

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

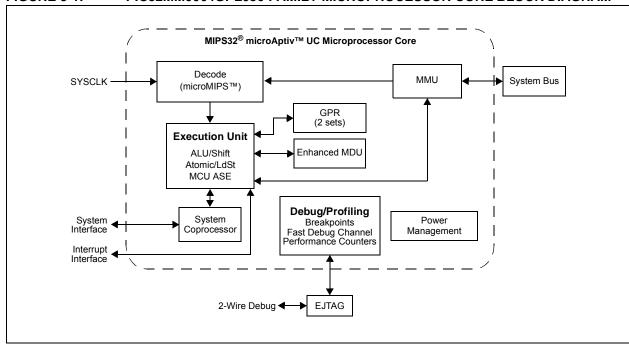
Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl036-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the documents listed below,
	browse the documentation section of the
	Microchip web site (www.microchip.com).

- Section 1. "Introduction" (DS60001127)
- Section 5. "Flash Programming" (DS60001121)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupts" (DS60001108)
- Section 10. "Power-Saving Modes" (DS60001130)
- Section 14. "Timers" (DS60001105)
- Section 19. "Comparator" (DS60001110)
- Section 21. "UART" (DS61107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS61106)
- Section 25. "12-Bit Analog-to-Digital Converter (ADC) with Threshold Detect" (DS60001359)
- Section 28. "RTCC with Timestamp" (DS60001362)
- Section 30. "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS60001381)
- Section 33. "Programming and Diagnostics" (DS61129)
- Section 36. "Configurable Logic Cell" (DS60001363)
- Section 45. "Control Digital-to-Analog Converter (CDAC)" (DS60001327)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 59. "Oscillators with DCO" (DS60001329)
- Section 60. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS60001336)
- Section 62. "Dual Watchdog Timer" (DS60001365)

PIC32MM0064GPL036 FAMILY

FIGURE 3-1: PIC32MM0064GPL036 FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

The MIPS[®] architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS architecture also defines a Multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. These configuration options and other system information is available by accessing the CP0 registers listed in Table 3-2.

3.3 Power Management

The processor core offers a number of power management features, including low-power design, active power management and Power-Down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

The mechanism for invoking Power-Down mode is implemented through execution of the WAIT instruction. The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MM family makes extensive use of local gated clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The microAptiv UC core has an Enhanced JTAG (EJTAG) interface for use in the software debug. In addition to the standard mode of operation, the microAptiv UC core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the microAptiv UC core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.5 MIPS32[®] microAptiv[™] UC Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the microAptiv UC core, which is included on PIC32MM0064GPL036 family devices.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

PIC32MM0064GPL036 family devices contain an internal Flash program memory for executing user code. The Program and Boot Flash Memory can be write-protected. The erase page size is 512 32-bit words. The program row size is 64 32-bit words. The memory can be programmed by rows or by two 32-bit words.

The devices implement an Error Correcting Code (ECC). The memory control block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC bits. The ECC provides improved resistance to Flash errors. The ECC single-bit error will be transparently corrected. The ECC double-bit error results in a bus error exception.

There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is described in **Section 5. "Flash Programming"** in the *"PIC32 Family Reference Manual"*. EJTAG programming is performed using the JTAG port of the device. ICSP programming requires fewer connections than for EJTAG programming. The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which is available for download from the Microchip web site.

5.1 Flash Controller Registers Write Protection

The NVMPWP and NVMBWP registers, and the WR bit in the NVMCON register are protected (locked) from an accidental write. A special unlock sequence is required to modify the content of these registers or bits.

To unlock, the following steps should be done:

- 1. Disable interrupts prior to the unlock sequence.
- 2. Execute the system unlock sequence by writing the key values of 0xAA996655 and 0x556699AA to the NVMKEY register in two back-to-back Assembly or 'C' instructions.
- 3. Write the new value to the required bits.
- 4. Re-enable interrupts.

PIC32MM0064GPL036 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	—	-	—	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	_	_	—	_	_
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	_				_	SBOREN ⁽³⁾	RETEN ⁽²⁾	VREGS ⁽²⁾

REGISTER 6-4: PWRCON: POWER CONTROL REGISTER⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-3 Unimplemented: Read as '0'
- bit 2 SBOREN: BOR During Sleep Control bit⁽³⁾
 - 1 = BOR is turned on
 - 0 = BOR is turned off
- bit 1 **RETEN:** Output Level of the Regulator During Sleep Selection bit⁽²⁾
 - 1 = Writing a '1' to this bit will cause the main regulator to be put in a low-power state during Sleep mode 0 = Writing a '0' to this bit will have no effect
- bit 0 VREGS: Voltage Regulator Standby Enable bit⁽²⁾
 - 1 = Voltage regulator will remain active during Sleep mode
 - 0 = Voltage regulator will go to Standby mode during Sleep mode
- Note 1: Writes to this register require an unlock sequence. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: Refer to Section 22.4 "On-Chip Voltage Regulator Low-Power Modes" for details.
 - 3: This bit is enabled only when the BOREN<1:0> Configuration bits (FPOR<1:0>) are set to '01'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	_	_			_	—	—	_
00.10	U-0	U-0						
23:16	—	-	_		_	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
15:8	_	_	_	—	_	S	8RIPL<2:0> ⁽¹⁾	
7.0	R-0, HS, HC	R-0, HS, HC						
7:0				SIRQ<	7:0>			

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-11 Unimplemented: Read as '0'

bit 10-8 **SRIPL<2:0>:** Requested Priority Level for Single Vector Mode bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU

bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 1111111-00000000 = The last interrupt request number serviced by the CPU

Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

REGISTER 7-4: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		IPTMR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16				IPTMF	?<23:16>						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				IPTM	R<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				IPTM	R<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the interrupt proximity timer as a reload value when the interrupt proximity timer is triggered by an interrupt event.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾ (CONTINUED)

- bit 12-10 IP1<2:0>: Interrupt Priority bits
- 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

11.1 Watchdog Timer Control Registers

TABLE 11-1: WATCHDOG TIMER REGISTER MAP

ess		ø									Bits								s
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2500	WDTCON ⁽¹⁾	31:16		WDTCLRKEY<15:0> 000							0000								
3E80	WDICON	15:0	ON		_		RUNDIV<4:0> CLKSEL<1:0> SLPDIV<4:0> WDTWINEN					xxxx							

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

TABLE 12-1: MCCP/SCCP REGISTER MAP (CONTINUED)

	LL 1 <u>2</u> -1.					·													
ress)	20	е									Bits								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0260		31:16	—	_	—		_	_	—	_	_	_	—	_	—	—	_	—	0000
0200	0012101	15:0								CN	/IPA<15:0>								0000
0270	CCP2RB	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
0210		15:0								CN	/IPB<15:0>								0000
0280	CCP2BUF	31:16								CCP2	BUFH<15:0)>							0000
0200	001 2001	15:0								CCP2	8 BUFL<15:0)>							0000
0300	CCP3CON1	31:16	OPSSRC	RTRGEN	—	—		OPS<	3:0>			ONESHOT	ALTSYNC			SYNC<4:0	>		0000
0000	001000111	15:0	ON	_	SIDL	CCPSLP	TMRSYNC	С	LKSEL<2:0>	>	TMRP	S<1:0>	T32	CCSEL		MOE)<3:0>		0000
0310	CCP3CON2	31:16	OENSYNC	_		_	OCAEN ICGSM<1:0> - AUXOUT<1:0> ICS<2:0>				0100								
0010	001 000112	15:0	PWMRSEN	ASDGM	—	SSDG	_	—	_	—				ASDO	G<7:0>				0000
0320	CCP3CON3	31:16	OETRIG	0	SCNT<2:0	>	_	—	_		_	_	POLACE	_	PSSAC	E<1:0>	_		0000
0020		15:0	—	_		_	_	—	_		_	_	_	_	_	—	_		0000
0330	CCP3STAT	31:16	—	—	—	—	—	—	—	—	—	—	—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP	0000
0000	001001/1	15:0	—	—	—	—	—	ICGARM	—	—	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
0340	CCP3TMR	31:16								CCP3	TMRH<15:0)>							0000
00.0	001 011111	15:0								CCP3	TMRL<15:0)>							0000
0350	CCP3PR	31:16									3 PRH<15:0								0000
		15:0			1					CCP	3 PRL<15:0	>							0000
0360	CCP3RA	31:16	—	_		—	—	—	_	—	—	_	_	—	—	—	—	—	0000
		15:0			1					CN	/IPA<15:0>								0000
0370	CCP3RB	31:16	—	—	—	—	—	—	—	—	—	_	_	—	—	—	—	—	0000
		15:0		CMPB<15:0>								0000							
0380	CCP3BUF	31:16									BUFH<15:(-							0000
		15:0								CCP3	8 BUFL<15:0)>							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
31:24	OETRIG		OSCNT<2:0>	•	-	(OUTM<2:0> ⁽¹)
00.40	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	POLACE	POLBDF ⁽¹⁾	PSSAC	E<1:0>	PSSBDF	⁼ <1:0>(1)
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	-	—	-	—	-	—
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—			DT<5			

REGISTER 12-3: CCPxCON3: CAPTURE/COMPARE/PWMx CONTROL 3 REGISTER

1	
i ea	end:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit,	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

	 1 = For Triggered mode (TRIGEN = 1), the module does not drive enabled output pins until triggered 0 = Normal output pin operation
bit 30-28	OSCNT<2:0>: One-Shot Event Count bits
	Extends the duration of a one-shot trigger event by an additional n clock cycles (n+1 total cycles). 111 = 7 timer count periods (8 cycles total) 110 = 6 timer count periods (7 cycles total) 101 = 5 timer count periods (6 cycles total) 100 = 4 timer count periods (5 cycles total) 011 = 3 timer count periods (4 cycles total) 010 = 2 timer count periods (3 cycles total)

001 = 1 timer count period (2 cycles total)

OETRIG: PWM Dead-Time Select bit

000 = Does not extend the one-shot trigger event (the event takes 1 timer count period)

- bit 27 Unimplemented: Read as '0'
- bit 26-24 OUTM<2:0>: PWMx Output Mode Control bits⁽¹⁾
 - 111 = Reserved
 - 110 = Output Scan mode
 - 101 = Brush DC Output mode, forward
 - 100 = Brush DC Output mode, reverse
 - 011 = Reserved
 - 010 = Half-Bridge Output mode
 - 001 = Push-Pull Output mode
 - 000 = Steerable Single Output mode
- bit 23-22 Unimplemented: Read as '0'

```
bit 21 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit
```

- 1 = Output pin polarity is active-low
- 0 = Output pin polarity is active-high
- bit 20 **POLBDF:** CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾
 - 1 = Output pin polarity is active-low
 - 0 = Output pin polarity is active-high

```
bit 19-18 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits
```

- 11 = Pins are driven active when a shutdown event occurs
- ${\tt 10}$ = Pins are driven inactive when a shutdown event occurs
- 0x = Pins are in a high-impedance state when a shutdown event occurs
- **Note 1:** These bits are implemented in MCCP modules only.

REGISTER 14-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	$1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
	$0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits ⁽¹⁾
	 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
bit 7	WAKE: Enable Wake-up on Start Bit Detect During Sleep Mode bit
	1 = Wake-up is enabled0 = Wake-up is disabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	1 = Loopback mode is enabled0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	RXINV: Receive Polarity Inversion bit
2	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = High-Speed mode – 4x baud clock is enabled 0 = Standard Speed mode – 16x baud clock is enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit
	1 = 2 Stop bits 0 = 1 Stop bit

Note 1: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 9.8 "Peripheral Pin Select (PPS)" for more information).

PIC32MM0064GPL036 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	_	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	_	_	_	—	—		
45.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ADRC	EXTSAM	_	SAMC<4:0>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ADCS<7:0>									

REGISTER 16-3: AD1CON3: ADC CONTROL REGISTER 3

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source (TSRC) bit
 - 1 = Clock derived from Fast RC (FRC) oscillator
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK, 1:1 with SYSCLK)

bit 14 EXTSAM: Extended Sampling Time bit

- 1 = ADC is still sampling after SAMP bit = 0
- 0 = ADC stops sampling when SAMP bit = 0
- bit 13 Unimplemented: Read as '0'
- bit 12-8 SAMC<4:0>: Auto-Sample Time bits

11111 **= 31 T**AD

- •
- .
- 00001 = 1 TAD

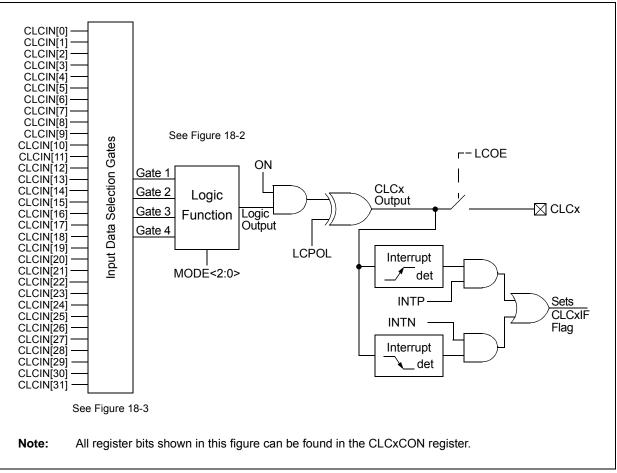
00000 = 0 TAD (Not allowed)

bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits

- 11111111 = 2 TSRC ADCS<7:0> = 510 TSRC = TAD
 - •
 - .

00000001 = 2 • TSRC • ADCS<7:0> = 2 • TSRC = TAD 00000000 = 1 • TSRC = TAD

Where TSRC is a period of clock selected by the ADRC bit (AD1CON3<15>).


18.0 CONFIGURABLE LOGIC CELL (CLC)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 36. "Configurable Logic Cell" (DS60001363) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

FIGURE 18-1: CLCx MODULE

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flex-ibility and potential in embedded designs since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 18-1 shows an overview of the module. Figure 18-3 shows the details of the data source multiplexers and logic input gate connections.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	—		_	_	_	—
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	—	—	G4POL	G3POL	G2POL	G1POL
45.0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
15:8	ON	_		_	INTP ⁽¹⁾	INTN ⁽¹⁾		_
7.0	R/W-0	R-0, HS, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	LCOE	LCOUT	LCPOL	_	_		MODE<2:0>	

REGISTER 18-1: CLCxCON: CLCx CONTROL REGISTER

Legend: HC = Hardware Clearal		HS = Hardware Settable	e bit
R = Readable bit	W = Writable bit	it U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19 **G4POL:** Gate 4 Polarity Control bit 1 = The output of Channel 4 logic is inverted when applied to the logic cell 0 = The output of Channel 4 logic is not inverted

bit 18 **G3POL:** Gate 3 Polarity Control bit

- 1 = The output of Channel 3 logic is inverted when applied to the logic cell
- 0 = The output of Channel 3 logic is not inverted

bit 17 G2POL: Gate 2 Polarity Control bit

1 = The output of Channel 2 logic is inverted when applied to the logic cell0 = The output of Channel 2 logic is not inverted

bit 16 **G1POL:** Gate 1 Polarity Control bit

- 1 = The output of Channel 1 logic is inverted when applied to the logic cell
- 0 = The output of Channel 1 logic is not inverted

bit 15 ON: CLCx Enable bit

- 1 = CLCx is enabled and mixing input signals
- 0 = CLCx is disabled and has logic zero outputs

bit 14-12 Unimplemented: Read as '0'

- bit 11 INTP: CLCx Positive Edge Interrupt Enable bit⁽¹⁾
 - 1 = Interrupt will be generated when a rising edge occurs on LCOUT
 - 0 = Interrupt will not be generated
- bit 10 INTN: CLCx Negative Edge Interrupt Enable bit⁽¹⁾
 - 1 = Interrupt will be generated when a falling edge occurs on LCOUT0 = Interrupt will not be generated
- bit 9-8 Unimplemented: Read as '0'
- bit 7 LCOE: CLCx Port Enable bit
 - 1 = CLCx port pin output is enabled
 - 0 = CLCx port pin output is disabled
- bit 6 LCOUT: CLCx Data Output Status bit
 - 1 = CLCx output high 0 = CLCx output low
- Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

REGISTER 23-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	_	_	_	—	_	_	_
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16		_	_	_	—	_		_
45.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
15:8	FCKSM<1:0>		_	SOSCSEL	—	OSCIOFNC	POSCM	OD<1:0>
7.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
7:0	IESO	SOSCEN		PLLSRC	_		FNOSC<2:0>	1

Legend:r = Reserved bitP = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16	Reserved: Program as '1'
bit 15-14	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Enable bits
	 11 = Clock switching is enabled; Fail-Safe Clock Monitor is enabled 10 = Clock switching is disabled; Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled; Fail-Safe Clock Monitor is disabled 00 = Clock switching is disabled; Fail-Safe Clock Monitor is disabled
bit 13	Reserved: Program as '1'
bit 12	SOSCSEL: Secondary Oscillator (SOSC) External Clock Enable bit
	1 = Crystal is used (RA4 and RB4 pins are controlled by SOSC)0 = External clock is connected to the SOSCO pin (RA4 and RB4 pins are controlled by I/O PORTx registers)
bit 11	Reserved: Program as '1'
bit 10	OSCIOFNC: System Clock on CLKO Pin Enable bit
	 1 = OSC2/CLKO pin operates as normal I/O 0 = System clock is connected to the OSC2/CLKO pin
bit 9-8	POSCMOD<1:0>: Primary Oscillator (POSC) Mode Selection bits
	 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock (EC) mode is selected
bit 7	IESO: Two-Speed Start-up Enable bit
	1 = Two-Speed Start-up is enabled0 = Two-Speed Start-up is disabled
bit 6	SOSCEN: Secondary Oscillator (SOSC) Enable bit
	1 = Secondary Oscillator is enabled0 = Secondary Oscillator is disabled
bit 5	Reserved: Program as '1'
bit 4	PLLSRC: System PLL Input Clock Selection bit
	 1 = FRC oscillator is selected as the PLL reference input on a device Reset 0 = Primary Oscillator (POSC) is selected as the PLL reference input on a device Reset
bit 3	Reserved: Program as '1'

TABLE 26-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating	Dperating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param No. Symbol Characteristics		Min	Typ ⁽¹⁾	Max	Units	Comments			
DVR10	Vbg	Band Gap Reference Voltage	_	1.2	_	V			
DVR20	Vrgout	Regulator Output Voltage	_	1.8	_	V	VDD > 1.9V		
DVR21	CEFC	External Filter Capacitor Value	4.7	10	—	μF	Series Resistance < 3Ω recommended; < 5Ω required		
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	0.9	—	1.2	V	RETEN = 1, RETVR (FPOR<2>) = 0		

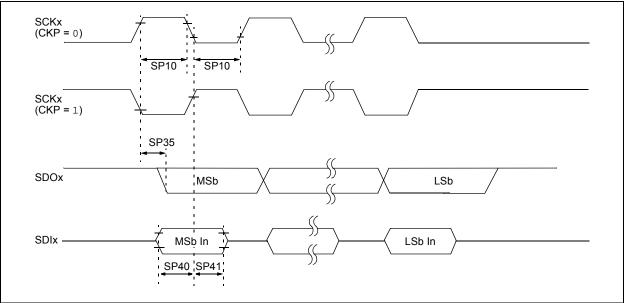
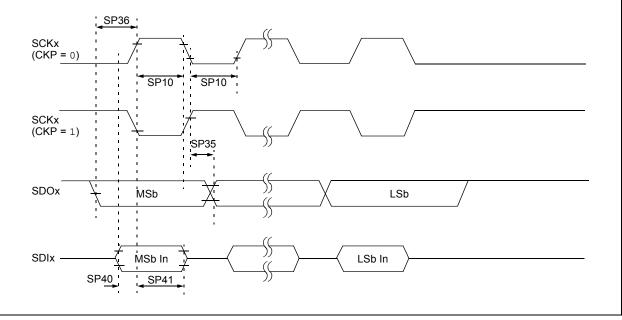
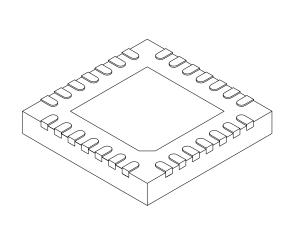

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-13: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operating	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param No.	Symbol	Characteristic			Тур ⁽²⁾	Max	Units	
DC18	VHLVD ⁽¹⁾	HLVD Voltage on VDD	HLVDL<3:0> = 0101	3.25	_	3.63	V	
		Transition	HLVDL<3:0> = 0110	2.95	—	3.30	V	
			HLVDL<3:0> = 0111	2.75	—	3.09	V	
			HLVDL<3:0> = 1000	2.65	_	2.98	V	
			HLVDL<3:0> = 1001	2.45	—	2.80	V	
			HLVDL<3:0> = 1010	2.35	—	2.69	V	
			HLVDL<3:0> = 1011	2.25	—	2.55	V	
			HLVDL<3:0> = 1100	2.15	—	2.44	V	
			HLVDL<3:0> = 1101	2.08	—	2.33	V	
			HLVDL<3:0> = 1110	2.00	—	2.22	V	
DC101	VTHL	HLVD Voltage on LVDIN Pin Transition	HLVDL<3:0> = 1111	_	1.2		V	


Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0100', are not implemented.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


FIGURE 26-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

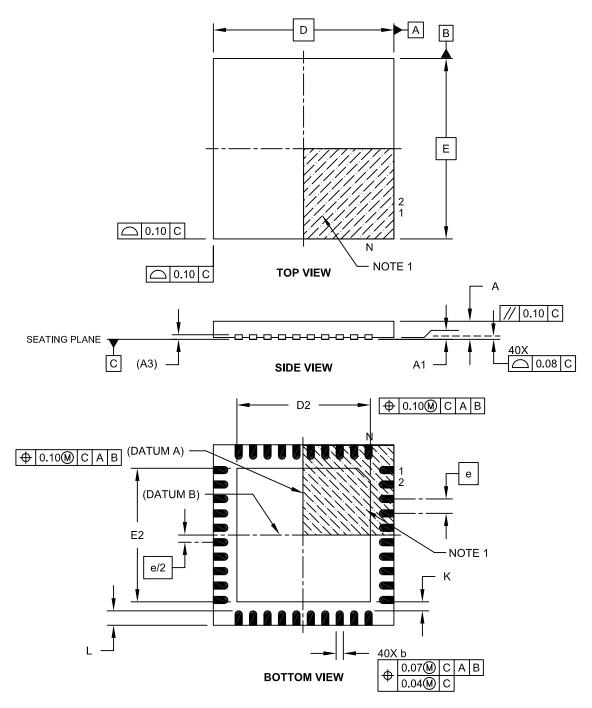
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2