

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl028t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Pin	Number					
Pin Name	20-Pin QFN	20-Pin SSOP	28-Pin QFN/ UQFN	28-Pin SPDIP/ SSOP/SOIC	36-Pin VQFN	40-Pin UQFN	Pin Type	Buffer Type	Description
PGEC1	2	5	2	5	36	39	Ι	ST	ICSP Port 1 programming clock input
PGEC2	19	2	19	22	25	28	I	ST	ICSP Port 2 programming clock input
PGEC3	7	10	12	15	16	16	Ι	ST	ICSP Port 3 programming clock input
PGED1	1	4	1	4	35	38	I/O	ST/DIG	ICSP Port 1 programming data
PGED2	20	3	18	21	24	27	I/O	ST/DIG	ICSP Port 2 programming data
PGED3	6	9	11	14	15	15	I/O	ST/DIG	ICSP Port 3 programming data
PWRLCLK	7	10	9	12	10	10	Ι	ST	Real-Time Clock 50/60 Hz clock input
RA0	19	2	27	2	33	36	I/O	ST/DIG	PORTA digital I/O
RA1	20	3	28	3	34	37	I/O	ST/DIG	PORTA digital I/O
RA2	4	7	6	9	7	7	I/O	ST/DIG	PORTA digital I/O
RA3	5	8	7	10	8	8	I/O	ST/DIG	PORTA digital I/O
RA4	7	10	9	12	10	10	I/O	ST/DIG	PORTA digital I/O
RA9	_	_	_	—	11	11	I/O	ST/DIG	PORTA digital I/O
RB0	1	4	1	4	35	38	I/O	ST/DIG	PORTB digital I/O
RB1	2	5	2	5	36	39	I/O	ST/DIG	PORTB digital I/O
RB2	3	6	3	6	1	1	I/O	ST/DIG	PORTB digital I/O
RB3	_	_	4	7	2	2	I/O	ST/DIG	PORTB digital I/O
RB4	6	9	8	11	9	9	I/O	ST/DIG	PORTB digital I/O
RB5	_	_	11	14	15	15	I/O	ST/DIG	PORTB digital I/O
RB6	_	_	12	15	16	16	I/O	ST/DIG	PORTB digital I/O
RB7	8	11	13	16	17	17	I/O	ST/DIG	PORTB digital I/O
RB8	9	12	14	17	18	18	I/O	ST/DIG	PORTB digital I/O
RB9	10	13	15	18	19	20	I/O	ST/DIG	PORTB digital I/O
RB10	_	_	18	21	24	27	I/O	ST/DIG	PORTB digital I/O
RB11	_	_	19	22	25	28	I/O	ST/DIG	PORTB digital I/O
RB12	12	15	20	23	26	29	I/O	ST/DIG	PORTB digital I/O
RB13	13	16	21	24	27	30	I/O	ST/DIG	PORTB digital I/O
RB14	14	17	22	25	28	31	I/O	ST/DIG	PORTB digital I/O
RB15	15	18	23	26	29	32	I/O	ST/DIG	PORTB digital I/O
RC0				—	3	3	I/O	ST/DIG	PORTC digital I/O
RC1		—		—	4	4	I/O	ST/DIG	PORTC digital I/O
RC2		—		—	5	5	I/O	ST/DIG	PORTC digital I/O
RC3		_		—	14	14	I/O	ST/DIG	PORTC digital I/O
RC8		—		—	20	21	I/O	ST/DIG	PORTC digital I/O
RC9	_	_	16	19	21	22	I/O	ST/DIG	PORTC digital I/O
REFCLKI	10	13	15	18	19	20	Ι	ST	Reference clock input
REFCLKO	15	18	23	26	29	32	0	DIG	Reference clock output

TABLE 1-1: PIC32MM0064GPL036 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer

DIG = Digital input/output

ANA = Analog level input/output

5.2 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		6								В	its								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2380		31:16			—	—		—	_	_	—	—	—	—	—	_	—		0000
2300	NVINCON	15:0	WR	WREN WRERR LVDERR — — — — — — NVMOP<3:0> 000								0000							
2300		31:16		0000															
2390		15:0									1~31.02								0000
2240		31:16									D-21.05								0000
23AU	NVIVIADDR. 7	15:0								INVIVIADL	JR~31.02								0000
2380		31:16									A0~31·0>								0000
2300	NVINDATAO	15:0								NVINDAL	HU-31.02								0000
2300		31:16									A1-31.0>								0000
2300	NVINDAIAT	15:0								NVINDAL	AT-51.02								0000
2300		31:16							N										0000
2300	NVINGRCADDR	15:0							Ň	IVINISICOA	DDK~31.0								0000
23E0		31:16	PWPULOCK	—	—	—	_	—	—	_				PWP<	23:16>				8000
23L0		15:0		PWP<15:0> 0000								0000							
2350		31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
2350		15:0	BWPULOCK	_	_	_	_		BWP<2:0>		_	_	_	_	_	_	_	_	8700

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMDATAx<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	NVMDATAx<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMDATAx<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMDA	ATAx<7:0>							

REGISTER 5-4: NVMDATAX: NVM FLASH DATA x REGISTER (x = 0-1)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATAx<31:0>: NVM Flash Data x bits

Double-Word Program: Writes NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the least significant instruction word.

REGISTER 5-5: NVMSRCADDR: NVM SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31.24		NVMSRCADDR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:10		NVMSRCADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	NVMSRCADDR<15:8>												
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				NVMSRC	ADDR<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: NVM Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		IFS<31:24>										
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	IFS<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	IFS<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				IFS	<7:0>							

REGISTER 7-5: IFSx: INTERRUPT FLAG STATUS REGISTER x⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS<31:0>: Interrupt Flag Status bits

1 = Interrupt request has occurred

0 = No interrupt request has occurred

Note 1: This register represents a generic definition of the IFSx register. Refer to Table 7-3 for the exact bit definitions.

REGISTER 7-6: IECx: INTERRUPT ENABLE CONTROL REGISTER x⁽¹⁾

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	IEC<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	IEC<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	IEC<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				IEC	<7:0>							

Legend:			
R = Readable bit W	V = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR '1	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **IEC<31-0>:** Interrupt Enable bits 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This register represents a generic definition of the IECx register. Refer to Table 7-3 for the exact bit definitions.

REGISTER 10-1: T1CON: TIMER1 CONTROL REGISTER (CONTINUED)

- bit 3 Unimplemented: Read as '0'
 bit 2 TSYNC: Timer1 External Clock Input Synchronization Selection bit When TCS = 1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS = 0: This bit is ignored.

 bit 1 TCS: Timer1 Clock Source Select bit
- 1 = External clock is defined by the TECS<1:0> bits 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—	—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP
45.0	U-0	U-0	U-0	U-0	U-0	R/C-0	U-0	U-0
15:8	—	—	—	—	—	ICGARM ⁽¹⁾	—	—
	R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE

REGISTER 12-4: CCPxSTAT: CAPTURE/COMPARE/PWMx STATUS REGISTER

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21	Unimplemented: Read as '0'						
bit 20	PRLWIP: CCPxPRL Write in Progress Status bit						
	 1 = An update to the CCPxPRL register with the buffered contents is in progress 0 = An update to the CCPxPRL register is not in progress 						
bit 19	TMRHWIP: CCPxTMRH Write in Progress Status bit						
	 1 = An update to the CCPxTMRH register with the buffered contents is in progress 0 = An update to the CCPxTMRH register is not in progress 						
bit 18	TMRLWIP: CCPxTMRL Write in Progress Status bit						
	 1 = An update to the CCPxTMRL register with the buffered contents is in progress 0 = An update to the CCPxTMRL register is not in progress 						
bit 17	RBWIP: CCPxRB Write in Progress Status bit						
	 1 = An update to the CCPxRB register with the buffered contents is in progress 0 = An update to the CCPxRB register is not in progress 						
bit 16	RAWIP: CCPxRA Write in Progress Status bit						
	 1 = An update to the CCPxRA register with the buffered contents is in progress 0 = An update to the CCPxRA register is not in progress 						
bit 15-11	Unimplemented: Read as '0'						
bit 10	ICGARM: Input Capture Gate Arm bit ⁽¹⁾						
	A write of '1' to this location will arm the input capture gating logic for a one-shot gate event when $ICGSM<1:0> = 01 \text{ or } 10$. The bit location reads as '0'.						
bit 9-8	Unimplemented: Read as '0'						
bit 7	CCPTRIG: CCPx Trigger Status bit						
	 1 = Timer has been triggered and is running (set by hardware or writing to TRSET) 0 = Timer has not been triggered and is held in Reset (cleared by writing to TRCLR) 						
bit 6	TRSET: CCPx Trigger Set Request bit						
	Write '1' to this location to trigger the timer when TRIGEN = 1 (location always reads '0').						
bit 5	TRCLR: CCPx Trigger Clear Request bit						
	Write '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads '0').						
bit 4	ASEVT: CCPx Auto-Shutdown Event Status/Control bit						
	 1 = A shutdown event is in progress; CCPx outputs are in the shutdown state 0 = CCPx outputs operate normally 						

Note 1: This is not a physical bit location and will always read as '0'. A write of '1' will initiate the hardware event.

REGISTER 13-1: SPIxCON: SPIx CONTROL REGISTER (CONTINUED)

bit 7	SSEN: Slave Select Enable (Slave mode) bit
	$1 = \overline{SSx}$ pin is used for Slave mode
	0 = SSx pin is not used for Slave mode, pin is controlled by port function
bit 6	CKP: Clock Polarity Select bit ⁽³⁾
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode
	0 = Slave mode
bit 4	DISSDI: Disable SDIx bit ⁽⁴⁾
	 1 = SDIx pin is not used by the SPIx module (pin is controlled by port function) 0 = SDIx pin is controlled by the SPIx module
bit 3-2	STXISEL<1:0>: SPIx Transmit Buffer Empty Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is not full (has one or more empty elements) 10 = Interrupt is generated when the buffer is empty by one-half or more 01 = Interrupt is generated when the buffer is completely empty 00 = Interrupt is generated when the last transfer is shifted out of SPIxSR and transmit operations are complete
bit 1-0	SRXISEL<1:0>: SPIx Receive Buffer Full Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is full 10 = Interrupt is generated when the buffer is full by one-half or more 01 = Interrupt is generated when the buffer is not empty 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
Note 1:	These bits can only be written when the ON bit = 0. Refer to Section 26.0 "Electrical Characteristics" for maximum clock frequency requirements.
2:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

- **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
- 4: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 9.8 "Peripheral Pin Select (PPS)" for more information).

14.1 UART Control Registers

TABLE 14-1: UART1 AND UART2 REGISTER MAP

Bits																			
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600		31:16	-	—	—	—	_	-	—	_	SLPEN	ACTIVE	-	-	-	CLKSE	L<1:0>	OVFDIS	0000
0000	OTWODE	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0610	1110TA(1)	31:16				UART1 M	IASK<7:0>							UART1 AD	DR<7:0>				0000
0010	UISIA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0620		31:16	—	—	—	—	—	_	—	_	—	—	—	—	—	—	—	—	0000
0020	UTIXALG	15:0	—	—	—	—	—	_	—	TX8			U	ART1 Trans	smit Registe	er			0000
0630		31:16	—	—	—	—	—	_	—	_	—	—	—	—	—	—	—	—	0000
0030	UIKAREG	15:0	—	—	—	—	—	_	—	RX8			U	ART1 Rece	ive Registe	er			0000
0640		31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	0000
0040	UIBRO	15:0	15:0 Baud Rate Generator Prescaler									0000							
0680		31:16	—	—	—	—	—	_	—	_	SLPEN	ACTIVE	—	—	—	CLKSE	L<1:0>	OVFDIS	0000
0080	02IVIODL**	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0600	112074(1)	31:16				UART2 M	IASK<7:0>							UART2 AD	DR<7:0>				0000
0090	0231A	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0640		31:16	—	—	—	—	—	_	—	_	—	—	—	_	—	—	—	—	0000
UUAU	UZTARLO	15:0	—	—	—	—	—	_	—	TX8			U	ART2 Trans	smit Registe	er			0000
0680		31:16	—	—	—	—	—	_	—	_	—	—	—	—	—	—	—	—	0000
0000	UZNARLO	15:0	—	—	—	—	—	_	—	RX8			U	ART2 Rece	ive Registe	er			0000
0600		31:16	—	_	-	_	—	—	_	_	_	_	—	—	—	_	_	—	0000
0000	UZBRG"	15:0							Bau	d Rate Ge	nerator Pre	scaler							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	MASK<7:0>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	ADDR<7:0>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1			
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT			
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0			
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			

REGISTER 14-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 MASK<7:0>: UARTx Address Match Mask bits

Used to mask the ADDR<7:0> bits.

For MASK<x>:

1 = ADDR<x> is used to detect the address match

0 = ADDR<x> is not used to detect the address match

bit 23-16 ADDR<7:0>: UARTx Automatic Address Mask bits

When the ADDEN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: UARTx TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use

10 = Interrupt is generated and asserted while the transmit buffer is empty

01 = Interrupt is generated and asserted when all characters have been transmitted

00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: UARTx Transmit Polarity Inversion bit

If IrDA mode is Disabled (i.e., IREN (UxMODE<12>) is '0'):

1 = UxTX Idle state is '0'

0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA[®] encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: UARTx Receiver Enable bit

- 1 = UARTx receiver is enabled, UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled, UxRX pin is ignored by the UARTx module

bit 11 UTXBRK: UARTx Transmit Break bit

- 1 = Sends Break on next transmission; Start bit, followed by twelve '0' bits, followed by Stop bit, cleared by hardware upon completion
- 0 = Break transmission is disabled or has completed
- bit 10 UTXEN: UARTx Transmit Enable bit
 - 1 = UARTx transmitter is enabled, UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled, any pending transmission is aborted and the buffer is reset
- bit 9 **UTXBF:** UARTx Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full

0 = Transmit buffer is not full, at least one more character can be written

- bit 8 **TRMT:** Transmit Shift Register (TSR) is Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued in the transmit buffer

REGISTER 14-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 - Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Data is being received
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to the empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	URYDA: LIARTy Receive Buffer Data Available bit (read-only)

- bit 0 URXDA: UARTx Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

15.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "RTCC with Timestamp" (DS60001362) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. Key features of the RTCC module are:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (military time)
- · Visibility of One-Half Second Period
- · Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are Configurable for Half of a second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- Leap Year Correction
- BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- · Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Uses External 32.768 kHz Crystal, 32 kHz Internal Oscillator, PWRLCLK Input Pin or Peripheral Clock
- Alarm Pulse, Seconds Clock or Internal Clock
 Output on RTCC Pin

FIGURE 15-1: RTCC BLOCK DIAGRAM

REGISTER 16-4: AD1CON5: ADC CONTROL REGISTER 5 (CONTINUED)

- bit 1-0 **CM<1:0>:** Compare Mode bits
 - 11 = Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair)
 - 10 = Inside Window mode (valid match occurs if the conversion result is inside the window defined by the corresponding buffer pair)
 - 01 = Greater Than mode (valid match occurs if the result is greater than the value in the corresponding buffer register)
 - 00 = Less Than mode (valid match occurs if the result is less than the value in the corresponding buffer register)
- Note 1: When auto-scan is enabled (ASEN (AD1CON5<15>) = 1), the CSCNA (AD1CON2<10>) and SMPI<3:0> (AD1CON2<5:2>) bits are ignored.
 - 2: The ASINT<1:0> bits setting only takes effect when ASEN (AD1CON5<15>) = 1. Interrupt generation is governed by the SMPI<3:0> bits field.

REGISTER 18-1: CLCxCON: CLCx CONTROL REGISTER (CONTINUED)

- bit 5 **LCPOL:** CLCx Output Polarity Control bit 1 = The output of the module is inverted
 - 0 = The output of the module is not inverted
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Cell is a 1-input transparent latch with S and R
 - 110 = Cell is a JK flip-flop with R
 - 101 = Cell is a 2-input D flip-flop with R
 - 100 = Cell is a 1-input D flip-flop with S and R
 - 011 = Cell is an SR latch
 - 010 = Cell is a 4-input AND
 - 001 = Cell is an OR-XOR
 - 000 = Cell is a AND-OR
- Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

NOTES:

REGISTER 23-4: FWDT/AFWDT: WATCHDOG TIMER CONFIGURATION REGISTER (CONTINUED)

- bit 6-5 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits
 - 11 = Watchdog Timer window size is 25%
 - 10 = Watchdog Timer window size is 37.5%
 - 01 = Watchdog Timer window size is 50%
 - 00 = Watchdog Timer window size is 75%
- bit 4-0 SWDTPS<4:0>: Sleep Mode Watchdog Timer Postscale Select bits

From 10100 to 11111 = 1:1048576. 10011 = 1:524288 10010 = 1:262144 10001 = 1:131072 10000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:1024 01001 = 1:512 01000 = 1:256 00111 = 1:128 00110 = 1:64 00101 = 1:32 00100 = 1:16 00011 = 1:8 00010 = 1:4 00001 = 1:2 00000 = 1:1

REGISTER 23-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1 r-1		r-1	r-1
23:10	—	—	—	—	—	—	—	—
45.0	R/P	R/P R/P		R/P	r-1	R/P	R/P	R/P
15:8	FCKSM<1:0>		_	SOSCSEL	—	OSCIOFNC	POSCM	OD<1:0>
7.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
7:0	IESO SOSCEN		—	PLLSRC	—			

Legend:	r = Reserved bit	P = Programmable bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16	Reserved: Program as '1'
bit 15-14	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Enable bits
	 11 = Clock switching is enabled; Fail-Safe Clock Monitor is enabled 10 = Clock switching is disabled; Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled; Fail-Safe Clock Monitor is disabled 00 = Clock switching is disabled; Fail-Safe Clock Monitor is disabled
bit 13	Reserved: Program as '1'
bit 12	SOSCSEL: Secondary Oscillator (SOSC) External Clock Enable bit
	1 = Crystal is used (RA4 and RB4 pins are controlled by SOSC)0 = External clock is connected to the SOSCO pin (RA4 and RB4 pins are controlled by I/O PORTx registers)
bit 11	Reserved: Program as '1'
bit 10	OSCIOFNC: System Clock on CLKO Pin Enable bit
	 1 = OSC2/CLKO pin operates as normal I/O 0 = System clock is connected to the OSC2/CLKO pin
bit 9-8	POSCMOD<1:0>: Primary Oscillator (POSC) Mode Selection bits
	 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock (EC) mode is selected
bit 7	IESO: Two-Speed Start-up Enable bit
	1 = Two-Speed Start-up is enabled0 = Two-Speed Start-up is disabled
bit 6	SOSCEN: Secondary Oscillator (SOSC) Enable bit
	1 = Secondary Oscillator is enabled0 = Secondary Oscillator is disabled
bit 5	Reserved: Program as '1'
bit 4	PLLSRC: System PLL Input Clock Selection bit
	 1 = FRC oscillator is selected as the PLL reference input on a device Reset 0 = Primary Oscillator (POSC) is selected as the PLL reference input on a device Reset
bit 3	Reserved: Program as '1'

NOTES:

Operatin	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)									
Param. No. Symbol		Characteristics	Min. Max.		Units	Conditions				
DI60a	licl	Input Low Injection Current	0	₋₅ (1,4)	mA	This parameter applies to all pins.				
DI60b	ІІСН	Input High Injection Current	0	+5 ^(2,3,4)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins and SOSCI. Maximum IICH current for these exceptions is 0 mA.				
DI60c	DI60c ∑lict Total Input In Current (sur and control		-20 ⁽⁵⁾	+20 ⁽⁵⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins, (IICL + IICH) $\leq \sum$ IICT				

Note 1: VIL Source < (Vss - 0.3). Characterized but not tested.

2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.

3: Digital 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

4: Injection currents can affect the ADC results.

5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit.

26.2 AC Characteristics and Timing Parameters

FIGURE 26-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-16: CAPACITIVE LOADING CONDITIONS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
DO50	Cosco	OSC2/CLKO Pin	_	15	pF	In XT and HS modes when external clock is used to drive OSC1/CLKI
DO56	Сю	All I/O Pins and OSC2	—	50	pF	EC mode

PIC32MM0064GPL036 FAMILY

FIGURE 26-5: TIMER1 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 26-23: MCCP/SCCP TIMER1 EXTERNAL CLOCK TIMING CHARACTERISTICS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)											
Param. No.	Symbol	Characte	Min	Мах	Units	Conditions					
TA10	Тскн	T1CK High Time	Synchronous	1		TPBCLK	Must also meet Parameter TA15				
			Asynchronous	10	—	ns					
TA11	TCKL	T1CK Low Time	Synchronous	1	—	TPBCLK	Must also meet Parameter TA15				
			Asynchronous	10	—	ns					
TA15	Тскр	T1CK Input Period	Synchronous	2	—	TPBCLK					
			Asynchronous	20	—	ns					
TA20	TCKEXTMRL	Delay from Exterr Edge to Timer Inc	_	3	TPBCLK	Synchronous mode					

Note 1: These parameters are characterized but not tested in manufacturing.