

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl028t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupts" (DS60001108) and Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM

PIC32MM0064GPL036 family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The PIC32MM0064GPL036 family device interrupt module includes the following features:

- · Single Vector or Multivector mode Operation
- Five External Interrupts with Edge Polarity Control
- · Interrupt Proximity Timer
- Module Freeze in Debug mode
- Seven User-Selectable Priority Levels for each Vector
- Four User-Selectable Subpriority Levels within each Priority
- One Shadow Register Set that can be used for any Priority Level, Eliminating Software Context Switching and Reducing Interrupt Latency
- · Software can Generate any Interrupt
- User-Configurable Interrupt Vectors' Offset and Vector Table Location

Figure 7-1 shows the block diagram for the interrupt controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.	EBASE + 0x180	CU, EXL	_	CpU (0x0B)	_general_exception_handler
RI	Execution of a reserved instruction.	EBASE + 0x180	EXL	—	RI (0x0A)	_general_exception_handler
Ov	Execution of an arithmetic instruction that overflowed.	EBASE + 0x180	EXL	_	Ov (0x0C)	_general_exception_handler
Tr	Execution of a trap (when trap condition is true).	EBASE + 0x180	EXL	_	Tr (0x0D)	_general_exception_handler
DDBL	EJTAG data address break (address only) or EJTAG data value break on load (address and value).	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DDBL for a load instruction or DDBS for a store instruction	_	_
DDBS	EJTAG data address break (address only) or EJTAG data value break on store (address and value).	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DDBL for a load instruction or DDBS for a store instruction	_	_
AdES	Store address alignment error.	EBASE + 0x180	EXL	—	ADES (0x05)	_general_exception_handler
DBE	Load or store bus error.	EBASE + 0x180	EXL	—	DBE (0x07)	_general_exception_handler
CBrk	EJTAG complex breakpoint.	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)		DIBImpr, DDBLImpr and/or DDBSImpr	_	_
	1	Lowest Priority	1	1		1

TABLE 7-1: MIPS32[®] microAptiv[™] UC MICROPROCESSOR CORE EXCEPTION TYPES (CONTINUED)

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ¢)	*~	e								Bits	6								ts
Virtual Ad (BF80 Regist Name	Registe Name ⁽¹	Bit Ranç	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Res
F4.00		31:16	_	—	—	_	_	_	—	_	—	—	—	(CCT3IP<2:0>	•	CCT3IS	<1:0>	0000
FICU	IPC8	15:0		_	_		CCP3IP<2:0>	`	CCP3IS	S<1:0>	_	_	_	(CCT2IP<2:0>		CCT2IS	<1:0>	0000
5400	IDOO	31:16	-	_	_		SPI2RXIP<2:0	>	SPI2RX	S<1:0>	_	_	_	S	PI2TXIP<2:0	>	SPI2TXIS	6<1:0>	0000
FIDU	IPC9	15:0	_	_	_		SPI2EIP<2:0>	>	SPI2EIS	S<1:0>	_	_	—		_	_	_	_	0000
F1F0		31:16	_	_		_	_	_	_				—		U2EIP<2:0>		U2EIS<	:1:0>	0000
FIEU	IPC IU	15:0	_	_			U2TXIP<2:0>		U2TXIS	6<1:0>			—	ι	J2RXIP<2:0>		U2RXIS	<1:0>	0000
F4F0	10044	31:16			-		CPCIP<2:0>		CPCIS	<1:0>	-	-	—		NVMIP<2:0>		NVMIS•	<1:0>	0000
F IFU	IFCII	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

2: These bits are not available on 20-pin devices.

9.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available the Microchip from web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

Many of the device pins are shared among the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. Some pins in the devices are 5V tolerant pins. Some of the key features of the I/O ports are:

- Individual Output Pin Open-Drain Enable/Disable
- Individual Input Pin Weak Pull-up and Pull-Down
- Monitor Selective Inputs and Generate Interrupt when Change-in-Pin State is Detected
- Operation during Sleep and Idle modes
- Fast Bit Manipulation using the CLR, SET and INV registers

Figure 9-1 illustrates a block diagram of a typical multiplexed I/O port.

FIGURE 9-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	—	—	CNSTYLE	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	_		_	_		_	_	_

REGISTER 9-1: CNCONX: CHANGE NOTIFICATION CONTROL FOR PORTX REGISTER (x = A-C)

-n = Value at POR	'1' = Bit is set

Legend:

R = Readable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Change Notification (CN) Control On bit

1 = CN is enabled

0 = CN is disabled

bit 14-12 Unimplemented: Read as '0'

bit 11 **CNSTYLE:** Change Notification Style Selection bit

1 = Edge style (detects edge transitions, CNFx bits are used for a Change Notice event)

W = Writable bit

 Mismatch style (detects change from last PORTx read, CNSTATx bits are used for a Change Notification event)

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

bit 10-0 Unimplemented: Read as '0'

REGISTER 12-1: CCPxCON1: CAPTURE/COMPARE/PWMx CONTROL 1 REGISTER (CONTINUED)

- bit 7-6 **TMRPS<1:0>:** CCPx Time Base Prescale Select bits
 - 11 = 1:64 prescaler
 - 10 = 1:16 prescaler
 - 01 = 1:4 prescaler
 - 00 = 1:1 prescaler
- bit 5 **T32:** 32-Bit Time Base Select bit
 - 1 = 32-bit time base for timer, single edge output compare or input capture function
 - 0 = 16-bit time base for timer, single edge output compare or input capture function
- bit 4 CCSEL: Capture/Compare Mode Select bit
 - 1 = Input Capture mode
 - 0 = Output Compare/PWM or Timer mode (exact function is selected by the MOD<3:0> bits)
- bit 3-0 MOD<3:0>: CCPx Mode Select bits
 - CCSEL = 1 (Input Capture modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)
 - CCSEL = 0 (Output Compare modes):
 - 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
 - 1110 = Reserved
 - 110x = Reserved
 - 10xx = Reserved
 - 0111 = Variable Frequency Pulse mode
 - 0110 = Center-Aligned Pulse Compare mode, buffered
 - 0101 = Dual Edge Compare mode, buffered
 - 0100 = Dual Edge Compare mode
 - 0011 = 16-Bit/32-Bit Single Edge mode: Toggles output on compare match
 - 0010 = 16-Bit/32-Bit Single Edge mode: Drives output low on compare match
 - 0001 = 16-Bit/32-Bit Single Edge mode: Drives output high on compare match
 - 0000 = 16-Bit/32-Bit Timer mode: Output functions are disabled
- **Note 1:** This control bit has no function in Input Capture modes.
 - 2: This control bit has no function when TRIGEN = 0.
 - 3: Values greater than '0011' will cause a FIFO buffer overflow in Input Capture mode.

SPI Control Registers 13.1

TABLE 13-1: SPI1 AND SPI2 REGISTER MAP

ess		۵								Bits									s
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FR	MCNT<2:0	>	MCLKSEL	—	_		-		SPIFE	ENHBUF	0000
0000	SPIICON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISEL	<1:0>	SRXIS	EL<1:0>	0000
0000		31:16	—	_	—		RXB	UFELM<4:0>				—			TXBL	JFELM<4	:0>		0000
0090	SFIISIAI	15:0	—	_	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	0008
8040		31:16							П	ATA-31.05									0000
0040	SFIIBOI	15:0						_		AIA-31.0-			-	-		_	_	-	0000
80B0	SPI1BPG	31:16	—	—	—	—	_	—	—	—	_	—			—	—	_		0000
0000		15:0	0 <u> </u>									0000							
8000	SPI1CON2	31:16	_				_	_	—	—		_				—		—	0000
0000	OF HOUNE	15:0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR	AUDEN	—	—	—	AUDMONO	—	AUDMO	OD<1:0>	0000
8100	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FR	MCNT<2:0	>	MCLKSEL	—				—	SPIFE	ENHBUF	0000
0100	01120011	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISEL	<1:0>	SRXIS	EL<1:0>	0000
8110	SPI2STAT	31:16	—	—	—		RXB	UFELM<4:0>	•			—	—		TXBL	JFELM<4	:0>		0000
0110	01 120 1/ 1	15:0	—		—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE		SPITBE	—	SPITBF	SPIRBF	0008
8120	SPI2BUE	31:16	000									0000							
0120	01 12001	15:0			•				-						T				0000
8130	SPI2BRG	31:16	—	—	—	—		—	—	—		—	—		—	—	—	—	0000
0100		15:0	—	—	—				•		BRG	<12:0>			T				0000
8140	8140 SPI2CON2	31:16	—	_	—	—	_	—	—	—	—	—		—	_	—			0000
0,40	01 1200112	N2 15:0	SPISGNEXT	—	-	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR	AUDEN	—	—	—	AUDMONO	—	AUDMO	OD<1:0>	0000

PIC32MM0064GPL036 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table, except SPIxBUF, have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

15.1 RTCC Control Registers

TABLE 15-1: RTCC REGISTER MAP

ess		â									Bits								6
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	PTCCON1	31:16	ALRMEN	CHIME	_	_		AMASK	<3:0>					ALMRP	T<7:0>				0000
0000	RICCONT	15:0	ON		—		WRLOCK	—	—	_	RTCOE		OUTSEL<2:0	>		—	—	—	0000
0010	BTCCONS	31:16								DI	V<15:0>								0000
		15:0	FDIV<4:0>					—	—	_	—					—	CLKSEL<1:0>		0000
0020	RTCSTAT	31:16	_		—		—	—	—	_	—		—	_		—	—	—	0000
0030	RICOTAI	15:0	_		—		—	—	—	_	—		ALMEVT	—		SYNC	ALMSYNC	HALFSEC	0000
0040	DTOTIME	31:16	_	ŀ	HRTEN<2	:0>	HRONE<3:0>			—	MINTEN<2:0>			MINONE<3:0>				xxxx	
0040	RICHIVE	15:0		SECTE	EN<3:0>			SECON	E<3:0>		—		—	_		—	—	—	xx00
0050		31:16		YRTE	N<3:0>			YRONE	<3:0>		—		—	MTHTEN		MTHC	ONE<3:0>		0000
0050	RICDAIE	15:0	_		DAYT	EN<1:0>		DAYON	E<3:0>		—		—	_			WDAY<2:0	>	0000
0060		31:16	_	ŀ	HRTEN<2	:0>		HRONE	=<3:0>		—		MINTEN<2:0	>		MINC	NE<3:0>		xxxx
0060		15:0		SECTE	EN<3:0>			SECON	E<3:0>		_	_	_	_	_	_	_	_	xx00
0070 ALM		31:16	_	_	_		_	_	—	_	_	_	_	MTHTEN		MTHC	DNE<3:0>		0000
	ALIVIDATE	15:0	_	_	DAYT	EN<1:0>		DAYON	E<3:0>		_	_	_		_		WDAY<2:0	>	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 16-7: AD1CHIT: ADC COMPARE HIT REGIST
--

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0 U-0		U-0	U-0	U-0
31.24	—	—	—	—	—	-	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—			CHH<1	3:8> (1,2)		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHH<7	/:0>			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-0 CHH<13:0>: ADC Compare Hit bits^(1,2)

If CM<1:0> = 11:

1 = ADC Result Buffer x has been written with data or a match has occurred

0 = ADC Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on ADC Result Channel n

0 = No match has occurred on ADC Result Channel n

Note 1: The CHH<13:11> bits are not implemented in 20-pin devices.

2: The CHH<13:12> bits are not implemented in 28-pin devices.

REGISTER 18-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER (CONTINUED)

bit 4	G1D3N: Gate 1 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1
bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	 1 = The Data Source 2 signal is enabled for Gate 1 0 = The Data Source 2 signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 1 0 = The Data Source 1 signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	 1 = The Data Source 1 inverted signal is enabled for Gate 1 0 = The Data Source 1 inverted signal is disabled for Gate 1

REGISTER 23-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:10	—	—	—	—	—	—	—	—
45.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
15:8	FCKS	M<1:0>	_	SOSCSEL	—	OSCIOFNC	POSCM	OD<1:0>
7.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
7:0	IESO	SOSCEN	—	PLLSRC	—		FNOSC<2:0>	

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Reserved: Program as '1'
bit 15-14	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Enable bits
	 11 = Clock switching is enabled; Fail-Safe Clock Monitor is enabled 10 = Clock switching is disabled; Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled; Fail-Safe Clock Monitor is disabled 00 = Clock switching is disabled; Fail-Safe Clock Monitor is disabled
bit 13	Reserved: Program as '1'
bit 12	SOSCSEL: Secondary Oscillator (SOSC) External Clock Enable bit
	1 = Crystal is used (RA4 and RB4 pins are controlled by SOSC)0 = External clock is connected to the SOSCO pin (RA4 and RB4 pins are controlled by I/O PORTx registers)
bit 11	Reserved: Program as '1'
bit 10	OSCIOFNC: System Clock on CLKO Pin Enable bit
	 1 = OSC2/CLKO pin operates as normal I/O 0 = System clock is connected to the OSC2/CLKO pin
bit 9-8	POSCMOD<1:0>: Primary Oscillator (POSC) Mode Selection bits
	 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock (EC) mode is selected
bit 7	IESO: Two-Speed Start-up Enable bit
	1 = Two-Speed Start-up is enabled0 = Two-Speed Start-up is disabled
bit 6	SOSCEN: Secondary Oscillator (SOSC) Enable bit
	1 = Secondary Oscillator is enabled0 = Secondary Oscillator is disabled
bit 5	Reserved: Program as '1'
bit 4	PLLSRC: System PLL Input Clock Selection bit
	 1 = FRC oscillator is selected as the PLL reference input on a device Reset 0 = Primary Oscillator (POSC) is selected as the PLL reference input on a device Reset
bit 3	Reserved: Program as '1'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	r-0	U-0	r-0	r-0	
31:24	—	—	—	-	—	_	—	_	
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	EXECADDR<7:0>								
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	_	_		—		_		
7.0	U-0	U-0	U-0	U-0	R/W-y	U-0	r-1	r-1	
7:0					JTAGEN				

REGISTER 23-7: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:	r = Reserved bit	y = Value set from Configuration bits on Reset			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-28 Unimplemented: Read as '0'
- bit 27 Reserved: Must be written as '0'
- bit 26 Unimplemented: Read as '0'
- bit 25-24 **Reserved:** Must be written as '0'
- bit 23-16 EXECADDR<7:0>: RAM Program Space Start Address bits

11111111 = RAM program space starts at the 255-Kbyte boundary (from 0xA003FC00)

- •
- •

00000010 = RAM program space starts at the 2-Kbyte boundary (from 0xA0000800) 00000001 = RAM program space starts at the 1-Kbyte boundary (from 0xA0000400) 00000000 = All data RAM is allocated to program space (from 0xA0000000)

bit 15-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Enable bit
 - 1 = JTAG port is enabled
 - 0 = JTAG port is disabled

The Reset value of this bit is the value of the JTAGEN (FICD<2>) Configuration bit.

bit 2 Unimplemented: Read as '0'

bit 1-0 **Reserved:** Must be written as '1'

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

26.1 DC Characteristics

FIGURE 26-1: PIC32MM0064GPL036 FAMILY VOLTAGE-FREQUENCY GRAPH

TABLE 26-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC32MM00XXGPL0XX:					
Operating Junction Temperature Range	TJ	-40	—	+105	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o			W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 26-2: PACKAGE THERMAL RESISTANCE⁽¹⁾

Package	Symbol	Тур	Unit
20-Pin SSOP	θJA	87.3	°C/W
20-Pin QFN	θJA	43.0	°C/W
28-Pin SPDIP	θJA	60.0	°C/W
28-Pin SSOP	θJA	71.0	°C/W
28-Pin SOIC	θJA	69.7	°C/W
28-Pin UQFN	θJA	27.5	°C/W
28-Pin QFN	θJA	20.0	°C/W
36-Pin VQFN	θJA	31.1	°C/W
40-Pin UQFN	θJA	41.0	°C/W

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-4: OPERATING CURRENT (IDD)⁽²⁾

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Parameter No.	Typical ⁽¹⁾	Max	Units	Vdd	Conditions			
DC10	0.45	0.65	mA	2.0V				
DC19	0.45	0.65	mA	3.3V				
DC23	2.5	3.5	mA	2.0V				
	2.5	3.5	mA	3.3V	1 313 - 0 10112			
DC24	7.0	9.2	mA	2.0V	Eeve - 25 MHz			
	7.0	9.2	mA	3.3V	1 313 – 23 WHZ			
DC25	0.26	0.35	mA	2.0V				
	0.26	0.35	mA	3.3V	- 1515 - 52 KIZ			

Note 1: Data in the "Typical" column is at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Base IDD current is measured with:
 - Oscillator is configured in EC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 010 and POSCMOD<1:0> (FOSCSEL<9:8>) = 00)
 - + OSC1 pin is driven with external square wave with levels from 0.3V to VDD 0.3V
 - OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
 - FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
 - Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
 - Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
 - Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - NOP instructions are executed

Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions		
DC60	134	198	μA	-40°C				
	136	208	μA	+25°C	2.0V			
	141	217	μA	+85°C		Sleep with active main voltage regulator		
	139	209	μA	-40°C		PWRCON<0> = 1, RETEN (PWRCON<1>) = 0)		
	141	217	μA	+25°C	3.3V			
	143	231	μA	+85°C				
DC61	4.3	11.7	μA	-40°C				
	5.1	15.6	μA	+25°C	2.0V	Sleep with main voltage regulator in		
	11.4	34.3	μA	+85°C		Standby mode		
	6.1	16.8	μA	-40°C		(VREGS (PWRCON<0>) = 0,		
	6.9	20.1	μA	+25°C	3.3V	RETEN (PWRCON<1>) = 0)		
	12.7	36.0	μA	+85°C				
DC62	2.3	—	μA	-40°C				
	2.7	—	μA	+25°C	2.0V	Sleep with enabled retention voltage		
	5.2	—	μA	+85°C		regulator (VREGS (PWRCON<0>) = 1,		
	2.3	—	μA	-40°C		RETEN (PWRCON<1>) = 1,		
	2.7	_	μA	+25°C	3.3V	REIVR(FPOR<2>)=0)		
	5.4	—	μA	+85°C				
DC63	0.28	_	μA	-40°C				
	0.44	_	μA	+25°C	2.0V	Sleep with enabled retention voltage		
	2.52	_	μA	+85°C		regulator (VREGS (PWRCON<0>) = 0,		
	0.29	—	μA	-40°C		RETEN (PWRCON<1>) = 1,		
	0.44		μA	+25°C	3.3V	REIVR(FPOR<2>)=0)		
	2.62		μA	+85°C				

TABLE 26-6: POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC2 is configured as I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min	Мах	Units		
OS50	Fplli	PLL Input Frequency Range ⁽¹⁾	2	24	MHz		
OS54	Fpllo	PLL Output Frequency Range ⁽¹⁾	16	96	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	24	μs		
OS53	DCLK	CLKO Stability (Jitter)	-0.12	0.12	%		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-19: INTERNAL OSCILLATOR ACCURACY⁽¹⁾

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param No.	Characteristic Min Typ ⁽²⁾ Max Un							
F20	FRC Accuracy @ 8 MHz	-3		3	%			
F21	LPRC @ 32 kHz	-20	—	20	%			
F22	FRC Tune Step-Size (in OSCTUN register)	—	0.05		%/Bit			

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

2: Data in the "Typ" column is 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-20: INTERNAL OSCILLATOR START-UP TIME

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param No.	Param No.SymbolCharacteristicMaxUnits						
FR0	TFRC	FRC Oscillator Start-up Time	2	μs			
FR1	TLPRC	Low-Power RC Oscillator Start-up Time	70	μs			

36-Terminal Very Thin Plastic Quad Flatpack No-Lead (M2) - 6x6x1.0mm Body [VQFN] SMSC Legacy "Sawn Quad Flatpack No-Lead [SQFN]"

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-272B-M2 Sheet 1 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.		
Microchip Brand – Architecture — Flash Memory Size Family — Key Feature Set – Pin Count — Tape and Reel Flag Pattern —	PIC32 MM XXXX GP L XXX T - XXX	Example: PIC32MM0064GPL036-I/M2: PIC32 General Purpose Device with MIPS32 [®] microAptiv™ UC Core, 64-Kbyte Program Memory, 36-Pin Package.
Architecture	MM = MIPS32 [®] microAptiv™ UC CPU Core	
Flash Memory Size	0016 = 16 Kbytes 0032 = 32 Kbytes 0064 = 64 Kbytes	
Family	GP = General Purpose Family	
Key Feature	L = Up to 25 MHz operating frequency with basic peripheral set of 2 UART and 2 SPI modules	
Pin Count	020 = 20-pin 028 = 28-pin 036 = 36/40-pin	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0653-2