

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpl028-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features

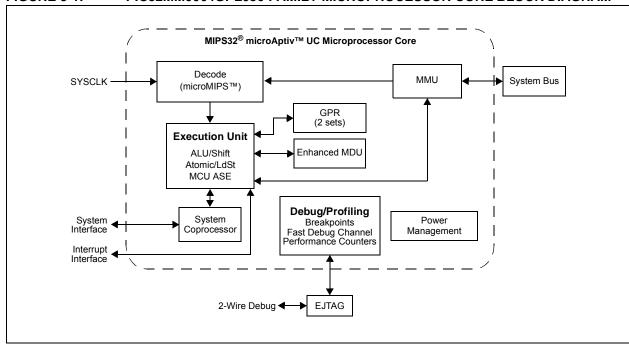
- Two Analog Comparators with Input Multiplexing
- Programmable High/Low-Voltage Detect (HLVD)
- 5-Bit DAC with Output Pin

- Up to 14-Channel, Software-Selectable 10/12-Bit SAR Analog-to-Digital Converter (ADC):
 - 12-bit, 200K samples/second conversion rate (single Sample-and-Hold)
 - 10-bit, 300K samples/second conversion rate (single Sample-and-Hold)
- Sleep mode operation
- Band gap reference input feature
- Windowed threshold compare feature
- Auto-scan feature
- Brown-out Reset (BOR)

		(bytes)	(Kbytes)	O/PPS	Maximum	Maximum				ppak hera		-	(Channels)					
Device	Pins	Program Memory (Kbytes)	Data Memory (Kb	General Purpose I/O/PPS	16-Bit Timers Max	PWM Outputs Max	UART ⁽¹⁾ /LIN/J2602	16-Bit Timers	MCCP ⁽³⁾	SCCP ⁽⁴⁾	СГС	SPI ⁽²⁾ /I ² S	10/12-Bit ADC (Cha	Comparators	CRC	RTCC	JTAG	Packages
PIC32MM0016GPL020	20	16	4	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0032GPL020	20	32	8	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0064GPL020	20	64	8	16/16	7	8	2	1	1	2	2	2	11	2	Yes	Yes	Yes	SSOP/QFN
PIC32MM0016GPL028	28	16	4	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SSOP/SOIC/ QFN/UQFN
PIC32MM0032GPL028	28	32	8	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SSOP/ SOIC/ QFN/UQFN
PIC32MM0064GPL028	28	64	8	22/19	7	8	2	1	1	2	2	2	12	2	Yes	Yes	Yes	SPDIP/SSOP/ SOIC/QFN/ UQFN
PIC32MM0016GPL036	36/40	16	4	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN
PIC32MM0032GPL036	36/40	32	8	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN
PIC32MM0064GPL036	36/40	64	8	29/20	7	8	2	1	1	2	2	2	14	2	Yes	Yes	Yes	VQFN/UQFN

TABLE 1: PIC32MM0064GPL036 FAMILY DEVICES

Note 1: UART1 has assigned pins. UART2 is remappable.


2: SPI1 has assigned pins. SPI2 is remappable.

3: MCCP can be configured as a PWM with up to 6 outputs, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

4: SCCP can be configured as a PWM with 1 output, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

NOTES:

PIC32MM0064GPL036 FAMILY

FIGURE 3-1: PIC32MM0064GPL036 FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
31:24				NVMKE	Y<31:24>				
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
23:16				NVMKE	Y<23:16>				
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
15:8				NVMKE	EY<15:8>				
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
7:0 NVMKEY<7:0>									

REGISTER 5-2: NVMKEY: NVM PROGRAMMING UNLOCK REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMKEY<31:0>: NVM Unlock Register bits

These bits are write-only and read as '0' on any read.

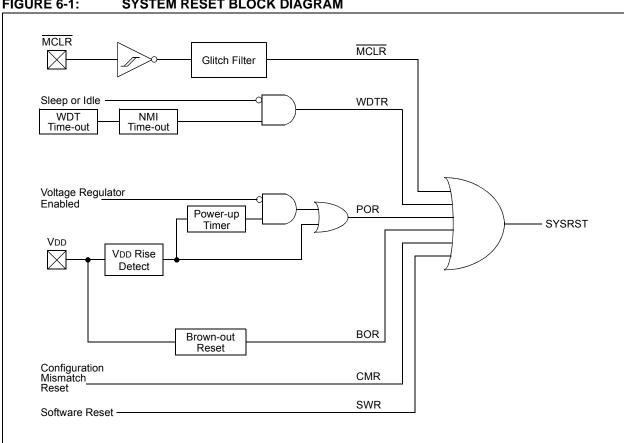
REGISTER 5-3: NVMADDR: NVM FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24				NVMAD	DR<31:24>							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16		NVMADDR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				NVMAD	DR<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	NVMADDR<7:0>											

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMADDR<31:0>: NVM Flash Address bits

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)
Page Erase	Address identifies the page to erase (NVMADDR<10:0> are ignored).
Row Program	Address identifies the row to program (NVMADDR<7:0> are ignored).
Double-Word Program	Address identifies the double-word (64-bit) to program (NVMADDR<1:0> bits are ignored).


6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- Master Clear Reset Pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

SYSTEM RESET BLOCK DIAGRAM FIGURE 6-1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
31:24	_	_		_	_		_	WDTR	
00.40	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	
23:16	SWNMI	_	_	_	GNMI	—	CF	WDTS	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				NMICN	NT<15:8>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	7:0 NMICNT<7:0>								

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER⁽¹⁾

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

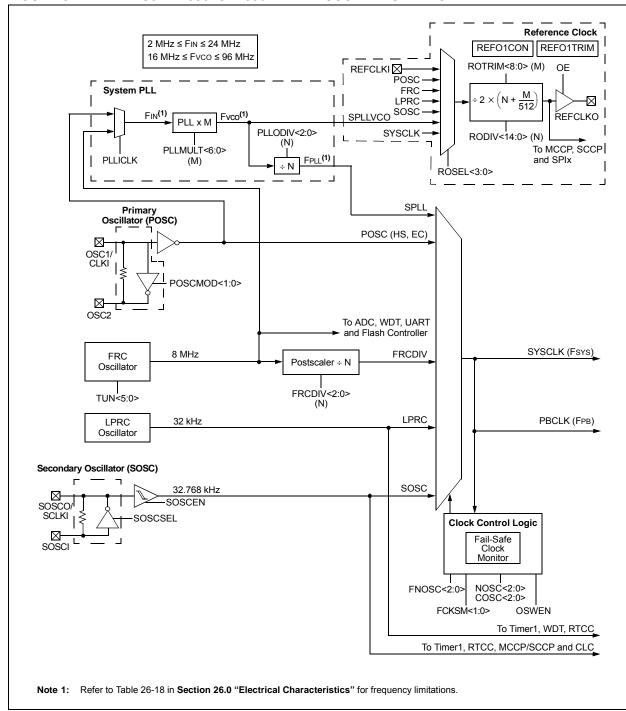
- bit 24 WDTR: Watchdog Timer Time-out in Run Mode Flag bit
 - 1 = A Run mode WDT time-out has occurred and caused an NMI
 - 0 = WDT time-out has not occurred
 - Setting this bit will cause a WDT NMI event and NMICNT<15:0> will begin counting.
- bit 23 SWNMI: Software NMI Trigger bit
 - 1 = An NMI has been generated
 - 0 = An NMI was not generated
- bit 22-20 Unimplemented: Read as '0'
- bit 19 **GNMI:** Software General NMI Trigger bit
 - 1 = A general NMI has been generated
 - 0 = A general NMI was not generated
- bit 18 Unimplemented: Read as '0'
- bit 17 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected clock failure and caused an NMI
 - 0 = FSCM has not detected clock failure
 - Setting this bit will cause a CF NMI event, but will not cause a clock switch to the FRC.
- bit 16 WDTS: Watchdog Timer Time-out in Sleep Mode Flag bit
 - 1 = WDT time-out has occurred during Sleep mode and caused a wake-up from Sleep
 0 = WDT time-out has not occurred during Sleep mode
 Setting this bit will cause a WDT NMI.

bit 15-0 NMICNT<15:0>: NMI Reset Counter Value bits

These bits specify the reload value used by the NMI Reset counter. FFFFh-0001h = Number of SYSCLK cycles before a device Reset occurs⁽²⁾ 0000h = No delay between NMI assertion and device Reset event

- Note 1: Writes to this register require an unlock sequence. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: If a Watchdog Timer NMI event (when not in Sleep mode) is cleared before this counter reaches '0', no device Reset is asserted. This NMI Reset counter is only applicable to the Watchdog Timer NMI event.

TABLE 7-3: INTERRUPT REGISTER MAP


ress ()	b a	Ð								Bit	3								S2
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	IN IT COLU	31:16	_	_	_	_	_	_	_	_	_				VS<6:0>			0000	
F000	INTCON	15:0		—	_	MVEC			TPC<2:0>	•	—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
5040	DDIOO	31:16		PRI7S	S<3:0>			PRI6SS	S<3:0>			PRI5S	S<3:0>			PRI4S	S<3:0>	•	0000
F010	PRISS	15:0		PRI3S	S<3:0>			PRI2S	6<3:0>			PRI1S	S<3:0>		_	_	_	SS0	0000
F020	INTSTAT	31:16	_	_	_	_	_	_	—	_	_	—	_	_	_	_	_	_	0000
F020	INTSTAT	15:0	_	_	_	_	_		SRIPL<2:0>					SIRQ<	7:0>				0000
F030	IPTMR	31:16		IPTMR<31:0>									0000						
		15:0							1		I				1				0000
F040	IFS0	31:16	CCP2IF	CCT1IF	CCP1IF	—		—	U1EIF	U1TXIF	U1RXIF	SPI1RXIF	SPI1TXIF	SPI1EIF	CLC2IF	CLC1IF	LVDIF	CRCIF	0000
		15:0	AD1IF	RTCCIF	CMP2IF	CMP1IF	T1IF	CNCIF ⁽²⁾	CNBIF	CNAIF	INT4IF	INT3IF	INT2IF	INT1IF	INTOIF	CS1IF	CS0IF	CTIF	0000
F050	IFS1	31:16	—	—	_	_	_	—	—	—	—	—	—		—	—	—	—	0000
		15:0	CPCIF	NVMIF	_	—	_	U2EIF	U2TXIF	U2RXIF	SPI2RXIF	SPI2TXIF	SPI2EIF	—	—	CCT3IF	CCP3IF	CCT2IF	0000
F0C0	IEC0	31:16	CCP2IE	CCT1IE	CCP1IE	—	—	—	U1EIE	U1TXIE	U1RXIE	SPI1RXIE	SPI1TXIE	SPI1EIE	CLC2IE	CLC1IE	LVDIE	CRCIE	0000
1000	IL00	15:0	AD1IE	RTCCIE	CMP2IE	CMP1IE	T1IE	CNCIE ⁽²⁾	CNBIE	CNAIE	INT4IE	INT3IE	INT2IE	INT1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
F0D0	IEC1	31:16	—	—	—	—	_	—	—	—	—	—	—	—	—	—	_	—	0000
1 020	ie01	15:0	CPCIE	NVMIE	—	—	—	U2EIE	U2TXIE	U2RXIE	SPI2RXIE	SPI2TXIE	SPI2EIE	—	—	CCT3IE	CCP3IE	CCT2IE	0000
F140	IPC0	31:16					INT0IP<2:0>	•	INTOIS	i<1:0>		_			CS1IP<2:0>		CS1IS	<1:0>	0000
1 1 10	1 00	15:0	_				CS0IP<2:0>		CS0IS	<1:0>		_	_		CTIP<2:0>		CTIS<	:1:0>	0000
F150	IPC1	31:16	_				INT4IP<2:0>	•	INT4IS	6<1:0>	_		_		INT3IP<2:0>	•	INT3IS	<1:0>	0000
1 100	101	15:0	—	—	—		INT2IP<2:0>	•	INT2IS	6<1:0>	—	—	—		INT1IP<2:0>		INT1IS	<1:0>	0000
F160	IPC2	31:16	—	—	—		T1IP<2:0>		T1IS<	<1:0>	—	—	—	C	NCIP<2:0>(2	2)	CNCIS<	:1:0> (2)	0000
1 100	11 02	15:0	—	—	—		CNBIP<2:0>	•	CNBIS	i<1:0>	—	—	—		CNAIP<2:0>		CNAIS	<1:0>	0000
F170	IPC3	31:16					AD1IP<2:0>		AD1IS	<1:0>		_		F	RTCCIP<2:0>	>	RTCCIS	S<1:0>	0000
1 170	1 00	15:0	—	—	—		CMP2IP<2:0	>	CMP2I	S<1:0>	—	—	—	(CMP1IP<2:0	>	CMP1IS	S<1:0>	0000
F180	IPC4	31:16	_				CLC2IP<2:0	>	CLC2IS	S<1:0>		_	_	(CLC1IP<2:0>	>	CLC1IS	5<1:0>	0000
1 100	11 04	15:0	—	—	—		LVDIP<2:0>		LVDIS	<1:0>	—	—	—		CRCIP<2:0>		CRCIS	<1:0>	0000
F190	IPC5	31:16	—	—	—		U1RXIP<2:0	>	U1RXI	S<1:0>	—	—	—	S	PI1RXIP<2:0)>	SPI1RXI	S<1:0>	0000
1 130	1 00	15:0	—	—	—		SPI1TXIP<2:0)>	SPI1TX	S<1:0>	—	—	—	5	SPI1EIP<2:0	>	SPI1EIS	6<1:0>	0000
F1A0	IPC6	31:16	—	—	_	_	-	—	_	—	—	—	—	_	—	—	_	—	0000
1 170	1 00	15:0	_	_	—		U1EIP<2:0>			<1:0>	—	—	—	U1TXIP<2:0>		U1TXIS	6<1:0>	0000	
F1B0	IPC7	31:16					CCP2IP<2:0	>	CCP28	S<1:0>	—	—	—	(CCT1IP<2:0>	>	CCT1IS	6<1:0>	0000
1 160	ii 0/	15:0	—	_	_		CCP1IP<2:0	>	CCP18	S<1:0>	—	—	—	_	—	—	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

2: These bits are not available on 20-pin devices.

PIC32MM0064GPL036 FAMILY

FIGURE 8-1: PIC32MM0064GPL036 FAMILY OSCILLATOR DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	—									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16				RODIV	<7:0>					
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC		
15:8	ON ⁽¹⁾	—	SIDL	OE	RSLP ⁽²⁾	—	DIVSWEN	ACTIVE ⁽¹⁾		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	—	_	—	ROSEL<3:0> ⁽³⁾					

REGISTER 8-3: REFO1CON: REFERENCE OSCILLATOR CONTROL REGISTER

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31 Unimplemented: Read as '0'
- bit 30-16 RODIV<14:0> Reference Clock Divider bits
 - The value selects the reference clock divider bits (see Figure 8-1 for details). A value of '0' selects no divider.
- bit 15 **ON:** Reference Oscillator Output Enable bit⁽¹⁾
 - 1 = Reference oscillator module is enabled 0 = Reference oscillator module is disabled
- bit 14 **Unimplemented:** Read as '0'
- bit 13 **SIDL:** Peripheral Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12 **OE:** Reference Clock Output Enable bit
 - 1 = Reference clock is driven out on the REFCLKO pin
 - 0 = Reference clock is not driven out on the REFCLKO pin
- bit 11 RSLP: Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference oscillator module output continues to run in Sleep
 - 0 = Reference oscillator module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 **DIVSWEN:** Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
 - ACTIVE: Reference Clock Request Status bit⁽¹⁾
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'

bit 8

- Note 1: Do not write to this register when the ON bit is not equal to the ACTIVE bit.
 - **2:** This bit is ignored when the ROSEL<3:0> bits = 0000.
 - 3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.

TABLE 9-7: PERIPHERAL PIN SELECT REGISTER MAP

ess	Register Name ⁽¹⁾	Bits																	
Virtual Address (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2480	RPCON	31:16 15:0	_		_	_	— IOLOCK			_		_	_					_	0000
24A0	RPINR1	31:16 15:0	_			_	_	_	_	_					_	— INT4R<4:0>		_	0000
24B0	RPINR2	31:16 15:0	_	_				I ICM2R<4:0>			_	_	_			ICM1R<4:0	>		0000
24C0	RPINR3	31:16	_	_	_						_	_	_	_			_	_	0000
24E0	RPINR5	15:0 31:16	_			—	(— DCFBR<4:0>	>	—			_			CM3R<4:0> DCFAR<4:0>			0000
24F0	RPINR6	15:0 31:16	_																0000
		15:0 31:16							CKIAR<4:0 J2RXR<4:0										
2520	RPINR9	15:0 31:16	_			_	_	_	_	_			_		—	— SS2INR<4:0	-	_	0000
2540	RPINR11	15:0	_		—		S	CK2INR<4:0)>		_	_	—			SDI2R<4:0>	>		0000
2550	RPINR12	31:16 15:0	_			_	- C	LCINBR<4:0)> 	_				—	- C	LCINAR<4:		_	0000
2590	RPOR0	31:16 15:0	_			_			<3:0>				_			RP3R RP1R			0000
25A0	RPOR1	31:16 15:0	_	_		_			R<3:0>				_			RP7R RP5R			0000
25B0	RPOR2	31:16 15:0	_			_					_			RP11F RP9R	<3:0>		0000		
25C0	RPOR3	31:16	_	_	_	RP10R<3:0> - RP16R<3:0>				_	_	_	_		RP15F	<3:0>		0000	
25D0	RPOR4	15:0 31:16	_			_ _										RP13F RP19F			0000
2020		15:0	_	—	—	—		RP18F	R<3:0>		—	—		—		RP17F	R<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 14-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits 11 = Reserved
	 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Data is being received
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to the empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	URXDA: LIARTy Receive Buffer Data Available bit (read-only)

- bit 0 URXDA: UARTx Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

REGISTER 15-1: RTCCON1: RTCC CONTROL 1 REGISTER (CONTINUED)

- bit 11 WRLOCK: RTCC Registers Write Lock bit⁽²⁾
 - 1 = Registers associated with accurate timekeeping are locked
 - 0 = Registers associated with accurate timekeeping may be written to by user
- bit 10-8 Unimplemented: Read as '0'
- bit 7 RTCOE: RTCC Output Enable bit

1 = RTCC clock output is enabled; signal selected by OUTSEL<2:0> is presented on the RTCC pin 0 = RTCC clock output is disabled

- bit 6-4 OUTSEL<2:0>: RTCC Signal Output Selection bits
 - 111 = Reserved
 - •••
 - 011 = Reserved
 - 010 = RTCC input clock source
 - 001 = Seconds clock
 - 000 = Alarm event
- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** The counter decrements on any alarm event. The counter is prevented from rolling over from '00' to 'FF' unless CHIME = 1.
 - 2: To clear this bit, an unlock sequence is required. Refer to Section 23.4 "System Registers Write Protection" for details.

REGISTER 18-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER (CONTINUED)

bit 20	G3D3N: Gate 3 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 3
	0 = The Data Source 3 inverted signal is disabled for Gate 3
bit 19	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 30 = The Data Source 2 signal is disabled for Gate 3
bit 18	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 3 0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 17	G3D1T: Gate 3 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 3 0 = The Data Source 1 signal is disabled for Gate 3
bit 16	G3D1N: Gate 3 Data Source 1 Negated Enable bit
510 10	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 20 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 2
	0 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 20 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 20 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 2
	0 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 20 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 2
	0 = The Data Source 1 signal is disabled for Gate 2
bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit
	 1 = The Data Source 1 inverted signal is enabled for Gate 2 0 = The Data Source 1 inverted signal is disabled for Gate 2
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 1
	0 = The Data Source 4 signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 10 = The Data Source 4 inverted signal is disabled for Gate 1
bit 5	G1D3T: Gate 1 Data Source 3 True Enable bit
	 1 = The Data Source 3 signal is enabled for Gate 1 0 = The Data Source 3 signal is disabled for Gate 1

22.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Modes" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

This section describes power-saving features for the PIC32MM0064GPL036 family devices. These devices offer various methods and modes that allow the application to balance power consumption with device performance. In all of the methods and modes described in this section, power saving is controlled by software. The peripherals and CPU can be halted or disabled to reduce power consumption.

22.1 Sleep Mode

In Sleep mode, the CPU and most peripherals are halted, and the associated clocks are disabled. Some peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep. The device enters Sleep mode when the SLPEN bit (OSCCON<4>) is set and a WAIT instruction is executed.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- If WDT is enabled, the Run mode counter is not cleared upon entry to Sleep and the Sleep mode counter is reset upon entering Sleep.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC and Timer1).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The on-chip regulator enters Standby mode if the VREGS bit (PWRCON<0>) is set.
- A separate special low-power, low-voltage/ retention regulator is activated if the RETVR Configuration bit (FPOR<2>) is programmed to zero and the RETEN bit (PWRCON<1>) is set.

The processor will exit, or "wake-up", from Sleep on one of the following events:

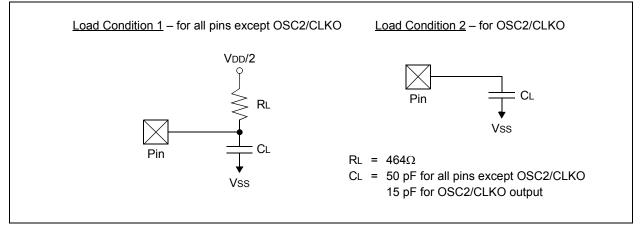
- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset.
- On a WDT time-out.

If the interrupt priority is lower than, or equal to, the current priority, the CPU will remain halted, but the Peripheral Bus Clock (PBCLK) will start running and the device will enter into Idle mode. To set or clear the SLPEN bit, an unlock sequence must be executed. Refer to Section 23.4 "System Registers Write Protection" for details.

22.2 Idle Mode

In Idle mode, the CPU is halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.


The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than, or equal to, the current priority of the CPU, the CPU will remain halted and the device will remain in Idle mode.
- On any form of device Reset.
- On a WDT time-out interrupt.

To set or clear the SLPEN bit, an unlock sequence must be executed. Refer to **Section 23.4** "**System Registers Write Protection**" for details.

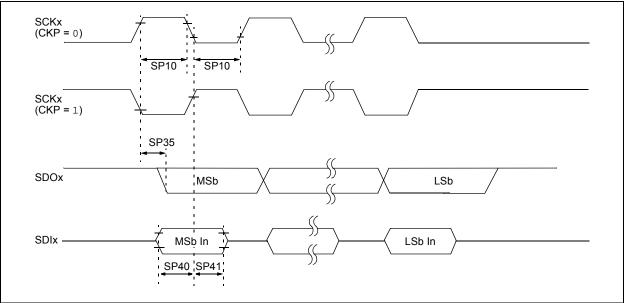
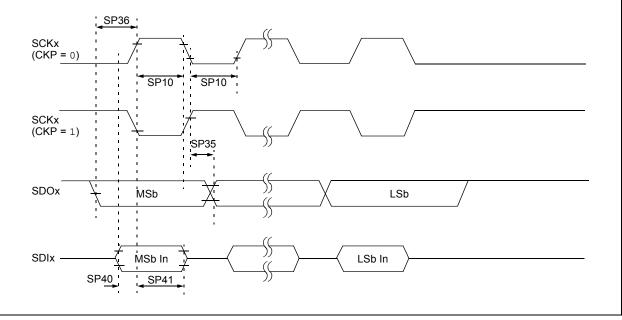
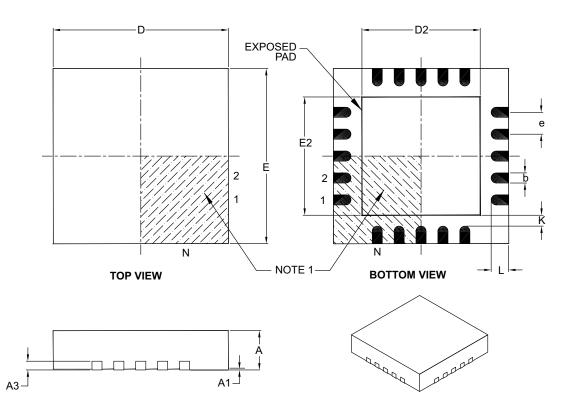

26.2 AC Characteristics and Timing Parameters

FIGURE 26-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


TABLE 26-16: CAPACITIVE LOADING CONDITIONS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
DO50	Cosco	OSC2/CLKO Pin	_	15	•	In XT and HS modes when external clock is used to drive OSC1/CLKI
DO56	Сю	All I/O Pins and OSC2	_	50	рF	EC mode


FIGURE 26-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

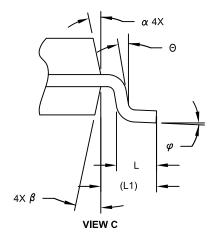
	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N	20				
Pitch	е	0.50 BSC				
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.60	2.70	2.80		
Overall Length	D		4.00 BSC			
Exposed Pad Length	D2	2.60	2.70	2.80		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

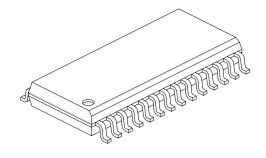
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

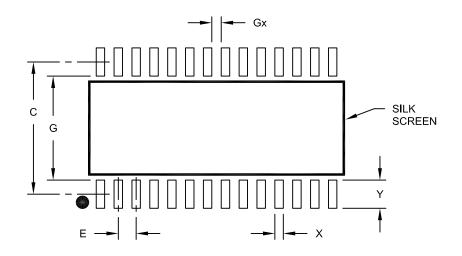

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5 Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

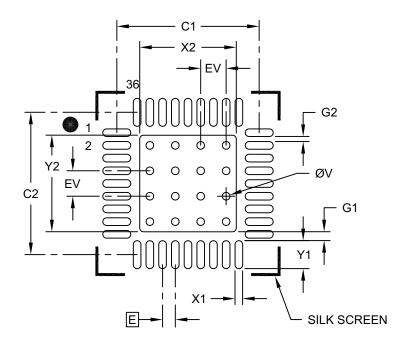
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	Dimension Limits			MAX		
Contact Pitch	E	1.27 BSC				
Contact Pad Spacing	С		9.40			
Contact Pad Width (X28)	X			0.60		
Contact Pad Length (X28)	Y			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

36-Terminal Very Thin Plastic Quad Flatpack No-Lead (M2) - 6x6x0.9 mm Body [VQFN] SMSC Legacy "Sawn Quad Flatpack No-Lead [SQFN]"

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimension	MIN	NOM	MAX			
Contact Pitch	Е	0.50 BSC				
Optional Center Pad Width	X2			3.80		
Optional Center Pad Length	Y2			3.80		
Contact Pad Spacing	C1		5.60			
Contact Pad Spacing	C2		5.60			
Contact Pad Width (X36)	X1			0.30		
Contact Pad Length (X36)	Y1			1.10		
Contact Pad to Center Pad (X36)	G1	0.35				
Space Between Contact Pads (X32)	G2	0.20				
Thermal Via Diameter	V		0.30			
Thermal Via Pitch	EV		1.00			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2272B-M2