

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-SQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl036-i-m2

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features

- Two Analog Comparators with Input Multiplexing
- Programmable High/Low-Voltage Detect (HLVD)
- 5-Bit DAC with Output Pin

- Up to 14-Channel, Software-Selectable 10/12-Bit SAR Analog-to-Digital Converter (ADC):
 - 12-bit, 200K samples/second conversion rate (single Sample-and-Hold)
 - 10-bit, 300K samples/second conversion rate (single Sample-and-Hold)
- Sleep mode operation
- Band gap reference input feature
- Windowed threshold compare feature
- Auto-scan feature
- Brown-out Reset (BOR)

		(bytes)	(Kbytes)	O/PPS	Maximum	Maximum				ppak hera		-	(Channels)					
Device	Pins	Program Memory (Kbytes)	Data Memory (Kb	General Purpose I/O/PPS	16-Bit Timers Max	PWM Outputs Max	UART ⁽¹⁾ /LIN/J2602	16-Bit Timers	MCCP ⁽³⁾	SCCP ⁽⁴⁾	СГС	SPI ⁽²⁾ /I ² S	10/12-Bit ADC (Cha	Comparators	CRC	RTCC	JTAG	Packages
PIC32MM0016GPL020	20	16	4	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0032GPL020	20	32	8	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0064GPL020	20	64	8	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0016GPL028	28	16	4	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SSOP/SOIC/ QFN/UQFN
PIC32MM0032GPL028	28	32	8	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SSOP/ SOIC/ QFN/UQFN
PIC32MM0064GPL028	28	64	8	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SPDIP/SSOP/ SOIC/QFN/ UQFN
PIC32MM0016GPL036	36/40	16	4	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN
PIC32MM0032GPL036	36/40	32	8	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN
PIC32MM0064GPL036	36/40	64	8	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN

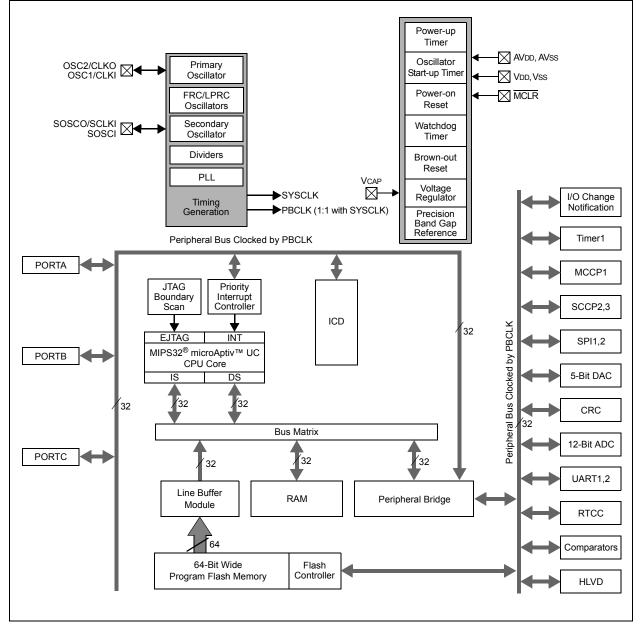
TABLE 1: PIC32MM0064GPL036 FAMILY DEVICES

Note 1: UART1 has assigned pins. UART2 is remappable.

2: SPI1 has assigned pins. SPI2 is remappable.

3: MCCP can be configured as a PWM with up to 6 outputs, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

4: SCCP can be configured as a PWM with 1 output, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.


1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. This data sheet contains device-specific information for the PIC32MM0064GPL036 family devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MM0064GPL036 family of devices.

Table 1-1 lists the pinout I/O descriptions for the pins shown in the device pin tables.

FIGURE 1-1: PIC32MM0064GPL036 FAMILY BLOCK DIAGRAM

			Pin	Number								
Pin Name	20-Pin QFN	20-Pin SSOP	28-Pin QFN/ UQFN	28-Pin SPDIP/ SSOP/SOIC	36-Pin VQFN	40-Pin UQFN	Pin Type	Buffer Type	Description			
PGEC1	2	5	2	5	36	39	Ι	ST	ICSP Port 1 programming clock input			
PGEC2	19	2	19	22	25	28	I	ST	ICSP Port 2 programming clock input			
PGEC3	7	10	12	15	16	16	I	ST	ICSP Port 3 programming clock input			
PGED1	1	4	1	4	35	38	I/O	ST/DIG	ICSP Port 1 programming data			
PGED2	20	3	18	21	24	27	I/O	ST/DIG	ICSP Port 2 programming data			
PGED3	6	9	11	14	15	15	I/O	ST/DIG	ICSP Port 3 programming data			
PWRLCLK	7	10	9	12	10	10	I	ST	Real-Time Clock 50/60 Hz clock input			
RA0	19	2	27	2	33	36	I/O	ST/DIG	PORTA digital I/O			
RA1	20	3	28	3	34	37	I/O	ST/DIG	PORTA digital I/O			
RA2	4	7	6	9	7	7	I/O	ST/DIG	PORTA digital I/O			
RA3	5	8	7	10	8	8	I/O	ST/DIG	PORTA digital I/O			
RA4	7	10	9	12	10	10	I/O	ST/DIG	PORTA digital I/O			
RA9	_	_	_	_	11	11	I/O	ST/DIG	PORTA digital I/O			
RB0	1	4	1	4	35	38	I/O	ST/DIG	PORTB digital I/O			
RB1	2	5	2	5	36	39	I/O	ST/DIG	PORTB digital I/O			
RB2	3	6	3	6	1	1	I/O	ST/DIG	PORTB digital I/O			
RB3	_		4	7	2	2	I/O	ST/DIG	PORTB digital I/O			
RB4	6	9	8	11	9	9	I/O	ST/DIG	PORTB digital I/O			
RB5	_	_	11	14	15	15	I/O	ST/DIG	PORTB digital I/O			
RB6	_		12	15	16	16	I/O	ST/DIG	PORTB digital I/O			
RB7	8	11	13	16	17	17	I/O	ST/DIG	PORTB digital I/O			
RB8	9	12	14	17	18	18	I/O	ST/DIG	PORTB digital I/O			
RB9	10	13	15	18	19	20	I/O	ST/DIG	PORTB digital I/O			
RB10	_	—	18	21	24	27	I/O	ST/DIG	PORTB digital I/O			
RB11	_	_	19	22	25	28	I/O	ST/DIG	PORTB digital I/O			
RB12	12	15	20	23	26	29	I/O	ST/DIG	PORTB digital I/O			
RB13	13	16	21	24	27	30	I/O	ST/DIG	PORTB digital I/O			
RB14	14	17	22	25	28	31	I/O	ST/DIG	PORTB digital I/O			
RB15	15	18	23	26	29	32	I/O	ST/DIG	PORTB digital I/O			
RC0	—	_	_	_	3	3	I/O	ST/DIG	PORTC digital I/O			
RC1	_	_	_	_	4	4	I/O	ST/DIG	PORTC digital I/O			
RC2	_	_	—	—	5	5	I/O	ST/DIG	PORTC digital I/O			
RC3	—	_	_	_	14	14	I/O	ST/DIG	PORTC digital I/O			
RC8	_	_	_	_	20	21	I/O	ST/DIG	G PORTC digital I/O			
RC9	_	_	16	19	21	22	I/O	ST/DIG	IG PORTC digital I/O			
REFCLKI	10	13	15	18	19	20	I	ST	Reference clock input			
REFCLKO	15	18	23	26	29	32	0	DIG				
Legend:	ST = Sc	hmitt Tric	ger input	buffer	DIG = Dig	nital innu	t/output					

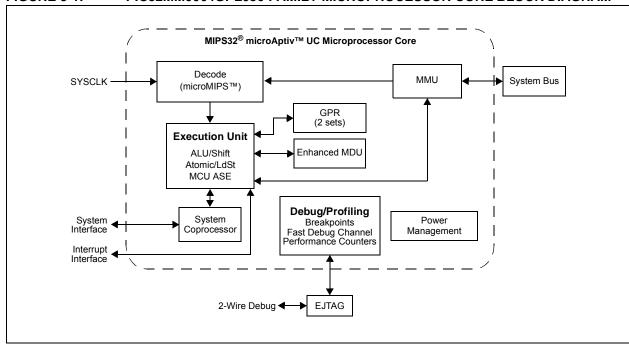
TABLE 1-1: PIC32MM0064GPL036 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer

DIG = Digital input/output

ANA = Analog level input/output

			Pin	Number				1			
Pin Name	20-Pin QFN	20-Pin SSOP	28-Pin QFN/ UQFN	28-Pin SPDIP/ SSOP/SOIC	36-Pin VQFN	40-Pin UQFN	Pin Type	Buffer Type	Description		
RP1	19	2	27	2	33	36	I/O	ST/DIG	Remappable peripherals (input or output)		
RP2	20	3	28	3	34	37	I/O	ST/DIG			
RP3	4	7	6	9	7	7	I/O	ST/DIG			
RP4	5	8	7	10	8	8	I/O	ST/DIG			
RP5	6	9	8	11	9	9	I/O	ST/DIG			
RP6	7	10	9	12	10	10	I/O	ST/DIG			
RP7	9	12	14	17	18	18	I/O	ST/DIG			
RP8	10	13	15	18	19	20	I/O	ST/DIG			
RP9	14	17	22	25	28	31	I/O	ST/DIG			
RP10	15	18	23	26	29	32	I/O	ST/DIG			
RP11	8	11	13	16	17	17	I/O	ST/DIG			
RP12	12	15	20	23	26	29	I/O	ST/DIG			
RP13	13	16	21	24	27	30	I/O	ST/DIG			
RP14	1	4	1	4	35	38	I/O	ST/DIG			
RP15	2	5	2	5	36	39	I/O	ST/DIG			
RP16	3	6	3	6	1	1	I/O	ST/DIG			
RP17		—	18	21	24	27	I/O	ST/DIG			
RP18	—	—	19	22	25	28	I/O	ST/DIG			
RP19	—	—	16	19	21	22	I/O	ST/DIG			
RP20	—	—	—	—	11	11	I/O	ST/DIG			
RTCC	14	17	22	25	28	31	0	DIG	Real-Time Clock alarm/seconds output		
SCK1	9	12	14	17	18	18	I/O	ST/DIG	SPI1 clock (input or output)		
SCLKI	7	10	9	12	10	10	Ι	ST	Secondary Oscillator external clock input		
SDI1	14	17	22	25	28	31	Ι	ST	SPI1 data input		
SDO1	10	13	15	18	19	20	0	DIG	SPI1 data output		
SOSCI	6	9	8	11	9	9	—	—	Secondary Oscillator crystal		
SOSCO	7	10	9	12	10	10	—	—	Secondary Oscillator crystal		
SS1	15	18	23	26	29	32	Ι	ST	SPI1 slave select input		
T1CK	10	13	15	18	19	20	Ι	ST	Timer1 external clock input		
T1G	10	13	15	18	19	20	Ι	ST	Timer1 clock gate input		
тск	9	12	14	17	18	18	Ι	ST	JTAG clock input		
TDI	13	16	19	22	25	28	Ι	ST	JTAG data input		
TDO	12	15	18	21	24	27	0	DIG	JTAG data output		
TMS	10	13	15	18	19	20	Ι	ST	JTAG mode select input		
U1BCLK	10	13	15	18	19	20	0	DIG	UART1 IrDA [®] 16x baud clock output		
U1CTS	9	12	14	17	18	18	Ι	ST	UART1 transmission control input		
U1RTS	10	13	15	18	19	20	0	DIG	G UART1 reception control output		
U1RX	15	18	23	26	29	32	Ι	ST	UART1 receive data input		
U1TX	14	17	22	25	28	31	0	DIG	UART1 transmit data output		
Legend:	ST = Sc	hmitt Tric	ger input	buffer	DIG = Dig	nital input	t/output		ANA = Analog level input/output		


PIC32MM0064GPL036 FAMILY PINOUT DESCRIPTION (CONTINUED) **TABLE 1-1:**

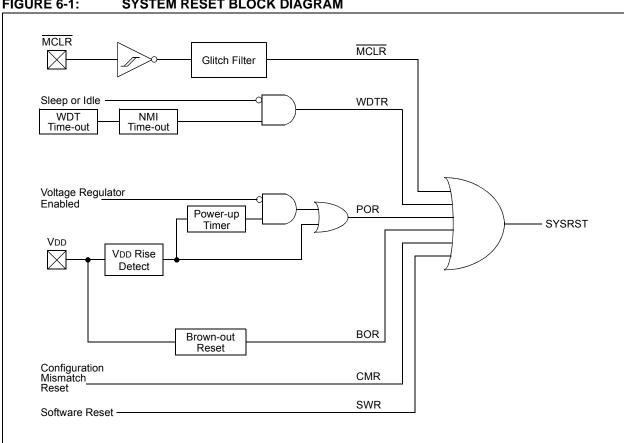
Legend: ST = Schmitt Trigger input buffer

DIG = Digital input/output

ANA = Analog level input/output

PIC32MM0064GPL036 FAMILY

FIGURE 3-1: PIC32MM0064GPL036 FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM


6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- Master Clear Reset Pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

SYSTEM RESET BLOCK DIAGRAM FIGURE 6-1:

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

lress #)	50	je								Bits	6								ets
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Rese
F4.00	IPC8	31:16	_		—	—	_	_	—	_	_	—	_	(CCT3IP<2:0>	•	CCT3IS	<1:0>	0000
F1C0	IPC8	15:0	-	_	_		CCP3IP<2:0>	>	CCP38	S<1:0>	_	_	_	(CCT2IP<2:0>	•	CCT2IS	<1:0>	0000
5400	IDOO	31:16		_	_		SPI2RXIP<2:0)>	SPI2RX	S<1:0>	_	_	_	S	PI2TXIP<2:0	>	SPI2TXI	S<1:0>	0000
F1D0	IPC9	15:0	_	_	_		SPI2EIP<2:0	>	SPI2EI	S<1:0>	_	—	_	_		_	—	_	0000
F4F0	10040	31:16	_	_	_		_	_	—	_	_	—	_		U2EIP<2:0>		U2EIS•	<1:0>	0000
F1E0	IPC10	15:0	-	_	_		U2TXIP<2:0>		U2TXIS	6<1:0>	_	_	_	ι	J2RXIP<2:0>	•	U2RXIS	<1:0>	0000
E4E0	10044	31:16	_	_	_		CPCIP<2:0>		CPCIS	<1:0>	_	—	_		NVMIP<2:0>		NVMIS	<1:0>	0000
F1F0	IPC11	15:0	_	-	—	_		_	_	_	_		_	_	_	_	—		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

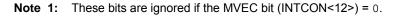
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

2: These bits are not available on 20-pin devices.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		PRI7SS	<3:0> ⁽¹⁾		PRI6SS<3:0> ⁽¹⁾							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16		PRI5SS	<3:0> ⁽¹⁾			PRI4SS	<3:0> ⁽¹⁾					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8		PRI3SS	<3:0> ⁽¹⁾			PRI2SS	<3:0>(1)					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0				
7:0		PRI1SS	<3:0> ⁽¹⁾		—	—	—	SS0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 PRI7SS<3:0>: Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

0001 = Interrupt with a priority level of 6 uses Shadow Set 1

0000 = Interrupt with a priority level of 6 uses Shadow Set 0

9.7 Pin Pull-up and Pull-Down

Each I/O pin also has a weak pull-up and a weak pulldown connected to it. The pull-ups act as a current source, or sink source, connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

9.8 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

9.8.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn", in their full pin designation, where "RP" designates a Remappable Peripheral and "n" is the remappable port number.

9.8.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (MCCP, SCCP) and others.

In comparison, some digital only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

9.8.3 CONTROLLING PPS

PPS features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 62. "Dual Watchdog Timer" (DS60001365) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. When enabled, the Watchdog Timer (WDT) can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

Some of the key features of the WDT module are:

- Configuration or Software Controlled
- User-Configurable Time-out Period
- Different Time-out Periods for Run and Sleep/Idle modes
- Operates from LPRC Oscillator in Sleep/Idle modes
- Different Clock Sources for Run mode
- · Can Wake the Device from Sleep or Idle

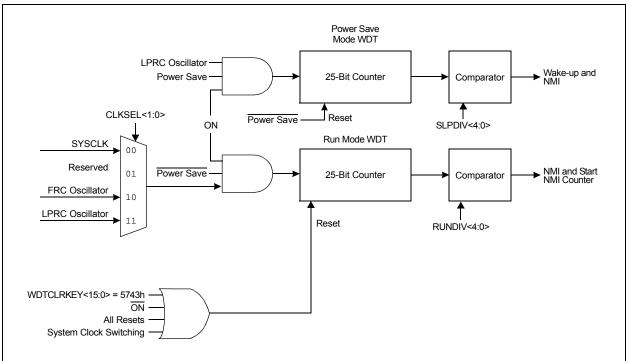


FIGURE 11-1: WATCHDOG TIMER BLOCK DIAGRAM

REGISTER 13-1: SPIxCON: SPIx CONTROL REGISTER (CONTINUED)

bit 7	SSEN: Slave Select Enable (Slave mode) bit
	$1 = \overline{SSx}$ pin is used for Slave mode
	0 = SSx pin is not used for Slave mode, pin is controlled by port function
bit 6	CKP: Clock Polarity Select bit ⁽³⁾
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode
	0 = Slave mode
bit 4	DISSDI: Disable SDIx bit ⁽⁴⁾
	1 = SDIx pin is not used by the SPIx module (pin is controlled by port function)0 = SDIx pin is controlled by the SPIx module
bit 3-2	STXISEL<1:0>: SPIx Transmit Buffer Empty Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is not full (has one or more empty elements) 10 = Interrupt is generated when the buffer is empty by one-half or more 01 = Interrupt is generated when the buffer is completely empty 00 = Interrupt is generated when the last transfer is shifted out of SPIxSR and transmit operations are complete
bit 1-0	SRXISEL<1:0>: SPIx Receive Buffer Full Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is full 10 = Interrupt is generated when the buffer is full by one-half or more 01 = Interrupt is generated when the buffer is not empty 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
Note 1:	These bits can only be written when the ON bit = 0. Refer to Section 26.0 "Electrical Characteristics" for maximum clock frequency requirements.
2:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

- **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
- 4: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 9.8 "Peripheral Pin Select (PPS)" for more information).

TABLE 16-1: ADC REGISTER MAP (CONTINUED)

		_																	
ess										Bits	6								
Virtual Address (BF80_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0750		31:16								DC1BUF1	1-21:0>								0000
07E0	ADC1BUF14	15:0							A	JCIBUFI	4<31:0>								0000
0750	ADC1BUF15	31:16								DC1BUF1	E <21:0>								0000
07F0	ADCIBUEIS	15:0							A	JCIBUFI	5<31.0>								0000
0800	AD1CON1	31:16		—	_	_	—	—	_	—	_	_	—	_	—		—		0000
0800	ADICONT	15:0	ON		SIDL	_	—	F	ORM<2:0	>		SSR	C<3:0>		MODE12	ASAM	SAMP	DONE	0000
0810	AD1CON2	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
0010	ADICONZ	15:0		VCFG<2:0	0>	OFFCAL	BUFREGEN	CSCNA	—	_	BUFS	_		SMF	PI<3:0>		BUFM	_	0000
0820	AD1CON3	31:16	_	—	_	_	-	—	—	_	—	—	—	—	—		—	_	0000
0020	AB TOONG	15:0	ADRC	EXTSAM			SAN	1C<4:0>						AD)CS<7:0>				0000
0840	AD1CHS	31:16	_	—	_	_		—	—	_	—	_	—	—	—	_	_	—	0000
0040	ABTOHO	15:0	—	—	—	—	—	—	—	—	С	H0NA<2:	0>		(CH0SA<4:0	>		0000
0850	AD1CSS	31:16										0000							
0000	7101000	15:0	_	—							CSS<13	0> (1,2)							0000
0870	AD1CON5	31:16	_	—	_	—		—	—	_	—	_		_	_	_		—	0000
0070	AB TOONS	15:0	ASEN	LPEN	_	BGREQ	_	—	ASINT	<1:0>	—	-		—	WM<	:1:0>	CM<	:1:0>	0000
0880	AD1CHIT	31:16	_	_	_	—	-	—	—	_	—	_	—	—	—		_	—	0000
0000		15:0	—	—							CHH<13	(1,2)							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The CSS<13:11> and CHH<13:11> bits are not implemented in 20-pin devices.

2: The CSS<13:12> and CHH<13:12> bits are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 17-1: CRCCON: CRC CONTROL REGISTER (CONTINUED)

- bit 2 MOD: CRC Calculation Mode bit
 - 1 = Alternate mode
 - 0 = Legacy mode
- bit 1-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				X<3	1:24>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				X<2	3:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				X<1	5:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7:0				X<7:1>				_

REGISTER 17-2: CRCXOR:CRC XOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 X<31:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	—		_	_	_	—
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	—	—	G4POL	G3POL	G2POL	G1POL
45.0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
15:8	ON	_		_	INTP ⁽¹⁾	INTN ⁽¹⁾		_
7.0	R/W-0	R-0, HS, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	LCOE	LCOUT	LCPOL	_	_		MODE<2:0>	

REGISTER 18-1: CLCxCON: CLCx CONTROL REGISTER

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable	e bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19 **G4POL:** Gate 4 Polarity Control bit 1 = The output of Channel 4 logic is inverted when applied to the logic cell 0 = The output of Channel 4 logic is not inverted

bit 18 **G3POL:** Gate 3 Polarity Control bit

- 1 = The output of Channel 3 logic is inverted when applied to the logic cell
- 0 = The output of Channel 3 logic is not inverted

bit 17 G2POL: Gate 2 Polarity Control bit

1 = The output of Channel 2 logic is inverted when applied to the logic cell0 = The output of Channel 2 logic is not inverted

bit 16 **G1POL:** Gate 1 Polarity Control bit

- 1 = The output of Channel 1 logic is inverted when applied to the logic cell
- 0 = The output of Channel 1 logic is not inverted

bit 15 ON: CLCx Enable bit

- 1 = CLCx is enabled and mixing input signals
- 0 = CLCx is disabled and has logic zero outputs

bit 14-12 Unimplemented: Read as '0'

- bit 11 INTP: CLCx Positive Edge Interrupt Enable bit⁽¹⁾
 - 1 = Interrupt will be generated when a rising edge occurs on LCOUT
 - 0 = Interrupt will not be generated
- bit 10 INTN: CLCx Negative Edge Interrupt Enable bit⁽¹⁾
 - 1 = Interrupt will be generated when a falling edge occurs on LCOUT0 = Interrupt will not be generated
- bit 9-8 Unimplemented: Read as '0'
- bit 7 LCOE: CLCx Port Enable bit
 - 1 = CLCx port pin output is enabled
 - 0 = CLCx port pin output is disabled
- bit 6 LCOUT: CLCx Data Output Status bit
 - 1 = CLCx output high 0 = CLCx output low
- Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

19.1 Comparator Control Registers

TABLE 19-1: COMPARATOR 1 AND 2 REGISTER MAP

ess		n		Bits										ú					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	OMOTAT	31:16	—	_	—	—	_	—	—	—	_	-	-	—	—	_	C2EVT	C1EVT	0000
0900	CMSTAT	15:0	_	_	SIDL	_	_	_	_	CVREFSEL	—	_	_	_	_	_	C2OUT	C10UT	0000
0910	CM1CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0910	CINICON	15:0	ON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
0930	CM2CON	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
0930	CIMZCON	15:0	ON	COE	CPOL	_	_		CEVT	COUT	EVPO	L<1:0>	-	CREF		_	CCH	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 23-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 110 and 111 = Reserved (selects Fast RC (FRC) Oscillator with Divide-by-N)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Reserved
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Primary or FRC Oscillator with PLL
 - 000 = Fast RC (FRC) Oscillator with Divide-by-N

REGISTER 23-6: FSEC/AFSEC: CODE-PROTECT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/P	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	CP	_	_	_	_	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	—	_	—	_	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	—	_	—	_	—	—
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_	_	_		_	_	_

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 CP: Code Protection Enable bit

1 = Code protection is disabled

0 = Code protection is enabled

bit 30-0 Reserved: Program as '1'

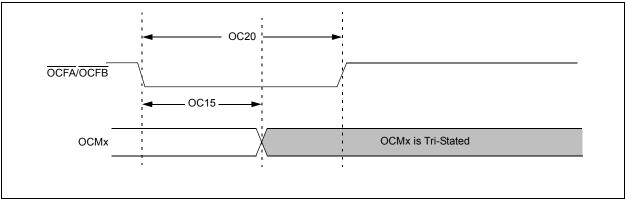
TABLE 26-4: OPERATING CURRENT (IDD)⁽²⁾

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Parameter No.	Typical ⁽¹⁾	Max	Units	Vdd	Conditions			
DC19	0.45	0.65	mA	2.0V				
DC19	0.45	0.65	mA	3.3V	Fsys = 1 MHz			
DC23	2.5	3.5	mA	2.0V	Fsys = 8 MHz			
	2.5	3.5	mA	3.3V	1 3 1 3 - 0 101 12			
DC24	7.0	9.2	mA	2.0V	Fsys = 25 MHz			
	7.0	9.2	mA	3.3V	1 STS - 25 WI 12			
DC25	0.26	0.35	mA	2.0V	Fsys = 32 kHz			
	0.26	0.35	mA	3.3V	TSTS - 52 NIZ			

Note 1: Data in the "Typical" column is at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Base IDD current is measured with:
 - Oscillator is configured in EC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 010 and POSCMOD<1:0> (FOSCSEL<9:8>) = 00)
 - + OSC1 pin is driven with external square wave with levels from 0.3V to VDD 0.3V
 - OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
 - FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
 - Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
 - Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
 - Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - NOP instructions are executed

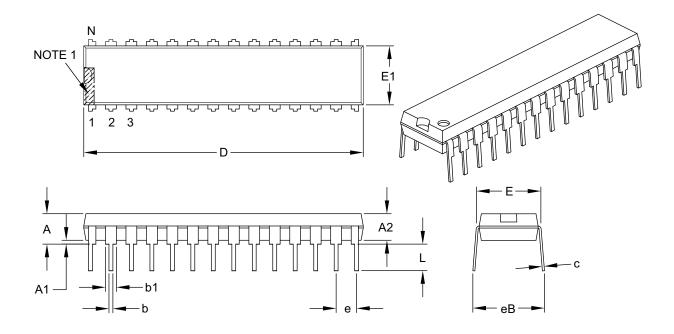
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions			
DC60	134	198	μA	-40°C					
	136	208	μA	+25°C	2.0V				
	141	217	μA	+85°C		Sleep with active main voltage regulator			
	139	209	μA	-40°C		- (VREGS (PWRCON<0>) = 1, RETEN (PWRCON<1>) =0)			
	141	217	μA	+25°C	3.3V				
	143	231	μA	+85°C					
DC61	4.3	11.7	μA	-40°C					
	5.1	15.6	μA	+25°C	2.0V	Sleep with main voltage regulator in			
	11.4	34.3	μA	+85°C		Standby mode (VREGS (PWRCON<0>) = 0, RETEN (PWRCON<1>) = 0)			
	6.1	16.8	μA	-40°C	3.3V				
	6.9	20.1	μA	+25°C					
	12.7	36.0	μA	+85°C					
DC62	2.3	_	μA	-40°C		Sleep with enabled retention voltage			
	2.7		μA	+25°C	2.0V				
	5.2		μA	+85°C		regulator (VREGS (PWRCON<0>) = 1,			
	2.3	—	μA	-40°C		RETEN (PWRCON<1>) = 1,			
	2.7	—	μA	+25°C	3.3V	RETVR(FPOR<2>)=0)			
	5.4	—	μA	+85°C					
DC63	0.28	—	μA	-40°C					
	0.44	—	μA	+25°C	2.0V	Sleep with enabled retention voltage			
	2.52		μA	+85°C		regulator (VREGS (PWRCON<0>) = 0,			
	0.29	_	μA	-40°C		RETEN (PWRCON<1>) = 1,			
	0.44	_	μA	+25°C	3.3V	RETVR(FPOR<2>)=0)			
	2.62		μA	+85°C					


TABLE 26-6: POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC2 is configured as I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)


TABLE 26-27: MCCP AND SCCP PWM MODE TIMING REQUIREMENTS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)									
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Max	Units				
OC15	Tfd	Fault Input to PWM I/O Change	_	30	ns				
OC20	TFLT	Fault Input Pulse Width	10		ns				

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		.100 BSC		
Top to Seating Plane	А	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ	_	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B