

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025daa169-i-hf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This data sheet contains device-specific information for the PIC32MZ DA family of devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ DA family of devices.

Table 1-1 through Table 1-24 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 5 through Table 7).

2.6 Trace

The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.7.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_pin capacitance = 4 pF
- COUT = PIC32_OSC1_pin capacitance = 4 pF
- PCB stray capacitance (i.e., 12 mm length) = 2.5 pF
- C1 and C2 are the loading capacitors to use on your Crystal circuit design to guarantee that the effective capacitance as seen by the crystal in circuit meets the crystal manufacturer specification.

From the Crystal manufacturer CLOAD spec:

CLOAD = {([Cin + C1] * [COUT + C2]) / [Cin + C1 + C2 + COUT] } + oscillator PCB stray capacitance

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

Crystal manufacturer data sheet spec example: $CLOAD = 15 \ pF$ Therefore: $MFG \ CLOAD = \{(\ [CIN + CI] * [COUT + C2]) / [CIN + CI + C2 + COUT] \}$ $+ estimated oscillator \ PCB \ stray \ capacitance$ Assuming CI = C2 and PIC32 Cin = Cout, the formula can be further simplified and restated to solve for CI and C2 by: $CI = C2 = ((2 * MFG \ Cload \ spec) - Cin - (2 * PCB \ capacitance))$ $= ((2 * 15) - 4 - (2 * 2.5 \ pF))$

- = (30 4 5)
- $= 21 \, pF$

Therefore:

 $C1 = C2 = 21 \, pF$ is the correct loading capacitors to use on your crystal circuit design to guarantee that the effective capacitance as seen by the crystal in circuit in this example is 15 pF to meet the crystal manufacturer specification.

2.7.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro® Oscillator Design"

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	—	_	—	—	—	—
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8	LBWPULOCK		—	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾
7:0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0	UBWPULOCK		_	UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾

REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Legend:		r = Reserved	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
	1 = LBWPx bits are not locked and can be modified
	0 = LBWPx bits are locked and cannot be modified
	This bit is only clearable and cannot be set except by any reset.
bit 14-13	Unimplemented: Read as '0'
bit 12	LBWP4: Lower Boot Alias Page 4 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled 0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
bit 11	LBWP3: Lower Boot Alias Page 3 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled 0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
bit 10	LBWP2: Lower Boot Alias Page 2 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled 0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
bit 9	LBWP1: Lower Boot Alias Page 1 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled 0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
bit 8	LBWP0: Lower Boot Alias Page 0 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled 0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
bit 7	UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
	 1 = UBWPx bits are not locked and can be modified 0 = UBWPx bits are locked and cannot be modified This bit is only user-clearable and cannot be set except by any reset.
bit 6	Reserved: This bit is reserved for use by development tools
bit 5	Unimplemented: Read as '0'
Note 1:	These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_	_	_		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—	—	—	_	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	SWAPLOCK	(<1:0> (1)	_	_		_	—	—

REGISTER 5-8: NVMCON2: PROGRAMMING CONTROL REGISTER 2

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-6 **SWAPLOCK<1:0>:** Program Flash Memory Page Write-protect Unlock bits⁽¹⁾

11 = PFSWAP and BFSWP in the NVMCON register are Not Writable and SWAPLOCK<1:0> is Not Writable

10 = PFSWAP and BFSWP in the NVMCON register are Not Writable and SWAPLOCK<1:0> is Writable

01 = PFSWAP and BFSWP in the NVMCON register are Not Writable and SWAPLOCK<1:0> is Writable

00 = PFSWAP and BFSWP in the NVMCON register are Writable and SWAPLOCK<1:0> is Writable

bit 5-0 Unimplemented: Read as '0'

Note 1: These bits can only be modified when the NVMKEY unlock sequence is satisfied and the SWAPLOCK<1:0> bits ≠ 11. If the SWAPLOCK<1:0> bits == 11, only a Reset can clear these bits.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

							-				Bits								
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	USB	31:16		DMAADDR<31:16> 0000															
3248	DMA5A	15:0								DMA	ADDR<15:0	`							0000
2240	USB	31:16								DMAG	COUNT<31:10	3>							0000
3240	DMA5N	15:0								DMA	COUNT<15:0	>							0000
3254	USB	31:16			—		_	-	-	—		-	-	-	_	—			0000
5254	DMA6C	15:0	—	-	-	—	—	DMABRS	STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3258	USB	31:16		DMAADDR<31:16> 0000															
0200	DMA6A	15:0								DMA	ADDR<15:0	`							0000
325C	USB	31:16		DMACOUNT<31:16> 0000								0000							
	DMA6N	15:0			-					DMA	COUNT<15:0	>							0000
3264	USB	31:16	_	_	_	_	_	—	—	—	_	-	-	-	_	—	—	—	0000
	DMATC	15:0	_	DMABRSTM<1:0> DMAER DMAEP<3:0> DMAIE DMAMODE DMADR DMADN 0000															
3268	USB	31:16		DMAADDR<31:16> 0000															
	DIMATA	15:0		DMAADDR<15:0> 0000															
326C	USB DMA7N	31:16								DIMA		>							0000
		15.0								DIVIA	COONT<15.0	>							0000
3274	DMA8C	15.0											======================================		DMAIE				0000
	LICD	31.16						DIMADING	5110131.04	DMALINI	ADDR<31.16	>	LI 30.04		DIVIAIL	DWAWODE	DINADIR	DIVIALIN	0000
3278	DMA8A	15:0								DMA	ADDR<15:0	•							0000
	LISB	31:16								DMAG	COUNT<31:10	}>							0000
327C	DMA8N	15:0								DMA	COUNT<15:0	>							0000
	USB	31:16	_	_	—	—	_	_	_	—	_	_	_	_		—	—	_	0000
3304	E1RPC	15:0								RQP	KTCNT<15:0	>							0000
2200	USB	31:16	—	—	—	—	—	_	_	_	_	_	—	-	—	—	—	—	0000
3306	E2RPC	15:0								RQP	KTCNT<15:0	>							0000
3300	USB	31:16	-		_		_	-		_		1	-	-	—	—	-	-	0000
5500	E3RPC	15:0	RQPKTCNT<15:0> 00								0000								
3310	USB	31:16	j							0000									
5010	E4RPC	15:0	0 RQPKTCNT<15:0>								0000								
3314	USB	3B 31:16							-	0000									
	E2KPC	15:0	0 RQPKTCNT<15:0>								0000								
3318	USB									0000									
	EORPC	15:0								RQP	KTCNT<15:0	>							0000
331C	USB F7RPC	31:16	_																
Ļ		15:0	KUPKIUNI<15:0> 0000																

Note

1: 2: 3: 4: Device mode.

Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	
31.24				VPLE	N<7:0>				
22:16	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	
23.10		WTCO	N<3:0>		WTID<3:0>				
15.0	R-1	R-0	R-0	R-0	R-1	R-1	R-0	R-0	
15.0		DMACHA	NS<3:0>		RAMBITS<3:0>				
7.0	R-0	R-1	R-1	R-1	R-0	R-1	R-1	R-1	
7:0		RXENDF	PTS<3:0>		TXENDPTS<3:0>				

REGISTER 11-16: USBINFO: USB INFORMATION REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 VPLEN<7:0>: VBUS pulsing charge length bits Sets the duration of the VBUS pulsing charge in units of 546.1 µs. (The default setting corresponds to 32.77 ms.)

- bit 23-20 WTCON<3:0>: Connect/Disconnect filter control bits Sets the wait to be applied to allow for the connect/disconnect filter in units of 533.3 ns. The default setting corresponds to 2.667 µs.
- bit 19-6 WTID<3:0>: ID delay valid control bits Sets the delay to be applied from IDPULLUP being asserted to IDDIG being considered valid in units of 4.369ms. The default setting corresponds to 52.43ms.
- bit 15-12 DMACHANS<3:0>: DMA Channels bits These read-only bits provide the number of DMA channels in the USB module. For the PIC32MZ DA family, this number is 8.

bit 11-8 RAMBITS<3:0>: RAM address bus width bits These read-only bits provide the width of the RAM address bus. For the PIC32MZ DA family, this number is 12.

bit 7-4 RXENDPTS<3:0>: Included RX Endpoints bits

> This read-only register gives the number of RX endpoints in the design. For the PIC32MZ DA family, this number is 7.

bit 3-0 TXENDPTS<3:0>: Included TX Endpoints bits

These read-only bits provide the number of TX endpoints in the design. For the PIC32MZ DA family, this number is 7.

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

ess									•	В	its								
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0010		31:16	—	—	—	_	_	—	—		_	_	—	_		—	—	—	0000
0010	T IVITY/	15:0								TMR3	<15:0>								0000
0020	DD7	31:16	_	—	_	—	—	—	_	—	—	_	—	_	_	_	—	—	0000
0020		15:0		PR3<15:0> FFF									FFFF						
0500		31:16	_	—	_	_	_	-	_		_		—	_		-	_	_	0000
	10001	15:0	ON	—	SIDL	—	—	—	—	—	TGATE		TCKPS<2:0>	>	T32	—	TCS	—	0000
0510		31:16	—	—	_	_	_	—	_	—	—	—	—	_	—	—	_	_	0000
UEIU	TIVIRO	15:0								TMR4	<15:0>								0000
0520	DDg	31:16	_	_	_	_	_	_	_		_		_	_		_	_	_	0000
0620	FRO	15:0								PR4<	:15:0>								FFFF
1000	TOCON	31:16	—	-	—	—	_	—	—	-	_	-	—	—	-	—	—	—	0000
1000	19001	15:0	ON	—	SIDL	—	—	—	_	—	TGATE		TCKPS<2:0>	>	—	—	TCS	_	0000
1010		31:16	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
1010	TWR9	15:0		TMR5<15:0> 0000									0000						
1020	DDO	31:16		—	_	_		—	—	—	—	—	—	_	—	—	—		0000
1020	PR9	15:0		PR5<15:0> FFFF															

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MZ Graphics (DA) Family

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFGCON register. The available configurations are shown in Table 16-1.

TABLE 16-1:	TIMER SOURCE
	CONFIGURATIONS

Output Compare Module	Timerx	Timery						
OCACLK (CFGC	ON<16>) = 0							
OC1	Timer2	Timer3						
•	•	•						
•	•	•						
•	•	•						
OC9	Timer 2	Timer 3						
OCACLK (CFGCON<16>) = 1								
OC1	Timer4	Timer5						
OC2	Timer4	Timer5						
OC3	Timer4	Timer5						
OC4	Timer2	Timer3						
OC5	Timer2	Timer3						
OC6	Timer2	Timer3						
OC7	Timer6	Timer7						
OC8	Timer6	Timer7						
OC9	Timer6	Timer7						

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0		U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
00.40	R/W-0	R-0, HS, HC	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23.10	SLPEN	ACTIVE	—	—	—	CLKSE	L<1:0>	RUNOVF
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	_	UEN<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 24-1: UXMODE: UARTX MODE REGISTER

Legend:	HS = Hardware set	HC = Hardware cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

- bit 23 SLPEN: Run During Sleep Enable bit
 - 1 = UARTx BRG clock runs during Sleep mode
 - 0 = UARTx BRG clock is turned off during Sleep mode
 - **Note:** SLPEN = 1 only applies if CLKSEL = FRC. All clocks, as well as the UART, are disabled in Deep Sleep mode.
- bit 22 ACTIVE: UARTx Module Running Status bit
 - 1 = UARTx module is active (UxMODE register should not be updated)
 - 0 = UARTx module is not active (UxMODE register can be updated)

bit 21-19 Unimplemented: Read as '0'

- bit 18-17 CLKSEL<1:0>: UARTx Module Clock Selection bits
 - 11 = BRG clock is PBCLK2
 - 10 = BRG clock is FRC
 - 01 = BRG clock is SYSCLK (turned off in Sleep mode)
 - 00 = BRG clock is PBCLK2 (turned off in Sleep mode)

bit 16 **RUNOVF:** Run During Overflow Condition Mode bit

- 1 = When an Overflow Error (OERR) condition is detected, the shift register continues to run to remain synchronized
- When an Overflow Error (OERR) condition is detected, the shift register stops accepting new data (Legacy mode)

bit 15 **ON:** UARTx Enable bit

- 1 = UARTx module is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
- UARTx module is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx, and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	BGVRRDY	REFFLT	EOSRDY	0	><9:8>								
22:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:10	SAMC<7:0>												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
10.0	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	—	A	DCEIS<2:0	>					
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	_			AD	CDIV<6:0>								

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2

Legend:	HC = Hardware Set	HS = Hardware Cleared r	= Reserved
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	κ = Bit is unknown

bit 31 BGVRRDY: Band Gap Voltage/ADC Reference Voltage Status bit
1 = Both band gap voltage and ADC reference voltages (VREF) are ready
0 = Either or both band gap voltage and ADC reference voltages (VREF) are not ready
Data processing is valid only after BGVRRDY is set by hardware, so the application code must check that the BGVRRDY bit is set to ensure data validity. This bit set to '0' when ON (ADCCON1<15>) = 0.
bit 30 REFFLT: Band Gap/VREF/AVDD BOR Fault Status bit
1 = Fault in band gap or the VREF voltage while the ON bit (ADCCON1<15>) was set. Most likely a band

- gap or VREF fault will be caused by a BOR of the analog VDDIO supply.
- 0 = Band gap and VREF voltage are working properly

This bit is cleared when the ON bit (ADCCON1<15>) = 0 and the BGVRRDY bit = 1.

- bit 29 EOSRDY: End of Scan Interrupt Status bit
 - 1 = All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the ADCCSS1 and ADCCSS2 registers) have completed scanning
 - 0 = Scanning has not completed

This bit is cleared when ADCCON2<31:24> are read in software.

bit 28-26 CVDCPL<2:0>: Capacitor Voltage Divider (CVD) Setting bit

111 = 7 * 2.5 pF = 17.5 pF 110 = 6 * 2.5 pF = 15 pF 101 = 5 * 2.5 pF = 12.5 pF 100 = 4 * 2.5 pF = 10 pF 011 = 3 * 2.5 pF = 7.5 pF 010 = 2 * 2.5 pF = 5 pF

- 001 = 1 * 2.5 pF = 2.5 pF 000 = 0 * 2.5 pF = 0 pF

REGISTER 29-16: ADCFLTRX: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

- bit 24 **AFRDY:** Digital Filter '*x*' Data Ready Status bit
 - 1 = Data is ready in the FLTRDATA<15:0> bits
 - 0 = Data is not ready
 - **Note:** This bit is cleared by reading the FLTRDATA<15:0> bits or by disabling the Digital Filter module (by setting AFEN to '0').
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 CHNLID<4:0>: Digital Filter Analog Input Selection bits

These bits specify the analog input to be used as the oversampling filter data source.

```
11111 = Reserved

.

01100 = Reserved

01011 = AN11

.

00001 = AN1

00000 = AN0
```

- **Note:** Only the first 12 analog inputs, Class 1 (AN0-AN11) and Class 2 (AN5-AN11), can use a digital filter.
- bit 15-0 **FLTRDATA<15:0>:** Digital Filter '*x*' Data Output Value bits

The filter output data is as per the fractional format set in the FRACT bit (ADCCON1<23>). The FRACT bit should not be changed while the filter is enabled. Changing the state of the FRACT bit after the operation of the filter ended will not update the value of the FLTRDATA<15:0> bits to reflect the new format.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	_	—			
00-40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	—	—	—	—	—	—	-	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ADCBASE<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				ADCBAS	SE<7:0>						

REGISTER 29-24: ADCBASE: ADC BASE REGISTER

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 Unimplemented: Read as '0'

bit 15-0 ADCBASE<15:0>: ADC ISR Base Address bits

This register, when read, contains the base address of the user's ADC ISR jump table. The interrupt vector address is determined by the IRQVS<2:0> bits of the ADCCON1 register specifying the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + $x \le IRQVS \le 2:0$, where 'x' is the smallest active analog input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	_	—
22:40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	_	—
15.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	_	—	—	—	LVL11	LVL10	LVL9	LVL8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LVL7	LVL6	LVL5	LVL4	LVL3	LVL2	LVL1	LVL0

REGISTER 29-26: ADCTRGSNS: ADC TRIGGER LEVEL/EDGE SENSITIVITY REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-0 LVL11:LVL0: Trigger Level and Edge Sensitivity bits

1 = Analog input is sensitive to the high level of its trigger (level sensitivity implies retriggering as long as the trigger signal remains high)

0 = Analog input is sensitive to the positive edge of its trigger (this is the value after a reset)

Note 1: This register specifies the trigger level for analog inputs 0 to 11.

2: The higher analog input ID belongs to Class 3, and therefore, is only scan triggered. All Class 3 analog inputs use the Scan Trigger, for which the level/edge is defined by the STRGLVL bit (ADCCON1<3>).

REGISTER 29-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 5-6 Unimplemented: Read as '0'

bit 7

- bit 4-0 **ANEN4: ANEN0:** ADC4-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

|--|

ess										Bit	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1100		31:16	FLTEN19	MSEL1	19<1:0>			FSEL19<4:0)>		FLTEN18	MSEL	18<1:0>				>		0000
1100	C2FLICON4	15:0	FLTEN17	MSEL1	17<1:0>	<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0:												0000	
1110		31:16	FLTEN23	MSEL2	23<1:0>	FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0>												0000	
1110	C2FLICON5	15:0	FLTEN21	MSEL2	.21<1:0> FSEL21<4:0> FLTEN20 MSEL20<1:0> FSEL20<4:0>												0000		
1120		31:16	FLTEN27	MSEL2	27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0>												0000		
1120	C2FLICON6	15:0	FLTEN25	MSEL2	SEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0>											0000			
1120		31:16	FLTEN31	MSEL3	ISEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0>											0000			
1130	CZFLICON/	15:0	FLTEN29	MSEL2	MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0>											0000			
1140-	C2RXFn	31:16						SID<10:0>						_	EXID	—	EID<	17:16>	xxxx
1330	(n = 0-31)	15:0			EID<15:0>											xxxx			
1340	C2EIEOBA	31:16								C2EIEOB	A<31.0>								0000
1010	02111 02/1	15:0		•	•			-		02111 000		•							0000
1350	C2FIFOCONn	31:16	—	—	—	—	—	_	—	—	—	—	—			FSIZE<4:0>			0000
	(n = 0)	15:0		FRESET	UINC	DONLY	—	—	—	_	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPR	<1:0>	0000
1360	C2FIFOINTn	31:16	—	-	-	—	—	TXNFULLIE	TXHALFIE	TXEMPTYIE	—	-	-	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
1000	(n = 0)	15:0	—	—	_	—	—	TXNFULLIF	TXHALFIF	TXEMPTYIF	—	_	_	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
1370	C2FIFOUAn	31:16								C2EIEOU	∆<31·0>								0000
1070	(n = 0)	15:0								02111 000	A -01.04								0000
1380	C2FIFOCIn	31:16	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	0000
	(n = 0)	15:0	—	—	—	—	—	_	—	—	—	—	—		C	2FIFOCI<4:	0>		0000
		31:16	—	—	—	—	—	—	—	—	—	—	—			FSIZE<4:0>	•		0000
		15:0		FRESET	UINC	DONLY	—	—	—	_	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPR	<1:0>	0000
	C2FIFOCONn	31:16	—	—	—	—	—	TXNFULLIE	TXHALFIE	TXEMPTYIE	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
1390- 1B40	C2FIFOINTn C2FIFOUAn	15:0	_	—	—	—	—	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	—	_	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
	(n = 1-31)	31:16								C2EIEOU	∆<31·0>								0000
		15:0								02111 00	A-01.02								0000
		31:16	—	-	-	—	—	-	-	—	—	-	—	_	—	—	—	—	0000
		15:0	—	-	-	_	—	—	-	—	—	-	- 1		C	2FIFOCI<4:	0>		0000

Legend: Note 1:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 31-3: ETHERNET CONTROLLER REGISTER SUMMARY (CONTINUED)

ess										В	its								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2110	ETH	31:16	_	_	—	—	_	—	_	—	-	—	—	-	—	_	_	_	0000
	FRMIXOK	15:0								FRMTXOK	CNT<15:0>								0000
2120	ETH SCOLERM	31:16	—	_	—	—	—	—	—	-	-	—	—	—	—	—	—	—	0000
		15:0								SCOLFRIM	CN1<15:0>								0000
2130	ETH MCOLFRM	15.0	_	-	_	-	-		_	MCOLERN		-	_	_	_	_	_	_	0000
	сти	31:16	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	0000
2140	FRMRXOK	15:0								FRMRXOK	CNT<15:0>								0000
0450	ETH	31:16	—	_	—	_	_	—	—	—	—	_	—	—	—	_	—	—	0000
2150	FCSERR	15:0								FCSERR	CNT<15:0>								0000
2160	ETH	31:16	_		_	_	_		_		_	_				_	-	_	0000
2100	ALGNERR	15:0			-					ALGNERR	CNT<15:0>					-	-		0000
	EMAC1	31:16	—	-	—	—	—	—	—	—	—	—	_	_	_	—	—	—	0000
2200	CFG1	15:0	SOFT RESET	SIM RESET	—	_	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	—	_	_	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE	800D
	EMAC1	31:16	-	_	—	_	_	_	_	_	—	—	_	_	_	—	_	—	0000
2210	CFG2	15:0	-	EXCESS DFR	BP NOBKOFF	NOBKOFF	-	_	LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX	4082
2220	EMAC1	31:16	—	_	_	—	_	_	—	_	_	—	_	_	_	—	_	—	0000
2220	IPGT	15:0	—	_	—	_	—	—	—	—	—			B2	BIPKTGP<6	:0>			0012
2230	EMAC1	31:16	-	_	—	—	—	_	_	_	_	_	-	_	-	—	_	—	0000
	IPGR	15:0	-			NB2	BIPKTGP1<	6:0>			_			NB2	2BIPKTGP2<	6:0>			0C12
2240	EMAC1	31:16	-	_	_	_	-	—	_	_	_	_	_	_	_	_	_	—	0000
	GLRT	15:0	-				CWINDC)W<5:0>			_	-				RET	<<3:0>		370F
2250	EMAC1 MAXE	31:16	_	_	_	_	_	_	_	— MACMA	— VE<15:0>	_	_	_	_	_	_	_	0000
		31.16								IVIACIVIA	AF<15.02								ODEE
2260	EMAC1 SUPP	15:0	_		_		RESET		_	SPEED	_					_	_	_	1000
	511101	31.16																	0000
2270	EMAC1 TEST	15.0	_													TESTRP	TESTPALISE	SHRTONTA	0000
	-	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	0000
2280	EMAC1 MCFG	15:0	RESET MGMT	_	_	_	_	_	_	_	_	_		CLKSE	L<3:0>		NOPRE	SCANINC	0020
	EMAC1	31:16	_	_	_	_	_	_	_	_	_	_	—	_	—	—	—	_	0000
2290	MCMD	15:0	_	_	_	_	_	—	_	—	_	_	_	_	_	—	SCAN	READ	0000
2240	EMAC1	31:16	_	_	—	_	_	_	_	_	—	_	_	-	_	_	—	—	0000
22AU	MADR	15:0	—	_	_		P	HYADDR<4:()>		—	_	_		R	EGADDR<4	0>		0100

A = unsubmit values on reaset, — = unimplemented, read as 0. Reset values are shown in nexadecinal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

2: Reset values default to the factory programmed value.

REGISTER 31-13:	ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER
-----------------	---

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	_	—	—		—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	—		U-0	—	—	—
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	_	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾		—	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾	_	TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt
 - 0 = Disable RXBUS Error Interrupt
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt
	0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾
	1 = Enable FWMARK Interrupt
	0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾
	1 = Enable RXDONE Interrupt
	0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾
	1 = Enable PKTPEND Interrupt
	0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit ⁽²⁾
	1 = Enable RXACT Interrupt
	0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾
	1 = Enable TXDONE Interrupt
	0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾
	1 = Enable TXABORT Interrupt
	0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾
	1 = Enable RXBUFNA Interrupt
	0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾
	1 = Enable RXOVFLW Interrupt
	0 = Disable RXOVFLW Interrupt

- Note 1: This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

REGISTER 31-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER

bit 6	VLANPAD: VLAN Pad Enable bit ^(1,2)
	 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames
bit 5	PADENABLE: Pad/CRC Enable bit ^(1,3)
	1 = The MAC will pad all short frames
	0 = The frames presented to the MAC have a valid length
bit 4	CRCENABLE: CRC Enable1 bit
	1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set.
	0 = The frames presented to the MAC have a valid CRC
bit 3	DELAYCRC: Delayed CRC bit
	This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames.
	1 = Four bytes of header (ignored by the CRC function)0 = No proprietary header
bit 2	HUGEFRM: Huge Frame enable bit
	 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit
bit 1	LENGTHCK: Frame Length checking bit
	1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector.
	0 = Length/Type field check is not performed

- bit 0 FULLDPLX: Full-Duplex Operation bit
 - 1 = The MAC operates in Full-Duplex mode
 - 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 31-4 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 31-4: PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	x	х	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	x	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

TABLE 39-1: SDHC SFR SUMMARY (CONTINUED)

	Bits																		
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0054	SDHC	31:16	_	—	—	—	—	—	—	—	_	_	—	_	—	—	_	-	0000
C054	AESTAT	15:0	_	-	—	_	—	_	_	_	_	_	—	_	_	ALMERR	AERRS	T<1:0>	0000
0050	SDHC	31:16	16 ADDR<31:16>								0000								
0058	AADDR 15:0>								0000										

Legend: '—' = unimplemented; read as '0'.

FIGURE 44-30: EJTAG TIMING CHARACTERISTICS

TABLE 44-59: EJTAG TIMING REQUIREMENTS

AC CHA	RACTERISTI	CS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions			
EJ1	Ттсксус	TCK Cycle Time	25	—	ns				
EJ2	Ттскнідн	TCK High Time	10		ns	_			
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—			
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_			
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_			
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	—	5	ns	_			
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_			
EJ8	TTRSTLOW	TRST Low Time	25	—	ns				
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.