMD
RSWRST	Software Reset	Reset
RPCON	Peripheral Pin Select Configuration	I/O Ports
RNMICON	Non-Maskable Interrupt Control	Reset
PWRCON	Power Control	Reset
RTCCON1	RTCC Control 1	RTCC

TABLE 23-2:SYSTEM LOCKED REGISTERS

The SYSKEY register read value indicates the status. A value of '0' indicates the system registers are locked. A value of '1' indicates the system registers are unlocked. For more information about the SYSKEY register, refer to Table 23-5 and Register 23-9.

^{© 2015-2016} Microchip Technology Inc.

23.9 Configuration Words and System Registers

TABLE 23-3: CONFIGURATION WORDS SUMMARY

sse										E	Bits							
Virtual Address (BFC0_#)	Register Name	Bit Range	31\15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
17C0	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17C4	FDEVOPT	31:16		USERID<15:0>														
1704	FDEVOFI	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	SOSCHP	r-1	r-1	r-1
17C8	FICD	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	FICD	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ICS	<1:0>	JTAGEN	r-1	r-1
17CC	FPOR	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	FFUR	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	LPBOREN	RETVR	BOREN	l<1:0>
17D0	FWDT	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	FVUDI	15:0	FWDTEN	RCLKS	EL<1:0>		RV	VDTPS<4:0>			WINDIS	FWDTWINSZ<1:0> SWDTPS<4:0>					•	
17D4	FOSCSEL	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17.04	TUSUSEE	15:0	FCKSM	<1:0>	r-1	SOSCSEL	r-1	OSCIOFNC	POSCM	OD<1:0>	IESO	SOSCEN	r-1	PLLSRC r-1		FI	NOSC<2:0	>
17D8	FSEC	31:16	CP	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	FOEU	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17DC	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
TIDC	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17E0	RESERVED	31:16	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
ITEU	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17E4	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17 E4	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1

Legend: r-0 = Reserved bit, must be programmed as '0'; r-1 = Reserved bit, must be programmed as '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	R/P	R/P R/P		R/P	R/P	R/P	R/P	R/P				
31:24				USERI	D<15:8>							
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P				
23:16	USERID<7:0>											
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1				
15:8		_			_			—				
7.0	r-1 r-1		r-1	r-1	R/P	r-1	r-1	r-1				
7:0		_		_	SOSCHP	_						

REGISTER 23-1: FDEVOPT/AFDEVOPT: DEVICE OPTIONS CONFIGURATION REGISTER

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **USERID<15:0>:** User ID bits (2 bytes which can be programmed to any value)

- bit 15-4 Reserved: Program as '1'
- bit 3 **SOSCHP:** Secondary Oscillator (SOSC) High-Power Enable bit 1 = SOSC operates in Normal Power mode 0 = SOSC operates in High-Power mode
- bit 2-0 Reserved: Program as '1'

TABLE 23-7: UNIQUE DEVICE IDENTIFIER (UDID) REGISTER MAP

ess		Ċ,				,	,			В	its							
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0										16/0	All Resets			
1840	UDID1	31:16		UDID Word 1<31:0>														
1010	OBIDT	15:0		UDID Wold 1<31.0>														
1844	UDID2	31:16								ע חוחוו אין	rd 2<31:0>							xxxx
1044	ODIDZ	15:0								ODID WO	10 2 30 1.05							xxxx
1848	UDID3	31:16									rd 3<31:0>							xxxx
1040	00103	15:0									iu 3<31.02							xxxx
184C	UDID4	31:16		LIDID Word 4-24-05												xxxx		
1040	00104	15:0		UDID Word 4<31:0>												xxxx		
1850	UDID5	31:16									rd 5<31:0>							xxxx
1000	00105	15:0									iu 5~51.0~							xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 23-8: RESERVED REGISTERS MAP

ess		0	Bits										ú						
Virtual Addr (BF80_#)	Virtual Address (BF80_#) Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	RESERVED1	31:16											0000						
0400		15:0			Reserved Register 1<31:0>									0000					
0480	RESERVED2 31:16 15:0	31:16											0000						
0460		15:0		Reserved Register 2<31:0>	.0>							0000							
2220		31:16	Reserved Register 3<31:0>									0C00							
2280	RESERVED3	15:0							Res	served Reg		.0>							0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

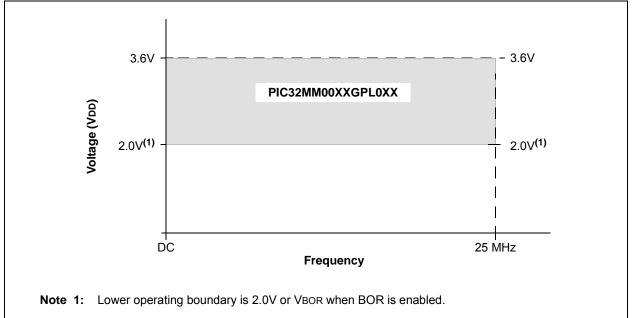
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

26.1 DC Characteristics

FIGURE 26-1: PIC32MM0064GPL036 FAMILY VOLTAGE-FREQUENCY GRAPH

TABLE 26-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC32MM00XXGPL0XX:					
Operating Junction Temperature Range	TJ	-40	—	+105	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 26-2: PACKAGE THERMAL RESISTANCE⁽¹⁾

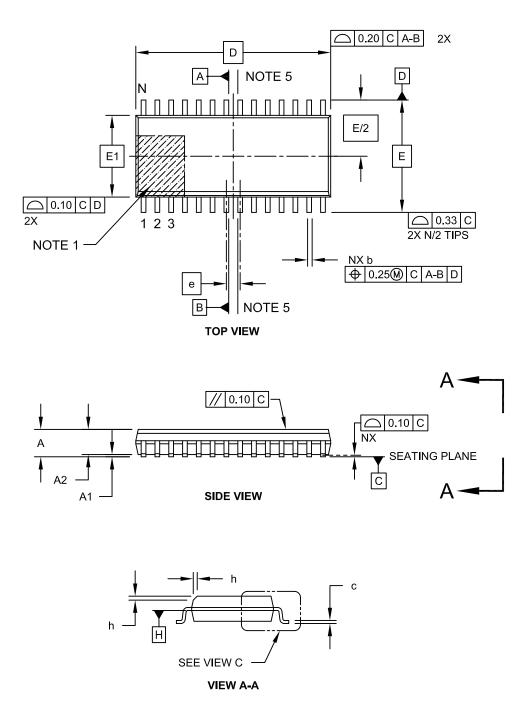
Package	Symbol	Тур	Unit
20-Pin SSOP	θJA	87.3	°C/W
20-Pin QFN	θJA	43.0	°C/W
28-Pin SPDIP	θJA	60.0	°C/W
28-Pin SSOP	θJA	71.0	°C/W
28-Pin SOIC	θJA	69.7	°C/W
28-Pin UQFN	θJA	27.5	°C/W
28-Pin QFN	θJA	20.0	°C/W
36-Pin VQFN	θJA	31.1	°C/W
40-Pin UQFN	θJA	41.0	°C/W

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

Operatin	Operating Conditions: $2.0V \le VDD \le 3.6V$, -40°C \le TA \le +85°C (unless otherwise stated)						
Param. No.	Symbol	Characteristics	Min.	Max.	Units	Conditions	
Dl60a	licl	Input Low Injection Current	0	₋₅ (1,4)	mA	This parameter applies to all pins.	
DI60b	Іісн	Input High Injection Current	0	+5 ^(2,3,4)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins and SOSCI. Maximum IICH current for these exceptions is 0 mA.	
DI60c	∑ІІСТ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁵⁾	+20 ⁽⁵⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins, (IICL + IICH) $\leq \sum$ IICT	

Note 1: VIL Source < (Vss - 0.3). Characterized but not tested.

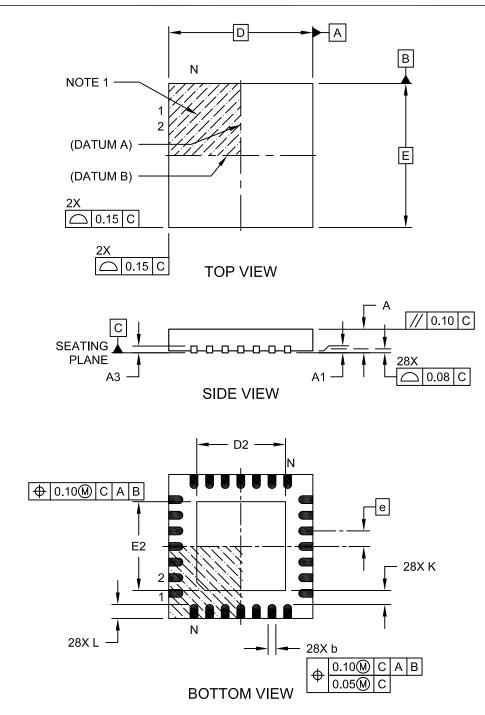
2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.


3: Digital 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

4: Injection currents can affect the ADC results.

5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

F

Fail-Safe Clock Monitor (FSCM)	65
Flash Program Memory	
Write Protection	

G

19
19
19
21
21
20
21
20
21

н

High/Low-Voltage Detect (HLVD)1	73
High/Low-Voltage Detect. See HLVD.	

L

I/O Ports	77
Analog/Digital Port Pins Configuration	78
Open-Drain Configuration	78
Parallel I/O (PIO)	78
Pull-up/Pull-Down Pins	
Write/Read Timing	78
Input Change Notification (ICN)	78
Instruction Set	203
Inter-IC Sound. See I ² S.	
Internet Address	

Μ

MCCP/SCCP	
Registers	
Memory Maps	
Devices with 16 Kbytes Program Memory	
Devices with 32 Kbytes Program Memory	35
Devices with 64 Kbytes Program Memory	
Memory Organization	
Alternate Configuration Bits Space	33
Microchip Internet Web Site	
MIPS32® microAptiv™ UC Core Configuration	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	201
MPLAB PM3 Device Programmer	201
MPLAB REAL ICE In-Circuit Emulator System	201
MPLAB X Integrated Development	
Environment Software	
MPLAB X SIM Software Simulator	201
MPLIB Object Librarian	200
MPLINK Object Linker	200
Multiply/Divide Unit Latencies and Repeat Rates	
0	
Oscillator Configuration	65
Р	
Package Thermal Resistance	206
Packaging	
Details	
Marking	
Peripheral Pin Select (PPS)	
PICkit 3 In-Circuit Debugger/Programmer	

Pinout Description14

Power-Saving Features	177
Idle Mode	177
Low-Power Brown-out Reset	179
On-Chip Voltage Regulator Low-Power Modes	179
Regulator Retention	179
Regulator Standby	179
Peripheral Module Disable	
Sleep Mode	
PPS	
Available Peripherals	79
Available Pins	
Controlling	
Controlling Configuration Changes	
Input Mapping	
Input Pin Selection	
Output Mapping	
Output Pin Selection	
Programming and Diagnostics	
5 5 5 5	

R

Real-Time Clock and Calendar (RTCC)	123
Real-Time Clock and Calendar. See RTCC.	
Register Map	
ADC	135
Alternate Configuration Words Summary	184
Band Gap	195
CDAC	
CLC1 and CLC2	155
Comparator 1 and 2	164
Configurations Words Summary	
CRC	148
Flash Controller	38
High/Low Voltage Detect	174
Interrupts	
MCCP/SCCP	
Oscillator Configuration	67
Peripheral Module Disable	
Peripheral Pin Select	
PORTA	82
PORTB	
PORTC	84
RAM Configuration, Device ID and System Lock	192
Reserved Registers	
Resets	
RTCC	124
SPI1 and SPI2	
Timer1	
UART1 and UART2	118
UDID	197
Watchdog Timer	
Registers	
AD1CHIT (ADC Compare Hit)	145
AD1CHS (ADC Input Select)	
AD1CON1 (ADC Control 1)	
AD1CON2 (ADC Control 2)	
AD1CON3 (ADC Control 3)	
AD1CON5 (ADC Control 5)	
AD1CSS (ADC Input Scan Select)	
ALMDATE (Alarm Date)	
ANCFG (Band Gap Control)	
CCPxCON1 (Capture/Compare/PWMx	
Control 1)	99
CCPxCON2 (Capture/Compare/PWMx	
Control 2)	102