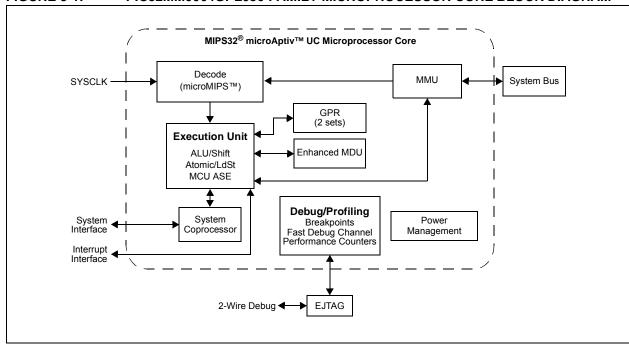


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0032gpl036-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MM0064GPL036 FAMILY

FIGURE 3-1: PIC32MM0064GPL036 FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾ (CONTINUED)

- bit 12-10 IP1<2:0>: Interrupt Priority bits
- 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 59. "Oscillators with DCO" (DS60001329) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The PIC32MM0064GPL036 family oscillator system has the following modules and features:

- On-Chip PLL with User-Selectable Multiplier and Output Divider to Boost Operating Frequency on Select Internal and External Oscillator Sources
- Primary High-Frequency Crystal Oscillator
- Secondary Low-Frequency and Low-Power Crystal Oscillator
- On-Chip Fast RC (FRC) Oscillator with User-Selectable Output Divider
- Software-Controllable Switching between Various Clock Sources
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Flexible Reference Clock Output (REFO)

A block diagram of the oscillator system is provided in Figure 8-1.

8.1 Fail-Safe Clock Monitor (FSCM)

The PIC32MM0064GPL036 family oscillator system includes a Fail-Safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the FRC oscillator and triggers a Non-Maskable Interrupt (NMI). When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.

In Sleep mode, both the SYSCLK and the FSCM halt, which prevents FSCM detection.

CCPxCON1: CAPTURE/COMPARE/PWMx CONTROL 1 REGISTER (CONTINUED) REGISTER 12-1:

bit 20-16 SYNC<4:0>: CCPx Synchronization Source Select bits

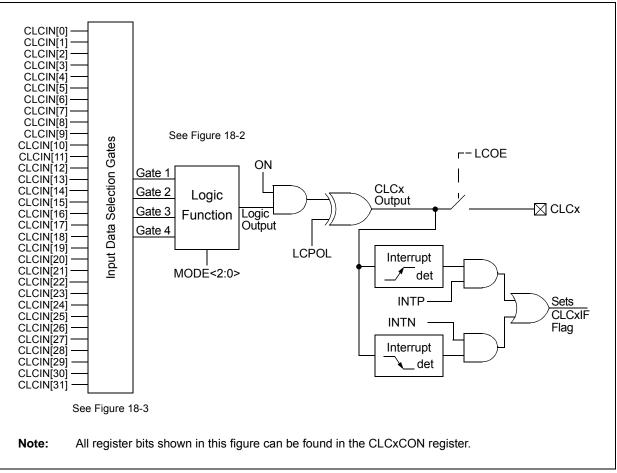
- 11111 = Timer is in the Free-Running mode and rolls over at FFFFh (Timer Period register is ignored) 11110 = Reserved . . . 11100 = Reserved 11011 = Time base is synchronized to the start of ADC conversion 11010 = Reserved 11001 = Time base is synchronized to Comparator 2 11000 = Time base is synchronized to Comparator 1 10111 = Reserved . . . 10010 = Reserved 10001 = Time base is synchronized to CLC2 10001 = Time base is synchronized to CLC1 01111 = Reserved 01110 = Reserved 01101 = Time base is synchronized to the INT4 pin (remappable) 01100 = Time base is synchronized to the INT3 pin 01011 = Time base is synchronized to the INT2 pin 01010 = Time base is synchronized to the INT1 pin 01001 = Time base is synchronized to the INTO pin 01000 = Reserved 00101 = Reserved 00100 = Time base is synchronized to SCCP3 00011 = Time base is synchronized to SCCP2 00010 = Time base is synchronized to MCCP1 00001 = Time base is synchronized to this MCCP/SCCP 00000 = No external synchronization; timer rolls over at FFFFh or matches with the Timer Period register ON: CCPx Module Enable bit⁽¹⁾ bit 15 1 = Module is enabled with the operating mode specified by the MOD<3:0> bits 0 = Module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: CCPx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12 CCPSLP: CCPx Sleep Mode Enable bit 1 = Module continues to operate in Sleep modes 0 = Module does not operate in Sleep modes bit 11 TMRSYNC: Time Base Clock Synchronization bit 1 = Module time base clock is synchronized to internal system clocks; timing restrictions apply 0 = Module time base clock is not synchronized to internal system clocks bit 10-8 CLKSEL<2:0>: CCPx Time Base Clock Select bits 111 = TCKIA pin (remappable) 110 = TCKIB pin (remappable) 101 = Reserved 100 = Reserved 011 = CLC1 output for MCCP1 and SCCP2/CLC2 output for SCCP3 010 = Secondary Oscillator (SOSC) clock 001 = REFCLKO output clock 000 = System clock (Fsys) Note 1: This control bit has no function in Input Capture modes.
 - 2: This control bit has no function when TRIGEN = 0.
 - 3: Values greater than '0011' will cause a FIFO buffer overflow in Input Capture mode.

REGISTER 13-1: SPIxCON: SPIx CONTROL REGISTER (CONTINUED)

MCLKSEL: Master Clock Enable bit ⁽¹⁾							
•							
18 Unimplemented: Read as '0'							
SPIFE: SPIx Frame Sync Pulse Edge Select bit (Framed SPI mode only)						
ENHBUF: Enhanced Buffer Enable bit ⁽¹⁾							
 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled 							
ON: SPIx Module On bit							
 SPIx module is enabled SPIx module is disabled 							
Unimplemented: Read as '0'							
SIDL: SPIx Stop in Idle Mode bit							
 1 = Discontinues operation when CPU enters Idle 0 = Continues operation in Idle mode 	e mode						
DISSDO: Disable SDOx Pin bit ⁽⁴⁾							
1 = SDOx pin is not used by the module; the pin0 = SDOx pin is controlled by the module	 1 = SDOx pin is not used by the module; the pin is controlled by the associated PORTx register 0 = SDOx pin is controlled by the module 						
10 MODE<32,16>: 32/16/8-Bit Communication Select	t bits						
When AUDEN = 1:							
	2.32 hit shannel/64 hit frame						
	D, 32-bit channel/64-bit frame						
0 0 16-bit data, 16-bit FIF	D, 16-bit channel/32-bit frame						
When AUDEN = 0:							
0 0 8-bit							
SMP: SPIx Data Input Sample Phase bit							
Slave mode (MSTEN = 0):							
	mode. The module always uses $SMP = 0$.						
	active clock state to Idle clock state (see the CKP bit) Idle clock state to active clock state (see the CKP bit)						
1: These bits can only be written when the ON bit = (maximum clock frequency requirements.). Refer to Section 26.0 "Electrical Characteristics" for						
 This bit is not used in the Framed SPI mode. The mode (FRMEN = 1). 	user should program this bit to '0' for the Framed SPI						
3: When AUDEN = 1, the SPI/I ² S module functions value of the CKP bit.	as if the CKP bit is equal to '1', regardless of the actual						
4: These bits are present for legacy compatibility an	d are superseded by PPS functionality on these devices for more information).						
10 1: 2: 3:	1 = REFCLKO is used by the Baud Rate Generate 0 = PBCLK is used by the Baud Rate Generator (Unimplemented: Read as '0' SPIFE: SPIx Frame Sync Pulse Edge Select bit (f 1 = Frame synchronization pulse coincides with ti 0 = Frame synchronization pulse precedes the fir ENHBUF: Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled ON: SPIx Module On bit 1 = SPIx module is enabled 0 = SPIx module is disabled Unimplemented: Read as '0' SIDL: SPIx Stop in Idle Mode bit 1 = Discontinues operation when CPU enters Idle 0 = Continues operation in Idle mode DISSDO: Disable SDOx Pin bit ⁽⁴⁾ 1 = SDOx pin is not used by the module; the pin id 0 = SDOx pin is not used by the module; MODE-32, 16>: 32/16/8-Bit Communication Select When AUDEN = 1: MODE32 MODE16 Communication 1 1 24-bit data, 32-bit FIFC 0 1 16-bit data, 16-bit FIFC 0 1 16-bit data, 16-bit FIFC 0 0 1 16-bit data, 16-bit FIFC When AUDEN = 0: MODE32 MODE16 Communication 1 x 32-bit 0 1 16-bit data, 16-bit FIFC When AUDEN = 0: MODE32 MODE16 Communication 1 x 32-bit 0 1 16-bit data, 16-bit FIFC When AUDEN = 0: MODE32 MODE16 Communication 1 x 32-bit 0 1 16-bit data, 16-bit FIFC When AUDEN = 0: MODE32 MODE16 Communication 1 x 32-bit 0 1 SIFC Data Input Sample Phase bit Master mode (MSTEN = 1): 1 = Input data is sampled at the end of data output 0 = Input data is sampled at the end of data output 0 = Input data is sampled at the middle of data output 1 = Serial output data changes on transition from 0 = Serial output data changes on transition from 0 = Serial output data changes on transition from 1 = Serial output data changes on transition from 0 = Serial output data changes on transition from 1 = Serial output data changes on transition from 2 = Serial output data changes on transition from 3 = Serial outpu						

REGISTER 16-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 7-4 SSRC<3:0>: Conversion Trigger Source Select bits 1111-1101 = Reserved 1100 = CLC2 module event ends sampling and starts conversion 1011 = CLC1 module event ends sampling and starts conversion 1010 = SCCP3 module event ends sampling and starts conversion 1001 = SCCP2 module event ends sampling and starts conversion 1000 = MCCP1 module event ends sampling and starts conversion 0111 = Internal counter ends sampling and starts conversion (auto-convert) 0110 = Timer1 period match ends sampling and starts conversion (can trigger during Sleep mode) 0101 = Timer1 period match ends sampling and starts conversion (will not trigger during Sleep mode) 0100-0010 = Reserved 0001 = Active transition on INTO pin ends sampling and starts conversion 0000 = Clearing the SAMP bit ends sampling and starts conversion bit 3 MODE12: 12-Bit Operation Mode bit 1 = 12-bit ADC operation 0 = 10-bit ADC operation bit 2 ASAM: ADC Sample Auto-Start bit 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set 0 = Sampling begins when SAMP bit is set bit 1 SAMP: ADC Sample Enable bit⁽¹⁾ 1 = The ADC Sample-and-Hold Amplifier (SHA) is sampling 0 = The ADC Sample-and-Hold Amplifier is holding bit 0 DONE: ADC Conversion Status bit⁽²⁾ 1 = Analog-to-Digital conversion is done
 - a Analog-to-Digital conversion is done
 a Analog-to-Digital conversion is not done or has not started
 - Clearing this bit will not affect any operation in progress.
- Note 1: The SAMP bit is cleared and cannot be written if the ADC is disabled (ON bit = 0).
 - 2: The DONE bit is not persistent in Automatic modes; it is cleared by hardware at the beginning of the next sample.


18.0 CONFIGURABLE LOGIC CELL (CLC)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 36. "Configurable Logic Cell" (DS60001363) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

FIGURE 18-1: CLCx MODULE

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flex-ibility and potential in embedded designs since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 18-1 shows an overview of the module. Figure 18-3 shows the details of the data source multiplexers and logic input gate connections.

20.1 CDAC Control Registers

TABLE 20-1: CDAC REGISTER MAP

ess		Ð		Bits							ø								
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	DAGAGON	31:16	—	—	-	—	_	—	—	-	—	—	—	DACDAT<4:0> 0.0			0000		
0980	DAC1CON	15:0	ON		—					DACOE		_		_	—	_	REFSE	L<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively.

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER (CONTINUED)

- bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits
 - 1111 = External analog input is used (input comes from the LVDIN pin and is compared with 1.2V band gap) 1110 = VDD trip point is $2.11V^{(1)}$
 - 1101 = VDD trip point is $2.21V^{(1)}$
 - 1100 = VDD trip point is 2.30V⁽¹⁾
 - 1011 = VDD trip point is 2.40V⁽¹⁾
 - 1010 = VDD trip point is $2.52V^{(1)}$
 - 1001 = VDD trip point is 2.63V⁽¹⁾
 - $1000 = \text{VDD trip point is } 2.82\text{V}^{(1)}$
 - 0111 = VDD trip point is $2.92V^{(1)}$
 - $0110 = VDD trip point is <math>3.13V^{(1)}$
 - 0101 = VDD trip point is $3.44V^{(1)}$
 - 0100-0000 = Reserved; do not use
- Note 1: The voltage is typical. It is for design guidance only and not tested. Refer to Table 26-13 in Section 26.0 "Electrical Characteristics" for minimum and maximum values.

22.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Modes" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

This section describes power-saving features for the PIC32MM0064GPL036 family devices. These devices offer various methods and modes that allow the application to balance power consumption with device performance. In all of the methods and modes described in this section, power saving is controlled by software. The peripherals and CPU can be halted or disabled to reduce power consumption.

22.1 Sleep Mode

In Sleep mode, the CPU and most peripherals are halted, and the associated clocks are disabled. Some peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep. The device enters Sleep mode when the SLPEN bit (OSCCON<4>) is set and a WAIT instruction is executed.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- If WDT is enabled, the Run mode counter is not cleared upon entry to Sleep and the Sleep mode counter is reset upon entering Sleep.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC and Timer1).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The on-chip regulator enters Standby mode if the VREGS bit (PWRCON<0>) is set.
- A separate special low-power, low-voltage/ retention regulator is activated if the RETVR Configuration bit (FPOR<2>) is programmed to zero and the RETEN bit (PWRCON<1>) is set.

The processor will exit, or "wake-up", from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset.
- On a WDT time-out.

If the interrupt priority is lower than, or equal to, the current priority, the CPU will remain halted, but the Peripheral Bus Clock (PBCLK) will start running and the device will enter into Idle mode. To set or clear the SLPEN bit, an unlock sequence must be executed. Refer to Section 23.4 "System Registers Write Protection" for details.

22.2 Idle Mode

In Idle mode, the CPU is halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than, or equal to, the current priority of the CPU, the CPU will remain halted and the device will remain in Idle mode.
- On any form of device Reset.
- On a WDT time-out interrupt.

To set or clear the SLPEN bit, an unlock sequence must be executed. Refer to **Section 23.4** "**System Registers Write Protection**" for details.

23.5 Band Gap Voltage Reference

PIC32MM0064GPL036 family devices have a precision voltage reference band gap circuit used by many modules. The analog buffers are implemented between the band gap circuit and these modules. The buffers are automatically enabled by the hardware if some part of the device needs the band gap reference. The stabilization time is required when the buffer is switched on. The software can enable these buffers in advance to allow the band gap voltage to stabilize before the module uses it. The ANCFG register contains bits to enable the band gap buffers for the comparators (VBGCMP bit) and ADC (VBGADC bit). Refer to Table 23-6 and Register 23-10 for more information.

23.6 Programming and Diagnostics

PIC32MM0064GPL036 family devices provide a complete range of programming and diagnostic features:

- Simplified Field Programmability using Two-Wire In-Circuit Serial Programming[™] (ICSP[™]) Interfaces
- Debugging using ICSP
- Programming and Debugging Capabilities using the EJTAG Extension of JTAG
- JTAG Boundary Scan Testing for Device and Board Diagnostics

23.7 Unique Device Identifier (UDID)

PIC32MM0064GPL036 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- · Unique serial number
- Unique security key

The UDID comprises five 32-bit program words. When taken together, these fields form a unique 160-bit identifier.

The UDID is stored in five read-only locations, located from 0xBFC41840 to 0xBFC41854 in the device configuration space. Table 23-7 lists the addresses of the Identifier Words.

23.8 Reserved Registers

PIC32MM0064GPL036 family devices have 3 reserved registers, located at 0xBF800400, 0xBF800480 and 0xBF802280. The application code must not modify these reserved locations. Table 23-8 lists the addresses of these reserved registers.

REGISTER 23-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 110 and 111 = Reserved (selects Fast RC (FRC) Oscillator with Divide-by-N)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Reserved
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Primary or FRC Oscillator with PLL
 - 000 = Fast RC (FRC) Oscillator with Divide-by-N

REGISTER 23-6: FSEC/AFSEC: CODE-PROTECT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/P	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	CP	_	_	_	_	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	—	_	—	_	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	—	_	—	_	—	—
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_		_		_	_	_

Legend:	r = Reserved bit	P = Programmable bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31 CP: Code Protection Enable bit

1 = Code protection is disabled

0 = Code protection is enabled

bit 30-0 Reserved: Program as '1'

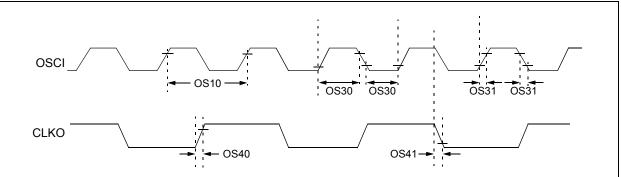
TABLE 23-6: BAND GAP REGISTER MAP

ess		e		Bits								s							
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2200	ANCFG ⁽¹⁾	31:16	_	—	_	—	—	—	—	—	_	—	—	—	_	-	_	_	0000
2300	ANCEG	15:0		_		—	_	_	_	_		—		—		VBGADC	VBGCMP		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions			
DC60	134	198	μA	-40°C					
	136	208	μA	+25°C	2.0V				
	141	217	μA	+85°C		Sleep with active main voltage regulator			
	139	209	μA	-40°C		- (VREGS (PWRCON<0>) = 1, RETEN (PWRCON<1>) =0)			
	141	217	μA	+25°C	3.3V				
	143	231	μA	+85°C					
DC61	4.3	11.7	μA	-40°C					
	5.1	15.6	μA	+25°C	2.0V	Sleep with main voltage regulator in			
	11.4	34.3	μA	+85°C		Standby mode			
	6.1	16.8	μA	-40°C		(VREGS (PWRCON<0>) = 0,			
	6.9	20.1	μA	+25°C	3.3V	RETEN (PWRCON<1>) = 0)			
	12.7	36.0	μA	+85°C					
DC62	2.3	—	μA	-40°C					
	2.7		μA	+25°C	2.0V	Sleep with enabled retention voltage			
	5.2		μA	+85°C		regulator (VREGS (PWRCON<0>) = 1,			
	2.3	—	μA	-40°C		RETEN (PWRCON<1>) = 1,			
	2.7	—	μA	+25°C	3.3V	RETVR(FPOR<2>)=0)			
	5.4	—	μA	+85°C					
DC63	0.28	—	μA	-40°C					
	0.44	—	μA	+25°C	2.0V	Sleep with enabled retention voltage			
	2.52		μA	+85°C		regulator (VREGS (PWRCON<0>) = 0,			
	0.29	_	μA	-40°C		RETEN (PWRCON<1>) = 1,			
	0.44	_	μA	+25°C	3.3V	RETVR(FPOR<2>)=0)			
	2.62		μA	+85°C					


TABLE 26-6: POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC2 is configured as I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

FIGURE 26-3: EXTERNAL CLOCK TIMING

TABLE 26-17: EXTERNAL CLOCK TIMING REQUIREMENTS

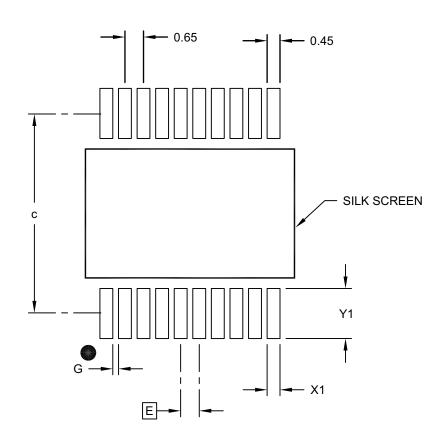
Operat	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
OS10	Fosc	External CLKI Frequency	DC 2		25 12.5	MHz MHz	EC ECPLL ⁽²⁾			
		Oscillator Frequency	3.5 3.5 10 10 31		10 10 25 25 50	MHz MHz MHz MHz kHz	XT XTPLL ⁽²⁾ HS HSPLL ⁽²⁾ SOSC			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc		0.55 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾		15	20	ns				
OS41	TckF	CLKO Fall Time ⁽³⁾		15	20	ns				

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: PLL dividers and postscalers must be configured so that the system clock frequency does not exceed the maximum operating frequency.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

TABLE 26-32: ADC ACCURACY AND CONVERSION TIMING REQUIREMENTS FOR 10-BIT MODE⁽¹⁾


g Conditions: ∖	DD = 3.3V, AVSS = VREFL = 0V, AVDD	= VREFH = 3.3	$3V$, $-40^{\circ}C \le TA \le -40^{\circ}$	+85°C				
Symbol	Characteristic	Min	Typ ⁽²⁾	Max	Units			
	ADC Accur	асу						
Nr	Resolution	_	10	_	bits			
INL	Integral Nonlinearity	_	±0.5	_	LSb			
DNL	Differential Nonlinearity	_	±0.5	_	LSb			
Gerr	Gain Error	_	+0.75	_	LSb			
EOFF	Offset Error	_	+0.25	_	LSb			
	Clock Param	eters						
TAD	ADC Clock Period	200	—	_	ns			
tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	Tad			
Conversion Rate								
tCONV	Conversion Time		12	_	Tad			
FCNV	Throughput Rate	_	—	300	ksps			
	Symbol Nr INL DNL GERR EOFF TAD tPSS	SymbolCharacteristicADC AccurNrResolutionINLIntegral NonlinearityDNLDifferential NonlinearityGERRGain ErrorEOFFOffset ErrorClock ParamTADADC Clock PeriodtPSSSample Start Delay from Setting Sample bit (SAMP)tCONVConversion Time	SymbolCharacteristicMinSymbolCharacteristicMinADC AccuracyNrResolution—INLIntegral Nonlinearity—DNLDifferential Nonlinearity—GERRGain Error—EOFFOffset Error—Clock ParametersTADADC Clock Period200tPSSSample Start Delay from Setting Sample bit (SAMP)2Conversion RatetconvConversion Time—	SymbolCharacteristicMinTyp(2)NrResolution—10INLIntegral Nonlinearity—±0.5DNLDifferential Nonlinearity—±0.5GERRGain Error—±0.5EOFFOffset Error—±0.75Clock ParametersTADADC Clock Period200—tPSSSample Start Delay from Setting Sample bit (SAMP)2—Conversion RatetCONVConversion Time—12	ADC AccuracyNrResolution—10—INLIntegral Nonlinearity—±0.5—DNLDifferential Nonlinearity—±0.5—GERRGain Error—+0.75—EOFFOffset Error—+0.25—Clock ParametersTADADC Clock Period200——tPSSSample Start Delay from Setting Sample bit (SAMP)2—3Conversion RatetCONVConversion Time—12—			

Note 1: Measurements are taken with the external VREF+ and VREF- used as the ADC voltage reference.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

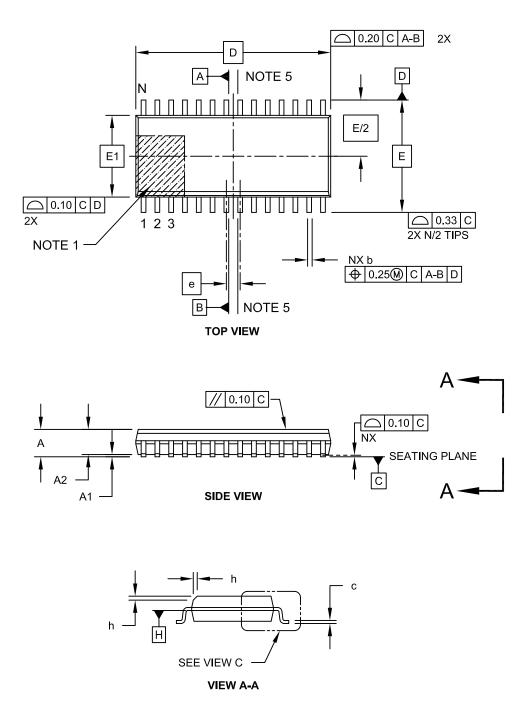
20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (February 2015)

This is the initial version of the document.

Revision B (May 2016)

This revision incorporates the following updates:

- Registers:
 - Updates Register 5-1, Register 5-3, Register 5-6, Register 5-7, Register 6-3, Register 6-4, Register 7-2, Register 8-2, Register 8-3, Register 8-5, Register 8-6, Register 11-1, Register 13-1, Register 14-1, Register 15-1, Register 15-5, Register 15-6, Register 16-1, Register 15-2, Register 15-6, Register 16-5, Register 16-2, Register 16-3, Register 16-5, Register 18-2, Register 19-1, Register 19-2 and Register 23-7
- · Tables:
 - Updates Table 1-1, Table 5-1, Table 6-1, Table 7-2, Table 7-3, Table 9-3, Table 9-7, Table 15-1, Table 16-1, Table 19-1, Table 22-1, Table 23-4, Table 23-5 Table 26-2, Table 26-3, Table 26-4 and Table 26-6 through Table 26-33
 - Adds Table 23-8
- · Figures:
 - Updates Figure 1-1, Figure 3-1, Figure 8-1, Figure 10-1, Figure 14-1, Figure 13-1, Figure 14-1, Figure 14-1, Figure 15-1, Figure 17-1, Figure 18-1, Figure 18-3, Figure 26-1, Figure 26-3, Figure 26-4, Figure 26-9, Figure 26-10, Figure 26-11 and Figure 26-12
- Updates pin function descriptions in Section 1.0 "Device Overview"
- Updates text in Section 9.6 "Input Change Notification (ICN)", Section 9.8.4 "Input Mapping", Section 23.7 "Unique Device Identifier (UDID)", Section 22.5 "Low-Power Brown-out Reset" and Section 27.0 "Packaging Information"
- Adds Section 5.1 "Flash Controller Registers Write Protection", Section 8.0 "Oscillator Configuration", Section 23.4 "System Registers Write Protection", reference to Section 22.1 "Sleep Mode", Section 22.2 "Idle Mode" and Section 23.8 "Reserved Registers"
- Updates the Absolute Maximum Ratings in Section 26.0 "Electrical Characteristics"

This revision also includes minor typographical and formatting changes throughout the data sheet text.

PRODUCT IDENTIFICATION SYSTEM

o order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.								
Family Key Feature Set _ Pin Count Tape and Reel Flag		Example: PIC32MM0064GPL036-I/M2: PIC32 General Purpose Device with MIPS32 [®] microAptiv™ UC Core, 64-Kbyte Program Memory, 36-Pin Package.						
Architecture	MM = MIPS32 [®] microAptiv™ UC CPU Core							
Flash Memory Size	0016 = 16 Kbytes 0032 = 32 Kbytes 0064 = 64 Kbytes							
Family	GP = General Purpose Family							
Key Feature	L = Up to 25 MHz operating frequency with basic peripheral set of 2 UART and 2 SPI modules							
Pin Count	020 = 20-pin 028 = 28-pin 036 = 36/40-pin							
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample							