

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpl028t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	R-1	R-0	R-0	R-1	R-0
	_	—	—	PC	WR	CA	EP	FP

REGISTER 3-2: CONFIG1: CONFIGURATION REGISTER 1; CP0 REGISTER 16, SELECT 1

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **Reserved:** This bit is hardwired to a '1' to indicate the presence of the CONFIG2 register

- bit 30-5 Unimplemented: Read as '0'
- bit 4 **PC:** Performance Counter bit
 - 1 = The processor core contains performance counters
- bit 3 WR: Watch Register Presence bit
- 0 = No Watch registers are present
- bit 2 CA: Code Compression Implemented bit
 - 0 = No MIPS16e[®] are present
- bit 1 EP: EJTAG Present bit
 - 1 = Core implements EJTAG
- bit 0 **FP:** Floating-Point Unit bit
 - 0 = Floating-Point Unit is not implemented

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	_	—	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1
7:0								NF

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CP0 REGISTER 16, SELECT 5

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 NF: Nested Fault bit

1 = Nested Fault feature is implemented

5.2 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		6		Bits									s						
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2380		31:16			—	—		—	_	_	—	—	—	—	—	_	—		0000
2300	NVINCON	15:0	WR	WREN	WRERR	LVDERR	_	—	—	_	—	—	—	—		NVMO	P<3:0>		0000
2300		31:16		NUMERIC 221:05									0000						
2390		15:0									1~31.02								0000
2240		31:16		0000								0000							
23AU	NVIVIADDR. 7	15:0								INVIVIADL	JR~31.02								0000
2380		31:16									A0~31·0>								0000
2300	NVINDATAO	15:0								NVINDAL	HU-31.02								0000
2300		31:16									A1~31·0>								0000
2300	NVINDAIAT	15:0								NVINDAL	AT-51.02								0000
2300		31:16							N										0000
2300	NVINGRCADDR	15:0							Ň	IVINISICOA	DDK~31.0								0000
2350		31:16	PWPULOCK	—	—	—	_	—	—	_				PWP<	23:16>				8000
23L0		15:0								PWP<	:15:0>								0000
2350		31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
2350	3F0 NVMBWP(") 15:0 BWPULOCK BWP<2:0>							_	8700										

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		ROTRIM<8:1>									
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	ROTRIM<0>	_	—	—	—	—	_	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	_	_	—	_	—	_	_			
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		_	_		_	_	_				

REGISTER 8-4: REFO1TRIM: REFERENCE OSCILLATOR TRIM REGISTER^(1,2,3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

- bit 22-0 Unimplemented: Read as '0'
- **Note 1:** While the ON bit (REFO1CON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.
 - Do not write to this register when the ON bit (REFO1CON<15>) is not equal to the ACTIVE bit (REFO1CON<8>).
 - 3: Specified values in this register do not take effect if RODIV<14:0> (REFO1CON<30:16>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1		
	OENSYNC	—	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN		
	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	ICGSN	1<1:0>	—	AUXOL	JT<1:0>	ICS<2:0>				
45.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0		
15:8	PWMRSEN	ASDGM	—	SSDG	—	—	—	—		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		ASDG<7:0>								

REGISTER 12-2: CCPxCON2: CAPTURE/COMPARE/PWMx CONTROL 2 REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **OENSYNC:** Output Enable Synchronization bit

- 1 = Update by output enable bits occurs on the next Time Base Reset or rollover
- 0 = Update by output enable bits occurs immediately
- bit 30 Unimplemented: Read as '0'
- bit 29-24 OC<F:A>EN: Output Enable/Steering Control bits⁽¹⁾
 - 1 = OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
 - 0 = OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin

bit 23-22 ICGSM<1:0>: Input Capture Gating Source Mode Control bits

- 11 = Reserved
- 10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
- 01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
- 00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events
- bit 21 Unimplemented: Read as '0'
- bit 20-19 AUXOUT<1:0>: Auxiliary Output Signal on Event Selection bits
 - 11 = Input capture or output compare event; no signal in Timer mode
 - 10 = Signal output depends on module operating mode
 - 01 = Time base rollover event (all modes)
 - 00 = Disabled
- bit 18-16 ICS<2:0>: Input Capture Source Select bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = CLC2 output
 - 100 = CLC1 output
 - 011 = Reserved
 - 010 = Comparator 2 output
 - 001 = Comparator 1 output
 - 000 = ICMx pin (remappable)
- bit 15 **PWMRSEN:** CCPx PWM Restart Enable bit
 - 1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended
 - 0 = ASEVT must be cleared in software to resume PWM activity on output pins
- Note 1: OCFEN through OCBEN (bits<29:25>) are implemented in MCCP modules only.

REGISTER 12-2: CCPxCON2: CAPTURE/COMPARE/PWMx CONTROL 2 REGISTER (CONTINUED)

- bit 14 ASDGM: CCPx Auto-Shutdown Gate Mode Enable bit
 - 1 = Waits until the next Time Base Reset or rollover for shutdown to occur
 - 0 = Shutdown event occurs immediately
- bit 13 Unimplemented: Read as '0'
- bit 12 SSDG: CCPx Software Shutdown/Gate Control bit
 - 1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting the ASDGM bit still applies)
 - 0 = Normal module operation
- bit 11-8 Unimplemented: Read as '0'
- bit 7-0 ASDG<7:0>: CCPx Auto-Shutdown/Gating Source Enable bits
 - 1xxx xxxx = Auto-shutdown is controlled by the OCFB pin (remappable)
 - x1xx xxxx = Auto-shutdown is controlled by the OCFA pin (remappable)
 - xx1x xxxx = Auto-shutdown is controlled by CLC1 for MCCP1/SCCP2 and by CLC2 for SCCP3
 - xxx1 xxxx = Auto-shutdown is controlled by the SCCP2 output for MCCP1 and by MCCP1 for SCCP2/SCCP3
 - xxxx 1xxx = Auto-shutdown is controlled by the SCCP3 output for MCCP1/SCCP2 and by SCCP2 for SCCP3
 - xxxx x1xx = Reserved
 - xxxx xx1x = Auto-shutdown is controlled by Comparator 2
 - xxxx xxx1 = Auto-shutdown is controlled by Comparator 1
- Note 1: OCFEN through OCBEN (bits<29:25>) are implemented in MCCP modules only.

PIC32MM0064GPL036 FAMILY

REGISTER 15-3: RTCSTAT: RTCC STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	—	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_			_		_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	—	—	_	_	—	_
7.0	U-0	U-0	R-0, HS, HC	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	_	_	ALMEVT		_	SYNC	ALMSYNC	HALFSEC

Legend:	HC = Hardware Clearable bit	bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-6 Unimplemented: Read as '0'

bit 5 ALMEVT: Alarm Event bit

- 1 = An alarm event has occurred
- 0 = An alarm event has not occurred

bit 4-3 Unimplemented: Read as '0'

- bit 2 SYNC: Synchronization Status bit
 - 1 = Time registers may change during software read
 - 0 = Time registers may be read safely

bit 1 ALMSYNC: Alarm Synchronization status bit

- 1 = Alarm registers (ALMTIME and ALMDATE) and RTCCON1 should not be modified; the ALRMEN and ALMRPT<7:0> bits may change during software read
- 0 = Alarm registers and Alarm Control registers may be modified safely

bit 0 HALFSEC: Half Second Status bit

- 1 = Second half of 1-second period
- 0 = First half of 1-second period

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		HRTEN<2:0>		HRONE<3:0>			
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	—		MINTEN<2:0>	>	MINONE<3:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		SECTE	EN<3:0>		SECONE<3:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	—	_		—		_	

REGISTER 15-4: RTCTIME/ALMTIME: RTCC/ALARM TIME REGISTERS

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

- bit 30-28 **HRTEN<2:0>:** Binary Coded Decimal Value of Hours 10-Digit bits Contains a value from 0 to 2.
- bit 27-24 **HRONE<3:0>:** Binary Coded Decimal Value of Hours 1-Digit bits Contains a value from 0 to 9.
- bit 23 Unimplemented: Read as '0'
- bit 22-20 **MINTEN<2:0>:** Binary Coded Decimal Value of Minutes 10-Digit bits Contains a value from 0 to 5.
- bit 19-16 **MINONE<3:0>:** Binary Coded Decimal Value of Minutes 1-Digit bits Contains a value from 0 to 9.
- bit 15-12 **SECTEN<3:0>:** Binary Coded Decimal Value of Seconds 10-Digit bits Contains a value from 0 to 5.
- bit 11-8 **SECONE<3:0>:** Binary Coded Decimal Value of Seconds 1-Digit bits Contains a value from 0 to 9.
- bit 7-0 Unimplemented: Read as '0'

REGISTER 18-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER (CONTINUED)

bit 20	G3D3N: Gate 3 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 3
	0 = The Data Source 3 inverted signal is disabled for Gate 3
bit 19	G3D2T: Gate 3 Data Source 2 True Enable bit
	 1 = The Data Source 2 signal is enabled for Gate 3 0 = The Data Source 2 signal is disabled for Gate 3
bit 18	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 30 = The Data Source 2 inverted signal is disabled for Gate 3
bit 17	G3D1T: Gate 3 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 3 0 = The Data Source 1 signal is disabled for Gate 3
bit 16	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3 α = The Data Source 1 inverted signal is disabled for Gate 3
bit 15	G2DAT: Gate 2 Data Source 4 True Enable bit
bit 15	1 = The Data Source 4 signal is enabled for Gate 2
	0 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 2
hit 10	0 = The Data Source 4 Inverted signal is disabled for Gate 2
DIUIS	G2D31: Gale 2 Data Source 3 True Enabled for Gate 2
	0 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 20 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 2
	0 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 2
	0 = The Data Source 1 signal is disabled for Gate 2
bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 2
L · · · - 7	0 = The Data Source 1 inverted signal is disabled for Gate 2
DIT 7	G1D41: Gate 1 Data Source 4 True Enable bit
	0 = The Data Source 4 signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 1 α = The Data Source 4 inverted signal is dischool for Cote 1
1.1.F	
nit h	G1D3T: Gate 1 Data Source 3 True Enable bit
DIT 5	G1D3T: Gate 1 Data Source 3 True Enable bit 1 = The Data Source 3 signal is enabled for Gate 1

19.1 Comparator Control Registers

TABLE 19-1: COMPARATOR 1 AND 2 REGISTER MAP

ess		n		Bits												s			
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CMOTAT	31:16	_	_	—	—	_	_	_	—	—	—	—	—	—	—	C2EVT	C1EVT	0000
0900	CIVISTAT	15:0		_	SIDL	_	_	_	_	CVREFSEL	_	_	_	_	_	_	C2OUT	C10UT	0000
0010		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0910	CIMICON	15:0	ON	COE	CPOL	—			CEVT	COUT	EVPO	L<1:0>	—	CREF			CCH	<1:0>	0000
0020	CM2CON	31:16	_			—				—	—	—	—				_	—	0000
0930 CM2CO	CIVIZCON	15:0	ON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	—	CREF	_	_	CCH	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

PIC32MM0064GPL036 FAMILY

REGISTER 19-2: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 AND 2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	-	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC
15:8	ON	COE	CPOL	—	—	—	CEVT	COUT
7.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	EVPO	L<1:0>	_	CREF	_		CCH<	<1:0>

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Enable bit
 - 1 = Comparator is enabled
 - 0 = Comparator is disabled

bit 14 COE: Comparator Output Enable bit

- 1 = Comparator output is present on the CxOUT pin
 - 0 = Comparator output is internal only
- bit 13 CPOL: Comparator Output Polarity Select bit
 - 1 = Comparator output is inverted
 - 0 = Comparator output is not inverted

bit 12-10 Unimplemented: Read as '0'

- bit 9 CEVT: Comparator Event bit
 - 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared
 - 0 = Comparator event has not occurred
- bit 8 **COUT:** Comparator Output bit

 $\frac{\text{When CPOL} = 0:}{1 = \text{VIN} + \text{VIN}-}$ 0 = VIN + VIN- $\frac{\text{When CPOL} = 1:}{1 = \text{VIN} + \text{VIN}-}$

0 = VIN + > VIN -

REGISTER 19-2: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 AND 2) (CONTINUED)

bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits

11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)10 = Trigger/event/interrupt is generated on transition of the comparator output:

If CPOL = 0 (non-inverted polarity):

High-to-low transition only. If CPOL = 1 (inverted polarity):

Low-to-high transition only.

01 = Trigger/event/interrupt is generated on transition of the comparator output:

If CPOL = 0 (non-inverted polarity):

Low-to-high transition only.

If CPOL = 1 (inverted polarity):

High-to-low transition only.

00 = Trigger/event/interrupt generation is disabled

- bit 5 **Unimplemented:** Read as '0'
- bit 4 CREF: Comparator Reference Select bit (non-inverting input)
 - 1 = Non-inverting input connects to the internal reference defined by the CVREFSEL bit in the CMSTAT register 0 = Non-inverting input connects to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the band gap reference voltage
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin

NOTES:

REGISTER 23-2: FICD/AFICD: ICD/DEBUG CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:10	—	—	—	—	—	—	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	—	—	—	—	—	_
7:0	r-1	r-1	r-1	R/P	R/P	R/P	r-1	r-1
	_	_	_	ICS<	<1:0>	JTAGEN	_	_

Legend:	r = Reserved bit	P = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 31-5 Reserved: Program as '1'

bit 4-3 ICS<1:0>: ICE/ICD Communication Channel Selection bits

11 = Communicates on PGEC1/PGED1

10 = Communicates on PGEC2/PGED2

01 = Communicates on PGEC3/PGED3

00 = Not connected

bit 2 JTAGEN: JTAG Enable bit

1 = JTAG is enabled

0 = JTAG is disabled

bit 1-0 Reserved: Program as '1'

TABLE 26-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating	Operating Conditions: $2.0V \le V_{DD} \le 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ (unless otherwise stated)									
Param No.	Symbol	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments			
DVR10	Vbg	Band Gap Reference Voltage	_	1.2	—	V				
DVR20	Vrgout	Regulator Output Voltage	-	1.8	-	V	Vdd > 1.9V			
DVR21	CEFC	External Filter Capacitor Value	4.7	10	—	μF	Series Resistance < 3Ω recommended; < 5Ω required			
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	0.9	—	1.2	V	RETEN = 1, RETVR (FPOR<2>) = 0			

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-13: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)										
Param No.	Symbol	Char	Characteristic				Units			
DC18	V _{HLVD} (1)	HLVD Voltage on VDD	HLVDL<3:0> = 0101	3.25		3.63	V			
Transitio	Transition	HLVDL<3:0> = 0110	2.95	—	3.30	V				
		HLVDL<3:0> = 0111	2.75	—	3.09	V				
			HLVDL<3:0> = 1000	2.65	—	2.98	V			
			HLVDL<3:0> = 1001	2.45	_	2.80	V			
		HLVDL<3:0> = 1010	2.35	—	2.69	V				
			HLVDL<3:0> = 1011	2.25	—	2.55	V			
			HLVDL<3:0> = 1100	2.15	_	2.44	V			
			HLVDL<3:0> = 1101	2.08	—	2.33	V			
			HLVDL<3:0> = 1110	2.00	_	2.22	V			
DC101	VTHL	HLVD Voltage on LVDIN Pin Transition	HLVDL<3:0> = 1111	—	1.2	—	V			

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0100', are not implemented.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

NOTES:

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	Dimension Limits			MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1		1.25 REF		
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ф	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.40 BSC		
Overall Height	Α	-	-	0.60	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.152 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	1.80	1.90	2.00	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	1.80	1.90	2.00	
Terminal Width	b	0.15	0.20	0.25	
Corner Anchor Pad	b1	0.40	0.45	0.50	
Corner Pad, Metal Free Zone	b2	0.18	0.23	0.28	
Terminal Length	L	0.30	0.45	0.50	
Terminal-to-Exposed-Pad	K	-	0.60	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-333-M6 Rev A Sheet 2 of 2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

NOTES: