

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025daa169t-i-hf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN NAMES FOR 176-PIN DEVICES TABLE 6:

176-PIN LQFP (TOP VIEW)
PIC32MZ1025DAA176
PIC32MZ1025DAB176
PIC32MZ1064DAA176
PIC32MZ1064DAB176
PIC32MZ2025DAA176
PIC32MZ2025DAB176
PIC32MZ2064DAA176
PIC32MZ2064DAB176
PIC32MZ1025DAG176
PIC32MZ1025DAH176
PIC32MZ1064DAG176
PIC32MZ1064DAH176
PIC32MZ2025DAG176
PIC32MZ2025DAH176
PIC32MZ2064DAG176
PIC32MZ2064DAH176

176

1

Pin Number	Full Pin Name	Pin Number	Full Pin Name
1	Vref-/CVref-/AN27/RA9	37	Vss
2	VREF+/CVREF+/AN28/RA10	38	VDDIO
3	AVDD	39	VDDCORE
4	AVDD	40	EBID0/PMD0/RE0
5	AVss	41	RPF2/SDA3/RF2
6	AVss	42	INT0/RH14
7	AN3/C2INA/RPB15/OCFB/RB15	43	EBID4/AN18/PMD4/RE4
8	AN8/RPB3/RB3	44	No Connect
9	AN48/CTPLS/RB13	45	VBUS
10	EBID10/AN4/RPB8/PMD10/RB8	46	VUSB3V3
11	PGEC1/AN9/RPB1/CTED1/RB1	47	VUSB3V3
12	AN49/RB11	48	Vss
13	PGEC2/RPB6/RB6	49	Vss
14	EBID12/AN10/RPC2/PMD12/RC2	50	D-
15	EBIWE/AN34/RPC3/PMWR/RC3	51	D+
16	EBIOE/AN19/RPC4/PMRD/RC4	52	USBID
17	EBID5/AN12/RPC1/PMD5/RC1	53	TMS/SDCD/RA0
18	VDDCORE	54	TRCLK/SDCK/SQICLK/RA6
19	VDDIO	55	TRD3/SDDATA3/SQID3/RA7
20	No Connect	56	TRD1/SDDATA1/SQID1/RG12
21	Vss	57	VDDR1V8 ⁽⁵⁾
22	Vss	58	VDDR1V8 ⁽⁵⁾
23	EBID6/AN16/PMD6/RE6	59	VDDR1V8 ⁽⁵⁾
24	EBID7/AN15/PMD7/RE7	60	VDDR1V8 ⁽⁵⁾
25	AN25/RPE8/RE8	61	VDDR1V8 ⁽⁵⁾
26	AN26/RPE9/RE9	62	VDDR1V8 ⁽⁵⁾
27	TDO/AN31/RPF12/RF12	63	VDDR1V8 ⁽⁵⁾
28	TDI/AN17/SCK5/RF13	64	TRD0/SDDATA0/SQID0/RG13
29	Vss	65	TRD2/SDDATA2/SQID2/RG14
30	AN14/C1IND/SCK2/RG6	66	DDRVREF ⁽⁶⁾
31	AN13/C1INC/RPG7/SDA4/RG7	67	VDDR1V8 ⁽⁵⁾
32	AN30/C2IND/RPG8/SCL4/RG8	68	VDDR1V8 ⁽⁵⁾
33	EBIA2/AN23/C2INC/RPG9/PMA2/RG9	69	EBIA6/RPE5/PMA6/RE5
34	AN21/RG15	70	SDCMD/SQICS0/RPD4/RD4
35	AN20/RH4	71	SQICS1/RPD5/RD5
36	EBID1/AN39/PMD1/RE1	72	VDDR1V8 ⁽⁵⁾

The RPn pins can be used by remappable peripherals. See Table 1 and Table 3 for the available peripherals and **12.4 "Peripheral Pin Select (PPS)**" for restrictions. Note 1:

Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information. 2: 3: Shaded pins are 5V tolerant.

The metal plane at the bottom of the device is internally tied to VSS1V8 and should be connected to 1.8V ground externally. 4:

5: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

6: 7: This pin is a No Connect in devices without DDR.

These pins are restricted to input functions only.

REGISTER 4-9: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER ('x' = 0-13)

		$x = 0^{-13}$						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	-	—	_	_			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	_	_		_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0	_	_	_				—	CLEAR
			·					·

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-8 for the list of available targets and their descriptions.

REGISTER 4-10: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_		—	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	—	_	—	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	—	_	—	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0	—	—	—	_	—	_	_	CLEAR

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 **CLEAR:** Clear Multiple Errors on Read bit Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-8 for the list of available targets and their descriptions.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ss									•		Bits								Τ
(#	∋er	ge			1	1					Bito	1		1	1		1		ets
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF041	31:16				—					_	—			—		VOFF<	:17:16>	0000
0324	011041	15:0								VOFF<1	5:1>								000
05E8	OFF042	31:16		—	—	—	—	—	—	—	_	—	—	—	—	—	VOFF<	:17:16>	000
0020	0	15:0								VOFF<1		1							000
05EC	OFF043	31:16	_		_	—	—	—	—	_	—	_		—	—	_	VOFF<	:17:16>	000
		15:0								VOFF<1							1055	-	000
05F0	OFF044	31:16		_	-	—	—	—	—	—	—	—		—	—	_	VOFF<		000
		15:0								VOFF<1				r	r			-	000
05F4	OFF045	31:16 15:0	_		—	—	_	_	—	VOFF<1		_		—	—	—	VOFF<	17:10>	000
		31:16	_	_	_			_	_	VOFF<1		_		_	_		VOFF<	17:16>	000
05F8	OFF046	15:0								VOFF<1							VOIT		000
		31:16		_	_	_	_	_	_	-	_	_	_	_	_		VOFF<	17.16>	000
05FC	OFF047	15:0								VOFF<1							VOIT	_	000
		31:16		_		_	_			_	_	_		_	_		VOFF<		000
0600	OFF048	15:0								VOFF<1	5:1>							_	000
	0550.40	31:16	_	_	_	_	_	_	_	_	_	_	_	—	_	_	VOFF<	:17:16>	000
0604	OFF049	15:0								VOFF<1	5:1>								000
0000	055050	31:16	_	—	_	—	—	—	—	—	—	—	_	—	-	—	VOFF<	17:16>	000
8000	OFF059	15:0								VOFF<1	5:1>	-							000
0600	OFF051	31:16		_	—	—	—			-	-	—	_	—	—	-	VOFF<	:17:16>	000
0000	011031	15:0								VOFF<1	5:1>							_	000
0610	OFF052	31:16	_	—	-	_	—	_	_			—	—	-	_		VOFF<	:17:16>	000
0010	011 002	15:0			-	-				VOFF<1	5:1>		-						000
0614	OFF053	31:16		—		—	—	—	—	—	—	—	—	—	—	—	VOFF<	:17:16>	000
		15:0								VOFF<1									000
0618	OFF054	31:16		_		—	_	—	—	—	—	_			_	—	VOFF<		000
		15:0								VOFF<1								-	000
061C	OFF055	31:16		—	_	_	_	_	—		—	—	—	—	—	_	VOFF<		000
		15:0								VOFF<1				r	r			-	000
0620	OFF056	31:16 15:0	_	—	—	—	—	—	—	VOFF<1		—		—	—	—	VOFF<		000
		31:16	_	_	_				_	VUFF<1		_		_	_	_	VOFF<		0000
0624	OFF057	15:0				_				VOFF<1					_				000
		31:16	_		_	_		_	_	_		_		_	_	_	VOFF<		000
0628	OFF058	15:0								VOFF<1							1 70114	_	000
		31:16	_	_	_	_	_	_	_	_		_	_	_	_	_	VOFF<		000
062C	OFF059	15:0								VOFF<1								_	0000

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices with a Crypto module.

REGISTER 11-10:	USBIENCSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2
	(ENDPOINT 1-7)

			,				<u>.</u>		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
01.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24				TXINT	ERV<7:0>				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	SPEE	D<1:0>	PROTOCO	OL<1:0>	TEP<3:0>				
45.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	_	—	RXCNT<13:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				RXC	NT<7:0>				

Legend:	HC = Hardware Cleared	HS = Hardware Set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-24 TXINTERV<7:0>: Endpoint TX Polling Interval/NAK Limit bits (Host mode)

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and interpretation for these bits:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	nterrupt Low/Full		Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

bit 23-22 SPEED<1:0>: TX Endpoint Operating Speed Control bits (Host mode)

- 11 = Low-Speed
- 10 = Full-Speed
- 01 = Hi-Speed
- 00 = Reserved

bit 21-20 PROTOCOL<1:0>: TX Endpoint Protocol Control bits

- 11 = Interrupt
- 10 **= Bulk**
- 01 = Isochronous

00 = Control

bit 19-16 **TEP<3:0>:** TX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

- bit 15-14 Unimplemented: Read as '0'
- bit 13-0 RXCNT<13:0>: Receive Count bits

The number of received data bytes in the endpoint RX FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24			TXHUBPRT<6:0>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	MULTTRAN	TXHUBADD<6:0>										
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0		_	_	_	_	_	_	—				
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	_			Т	XFADDR<6:0	>						

REGISTER 11-18: USBExTXA: USB ENDPOINT 'x' TRANSMIT ADDRESS REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 TXHUBPRT<6:0>: TX Hub Port bits (*Host mode*)
 When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.
 bit 23 MULTTRAN: TX Hub Multiple Translators bit (*Host mode*)

- it 23 **MULTTRAN:** TX Hub Multiple Translators bit (*Host mode*)
 - 1 = The USB 2.0 hub has multiple transaction translators
 0 = The USB 2.0 hub has a single transaction translator

bit 22-16 **TXHUBADD<6:0>:** TX Hub Address bits (*Host mode*) When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

- bit 15-7 Unimplemented: Read as '0'
- bit 6-0 **TXFADDR<6:0>:** TX Functional Address bits (*Host mode*)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each TX endpoint that is used.

Virtual Address (BF80_#) Bits Bit Range Resets Register Name 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 ₹ 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ IC4R 1444 15:0 _ _ _ _ _ _ _ _ _ ____ _ _ IC4R<3:0> 0000 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1448 IC5R 15:0 IC5R<3:0> 0000 ____ — _ — _ — — — _ — — _ 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 144C IC6R 15:0 _ ____ _ _ _ _ _ _ _ IC6R<3:0> 0000 — _ _ 31:16 _ _ _ 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ 1450 IC7R 15:0 _ ____ IC7R<3:0> 0000 — — _ — — — — — — — 31:16 0000 — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1454 IC8R 15:0 _ IC8R<3:0> 0000 _ _ ____ _ — — — — — — — 31:16 _ _ _ ____ _ _ _ _ _ _ _ _ _ _ 0000 1458 IC9R 15:0 _ _ _ _ _ _ _ _ _ _ _ _ IC9R<3:0> 0000 31:16 _ _ _ 0000 _ _ ____ — _ _ _ _ _ — — 1460 OCFAR 15:0 _ _ _ _ _ _ _ _ _ _ _ _ OCFAR<3:0> 0000 31:16 — _ _ _ _ _ _ _ _ ____ _ _ _ 0000 ____ ____ 1468 U1RXR 15:0 _ _ _ _ _ _ _ _ _ _ _ _ U1RXR<3:0> 0000 31:16 _ _ _ _ _ _ _ _ _ _ 0000 _ ____ _ ____ **U1CTSR** 146C 15:0 _ _ U1CTSR<3:0> 0000 _ _ _ _ _ _ _ _ _ _ 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1470 U2RXR 15:0 _ _ _ U2RXR<3:0> 0000 _ _ _ _ _ _ _ _ _ 31:16 _ _ _ ____ _ _ _ _ _ _ _ _ _ ____ _ 0000 1474 U2CTSR 15:0 _ _ _ ____ _ _ _ _ _ _ _ _ U2CTSR<3:0> 0000 31:16 _ _ _ 0000 _ _ _ _ _ _ _ _ _ _ — 1478 **U3RXR** 15:0 U3RXR<3:0> _ _ 0000 _ ____ _ _ _ _ ____ _ _ _ 31:16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0000 147C **U3CTSR** 15:0 U3CTSR<3:0> 0000 _ _ _ _ _ _ _ _ _ _ _ _ 31:16 _ 0000 _ _ ____ _ _ _ ____ _ _ _ _ _ _ 1480 U4RXR 15:0 U4RXR<3:0> 0000 _ _ ____ _ ____ _ _ _ _ ____ _ ____ 31:16 _ _ _ _ _ 0000 ____ ____ — _ _ ____ — — _ 1484 U4CTSR 15:0 U4CTSR<3:0> 0000 _ _ _ _ _ _ _

PIC32MZ

Graphics

(DA) Family

TABLE 12-13: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

0

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

16.1 Output Compare Control Registers

TABLE 16-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP

ess										Bi	ts								6
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OC1CON	31:16 15:0	— ON		— SIDL	-	-	-	-	-	-		— OC32	— OCFLT	— OCTSEL		— OCM<2:0>		0000
4010	OC1R	31:16 15:0		OC1R<31:0>								xxxx xxxx							
4020	OC1RS	31:16 15:0		OC1RS<31:0>								xxxx xxxx							
4200	OC2CON	31:16 15:0	— ON									0000							
4210	OC2R	31:16 15:0		OC2R<31:0>								xxxx xxxx							
4220	OC2RS	31:16 15:0		OC2RS<31:0>								xxxx xxxx							
4400	OC3CON	31:16 15:0	— ON	—	— SIDL	—	-	-	-	-	_	—	— OC32	— OCFLT	— OCTSEL	—	— OCM<2:0>	—	0000
4410	OC3R	31:16 15:0								OC3R<	<31:0>								xxxx xxxx
4420	OC3RS	31:16 15:0								OC3RS	<31:0>								xxxx xxxx
4600	OC4CON	31:16 15:0	— ON		— SIDL	-	-	-	-	—	-	_	— OC32	— OCFLT	— OCTSEL		— OCM<2:0>	_	0000
4610	OC4R	31:16 15:0								OC4R<	<31:0>								xxxx xxxx
4620	OC4RS	31:16 15:0								OC4RS	<31:0>								xxxx xxxx
4800	OC5CON	31:16 15:0	– ON	_	— SIDL	-	-	-	-	-	-	_	— OC32	— OCFLT	— OCTSEL	—	— OCM<2:0>	—	0000
4810	OC5R	31:16 15:0								OC5R<	<31:0>								xxxx xxxx
4820	OC5RS	31:16 15:0								OC5RS	<31:0>								xxxx xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 21-3: SPIxSTAT: SPI STATUS REGISTER

- bit 3 **SPITBE:** SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
- bit 2 Unimplemented: Read as '0'
- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

- bit 0 SPIRBF: SPI Receive Buffer Full Status bit
 - 1 = Receive buffer, SPIxRXB is full
 - 0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	_			_	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	_	_	_	_	—		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	RCS2 ⁽¹⁾	RCS1 ⁽³⁾								
	RADDR15 ⁽²⁾	RADDR14 ⁽⁴⁾	4 ⁽⁴⁾ RADDR<13:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				RADDR<	7:0>					

REGISTER 25-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 RCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive (RADDR15 function is selected)
- bit 15 RADDR<15>: Target Address bit 15⁽²⁾
- bit 14 RCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive (RADDR14 function is selected)
- bit 14 RADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 RADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	-	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	—	-	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	_	—	_	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	_	_	_	AREIF	PKTIF	CBDIF	PENDIF

REGISTER 27-6: CEINTSRC: CRYPTO ENGINE INTERRUPT SOURCE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 AREIF: Access Response Error Interrupt bit
 - 1 = Error occurred trying to access memory outside the Crypto Engine
 - 0 = No error has occurred
- bit 2 **PKTIF:** DMA Packet Completion Interrupt Status bit
 - 1 = DMA packet was completed
 - 0 = DMA packet was not completed
- bit 1 CBDIF: BD Transmit Status bit
 - 1 = Last BD transmit was processed
 - 0 = Last BD transmit has not been processed
- bit 0 **PENDIF:** Crypto Engine Interrupt Pending Status bit
 - 1 = Crypto Engine interrupt is pending (this value is the result of an OR of all interrupts in the Crypto Engine)
 - 0 = Crypto Engine interrupt is not pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24		_	_	_	—	-	_	—			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	_	_	_	—	-	_	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	_	_	_	—	_	_	—			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	HDRLEN<7:0>										

REGISTER 27-9: CEHDLEN: CRYPTO ENGINE HEADER LENGTH REGISTER

Legend:

=ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **HDRLEN<7:0>:** DMA Header Length bits For every packet, skip this length of locations and start filling the data.

REGISTER 27-10: CETRLLEN: CRYPTO ENGINE TRAILER LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	_	_	_	-	_	_	-	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		—	_	_	_		_	—		
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8		—	_	_	_		_	—		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	TRLRLEN<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 **Unimplemented:** Read as '0'

bit 7-0 **TRLRLEN<7:0>:** DMA Trailer Length bits For every packet, skip this length of locations at the end of the current packet and start putting the next packet.

REGISTER 28-3: RNGPOLYx: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x' ('x' = 1 OR 2)

		x = 10 K 2									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
31:24	POLY<31:24>										
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23:16	POLY<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8 POLY<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	POLY<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **POLY<31:0>:** PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

	-							- /			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
31:24	RNG<31:24>										
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23:16	RNG<23:16>										
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
15:8	RNG<15:8>										
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
7:0	RNG<7:0>										

REGISTER 28-4:	RNGNUMGENX: RANDOM NUMBER GENERATOR REGISTER 'x' ('x' = 1 OR 2)
----------------	---

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

REGISTER 30-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred **CERRIF:** CAN Bus Error Interrupt Flag bit bit 13 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the System Bus) 0 = A system error has not occurred bit 11 **RBOVIF:** Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as '0' bit 3 MODIF: CAN Mode Change Interrupt Flag bit 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 **RBIF:** Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending
- 0 = A transmit buffer interrupt is not pending
- Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

REGISTER 31-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

KEOIOTEK .										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	_		—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	_	_		_		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6	PMCS<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				PMCS	S<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 31-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
51.24	—	—		_	_	_	_	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—		—	—	—	—	—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	PMO<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMO	<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 PMO<15:0>: Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

34.1 Control Registers

DS60001361F-page 582

TABLE 34-1: HIGH/LOW-VOLTAGE DETECT REGISTER MAP

ess		0		Bits								s							
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1000	HLVDCON	31:16	—	_	—	-	-	—	—	-	—	_	-	—	—	—	—	-	0000
1800		15:0	ON	_	_	_	VDIR	BGVST	_	HLEVT	HLEVTOUTDIS	_	_	_		HLVDL	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	_	—	—	—	_	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	_	—	—	—	_	—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
0.61	_	—		—	—	—	_	CSADDRMSK<2>	
7:0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
7.0	CSADDRMSK<1:0>		_	_	_	- BNKADDR		ISK<2:0>	

REGISTER 38-10: DDRMEMCFG4: DDR MEMORY CONFIGURATION REGISTER 4

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-9 Unimplemented: Read as '0'

bit 8-6 CSADDRMSK<2:0>: Chip Select Address Mask bits

These bits, which are used in conjunction with the CSADDR<4:0> bits (DDRMEMCFG0<20:16>), determine which bits of user address space are used to derive the Chip Select address for the DDR memory.

bit 5-3 Unimplemented: Read as '0'

bit 2-0 BNKADDRMSK<2:0>: Bank Address Mask bits

These bits, which are used in conjunction with the BNKADDR<4:0> bits (DDRMEMCFG0<12:8>), determine which bits of user address space are used to derive the bank address for the DDR memory.

REGISTER 39-15: SDHCFE: SDHC FORCE EVENT REGISTER (CONTINUED)

- bit 7 FECNIACE: Force Event for Command Not Issued by Auto CMD12 Error bit
 - 1 = Interrupt was generated
 - 0 = Interrupt was not generated
- bit 6-5 Unimplemented: Read as '0'
- bit 4 FEACIDXE: Force Event for Auto CMD12 Index Error bit
 - 1 = Interrupt was generated
 - 0 = Interrupt was not generated
- bit 3 **FEACEBE:** Force Event for Auto CMD12 End Bit Error bit 1 = Interrupt was generated 0 = Interrupt was not generated
- bit 2 **FEACCRCE:** Force Event for Auto CMD12 CRC Error bit
- bit 1 FEACTOE: Force Event for Auto CMD12 Time-out Error bit
 - 1 = Interrupt was generated
 - 0 = Interrupt was not generated
- bit 0 FEACNEE: Force Event for Auto CMD12 Not Executed Error bit
 - 1 = Interrupt was generated
 - 0 = Interrupt was not generated

40.2.3 DEEP SLEEP MODE

Deep Sleep mode brings the device into its lowest power consumption state without requiring the use of external switches to remove power from the device.

Deep Sleep

In this mode, the CPU, RAM and most peripherals are powered down. Power is maintained to the DSGPR0 register and one or more of the RTCC, DSWDT and DSGPR1 through DSGPR32 registers.

Which of these peripherals is active depends on the state of the following register bits when Deep Sleep mode is entered:

• RTCDIS (DSCON<12>)

This bit must be set to disable the RTCC in Deep Sleep mode (see Register 40-1).

DSWDTEN (DEVCFG2<27>)

This Configuration bit must be set to enable the DSWDT register in Deep Sleep mode (see Register 41-5)

• DSGPREN (DSCON<13>)

This bit must be set to enable the DSGPR1 through DSGPR32 registers in Deep Sleep mode (see Register 40-1).

Note:	The Deep Sleep Control registers can			
	only be accessed after the system unlock			
	sequence has been performed. In addi-			
	tion, the Deep Sleep Control registers			
	must be written twice.			

In addition to the conditionally enabled peripherals described above, the $\overline{\text{MCLR}}$ filter and INT0 pin are enabled in Deep Sleep mode.

40.2.4 VBAT MODE

VBAT mode is similar to Deep Sleep mode, except that the device is powered from the VBAT pin. VBAT mode is controlled strictly by hardware, without any software intervention. Device enters VBAT mode upon VDDCORE Power-on Reset (refer to Table 44-4 for definitions of VPORCORE and VBATSW). An external power source must be connected to the VBAT pin before power is removed from VDDIO/VDDCORE to enter VBAT mode. VBAT is the lowest battery-powered mode that can maintain an RTCC. Wake-up from VBAT mode can only occur when VDDIO/VDDCORE is reapplied. The wake-up will appear to be a POR to the rest of the device.

In VBAT mode, the Deep Sleep Watchdog Timer is disabled. The RTCC and DSGPR1 through DSGPR32 registers may be enabled or disabled depending on the state of the RTCDIS bit (DSCON<12>) and the DSGPREN bit (DSCON<13>), respectively. Deep Sleep Persistent General Purpose Register 0 (DSGPR0) is always enabled in VBAT mode.

40.2.5 XLP POWER-SAVING MODES

Figure 40-1 shows a block diagram of the system domain for XLP devices and the related power-saving features. The various blocks are controlled by the following Configuration bit settings and SFRs:

- DSBOREN (DEVCFG2<20>)
- DSEN (DSCON<15>)
- DSGPREN (DSCON<13>)
- DSWDTEN (DEVCFG2<27>)
- DSWDTOSC (DEVCFG2<26>)
- RELEASE (DSCON<0>)
- RTCCLKSEL (RTCCON <9:8>)
- RTCDIS (DSCON<12>)
- SLPEN (OSCCON<4>)
- VREGS (PWRCON<0>)

TABLE 40-3: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral	PMDx Bit Name	Register Name and Bit Location
ADC	ADCMD	PMD1<0>
CTMU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
High/Low-Voltage Detect	HLVDMD	PMD1<20>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Input Capture 6	IC6MD	PMD3<5>
Input Capture 7	IC7MD	PMD3<6>
Input Capture 8	IC8MD	PMD3<7>
Input Capture 9	IC9MD	PMD3<8>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Output Compare 6	OC6MD	PMD3<21>
Output Compare 7	OC7MD	PMD3<22>
Output Compare 8	OC8MD	PMD3<23>
Output Compare 9	OC9MD	PMD3<24>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
Timer6	T6MD	PMD4<5>
Timer7	T7MD	PMD4<6>
Timer8	T8MD	PMD4<7>
Timer9	T9MD	PMD4<8>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
UART6	U6MD	PMD5<5>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>

Note 1: The USB module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

2: This peripheral is not available on all devices. Refer to the pin feature tables (Table 2 through Table 4) to determine availability.

TABLE 41-3: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

				\mathbf{D} , it \mathbf{D} is					•••										-
ess		Ð	0		Bits														(1)
Virtual Address (BF80_#) Benister	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹⁾
0000	CFGCON	31:16	_	—	—	—	-	—	—	—	-	—		-	—	-	ICACLK	OCACLK	0000
0000 01		15:0	_	_	IOLOCK	PMDLOCK	PGLOCK	_	_	USBSSEN	IOANCPEN	_	ECCCO	N<1:0>	JTAGEN	TROEN	_	TDOEN	000B
0020	DEVID	31:16 VER<3:0> DEVID<27:16>													xxxx				
0020	DEVID	15:0	DEVID<15:0>													xxxx			
0030	SYSKEY	31:16								SVSKE	Y<31:0>								0000
0030	STOKET	15:0								STORE	151.02								0000
0000	CFGEBIA	31:16	_			_			_	—	EBIA23EN	EBIA22EN	EBIA21EN	EBIA20EN	EBIA19EN	EBIA18EN	EBIA17EN	EBIA16EN	0000
0000	OF GLDIA	15:0	EBIA15EN	EBIA14EN	EBIA13EN	EBIA12EN	EBIA11EN	EBIA10EN	EBIA9EN	EBIA8EN	EBIA7EN	EBIA6EN	EBIA5EN	EBIA4EN	EBIA3EN	EBIA2EN	EBIA1EN	EBIA0EN	0000
00D0	CFGEBIC	31:16	EBI RDYINV3	EBI RDYINV2	EBI RDYINV1	—	EBI RDYEN3	EBI RDYEN2	EBI RDYEN1	—	_	—	_	_	—	-	EBI RDYLVL	EBIRPEN	0000
		15:0		—	EBIWEEN	EBIOEEN		_	EBIBSEN1	EBIBSEN0	EBICSEN3	EBICSEN2	EBICSEN1	EBICSEN0	_		EBIDEN1	EBIDEN0	0000
00E0	CFGPG	31:16	—	—	GPUP	G<1:0>	GLCDF	PG<1:0>	CRYPT	PG<1:0>	FCPG	FCPG<1:0> SQI1PG<1:0>			SDHCP	G<1:0>	ETHPG<1:0>		0000
UULU		15:0	CAN2P	'G<1:0>	CAN1F	PG<1:0>	_	_	USBP	G<1:0>	_	—	DMAPG<1:0> — — CPUF					G<1:0>	0000
0050	CFGCON2	31:16	16 GLCDPINEN GLCDMODE SDWRFTHR<9:0>										0000						
0010		15:0	_					-	SDRDFTHR<9:0> — SDWPPOL								GPURESET	0000	
0100	CFGMPLL	31:16 MPLLRDY MPLLDIS MPLLODIV2<2:0> MPLLODIV1<2:0> MPLL VREGRDY VREGDIS									_	—	7F40						
		15:0 MPLLMULT<7:0> INTVREFCON<1:0> MPLLIDIV<5:0>]								
l egen	d•	unknov	wn value on P	eset [.] — = unin	nnlamantar	'0' ac hear h	Docot valu	as are show	n in hevede	cimal									

PIC32MZ Graphics (DA) Family

 Legend:
 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Reset values are dependent on the specific device.

TABLE 41-4: DEVICE SERIAL NUMBER SUMMARY

ess			Bits													£			
Virtual Address (BFC5_#)	(BFC5_#	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹⁾
		31:16 Device Serial Number <31:16>															xxxx		
4020	DEVSN0	15:0		Device Serial Number <15:0> xx:															xxxx
4004		31:16		Device Serial Number <31:16>														xxxx	
4024 DEVSN	DEVSN1	15:0		Device Serial Number <15:0> xxxx															
4000		31:16																	xxxx
4028 DEVSN	DEVSNZ	15:0							Dev	vice Serial I	Number <15	5:0>							xxxx
4020	DEVSN3	31:16							Dev	ice Serial N	lumber <31	:16>							xxxx
402C	Device Serial Number <15:0>												xxxx						

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.