

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	288-LFBGA
Supplier Device Package	288-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025daa288-i-4j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Note:	For recommended resistor values versus
	crystal/frequency, Refer to the "PIC32MK
	GP/MC Family Silicon Errata and Data
	Sheet Clarification" (DS80000737), which
	is available for download from the Micro-
	chip web site (www.microchip.com).

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

REGISTER 4-6: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1 ('x' = 0-13) (CONTINUED)

bit 15-8

bit 15-8	INITID<7:0>: Initiator ID of Requester bits							
	11111111 = Reserved							
	•							
	00001111 = Reserved							
	00001111 = NCSCIVCU							
	00001100 = GPU							
	00001101 = GICD							
	00001011 = Crypto Engine							
	00001011 = Flash Controller							
	00001001 = SQI1							
	00001000 = CAN2							
	00000111 = CAN1							
	00000110 = Ethernet Write							
	00000101 = Ethernet Read							
	00000100 = USB							
	0000011 = DMA Write							
	0000010 = DMA Read							
	00000001 = CPU							
	0000000 = Reserved							
bit 7-4	REGION<3:0>: Requested Region Number bits							
	1111 - 0000 = Target's region that reported a permission group violation							
bit 3	Unimplemented: Read as '0'							
bit 2-0	CMD<2:0>: Transaction Command of the Requester bits							
	111 = Reserved							
	110 = Reserved							
	101 = Write (a non-posted write)							
	100 = Reserved							
	011 = Read (a locked read caused by a Read-Modify-Write transaction)							
	010 = Read							
	001 = Write							
	000 = ldle							

Note: Refer to Table 4-8 for the list of available targets and their descriptions.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

	XC22 Vester Neme	IRQ			Interru	upt Bit Location		Persistent
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
Prefetch Module SEC Event	_PREFETCH_VECTOR	168	OFF168<17:1>	IFS5<8>	IEC5<8>	IPC42<4:2>	IPC42<1:0>	Yes
SQI1 Event	_SQI1_VECTOR	169	OFF169<17:1>	IFS5<9>	IEC5<9>	IPC42<12:10>	IPC42<9:8>	Yes
UART4 Fault	_UART4_FAULT_VECTOR	170	OFF170<17:1>	IFS5<10>	IEC5<10>	IPC42<20:18>	IPC42<17:16>	Yes
UART4 Receive Done	_UART4_RX_VECTOR	171	OFF171<17:1>	IFS5<11>	IEC5<11>	IPC42<28:26>	IPC42<25:24>	Yes
UART4 Transfer Done	_UART4_TX_VECTOR	172	OFF172<17:1>	IFS5<12>	IEC5<12>	IPC43<4:2>	IPC43<1:0>	Yes
I2C4 Bus Collision Event	_I2C4_BUS_VECTOR	173	OFF173<17:1>	IFS5<13>	IEC5<13>	IPC43<12:10>	IPC43<9:8>	Yes
I2C4 Slave Event	_I2C4_SLAVE_VECTOR	174	OFF174<17:1>	IFS5<14>	IEC5<14>	IPC43<20:18>	IPC43<17:16>	Yes
I2C4 Master Event	_I2C4_MASTER_VECTOR	175	OFF175<17:1>	IFS5<15>	IEC5<15>	IPC43<28:26>	IPC43<25:24>	Yes
SPI5 Fault	_SPI5_FAULT_VECTOR	176	OFF176<17:1>	IFS5<16>	IEC5<16>	IPC44<4:2>	IPC44<1:0>	Yes
SPI5 Receive Done	_SPI5_RX_VECTOR	177	OFF177<17:1>	IFS5<17>	IEC5<17>	IPC44<12:10>	IPC44<9:8>	Yes
SPI5 Transfer Done	_SPI5_TX_VECTOR	178	OFF178<17:1>	IFS5<18>	IEC5<18>	IPC44<20:18>	IPC44<17:16>	Yes
UART5 Fault	_UART5_FAULT_VECTOR	179	OFF179<17:1>	IFS5<19>	IEC5<19>	IPC44<28:26>	IPC44<25:24>	Yes
UART5 Receive Done	_UART5_RX_VECTOR	180	OFF180<17:1>	IFS5<20>	IEC5<20>	IPC45<4:2>	IPC45<1:0>	Yes
UART5 Transfer Done	_UART5_TX_VECTOR	181	OFF181<17:1>	IFS5<21>	IEC5<21>	IPC45<12:10>	IPC45<9:8>	Yes
I2C5 Bus Collision Event	_I2C5_BUS_VECTOR	182	OFF182<17:1>	IFS5<22>	IEC5<22>	IPC45<20:18>	IPC45<17:16>	Yes
I2C5 Slave Event	_I2C5_SLAVE_VECTOR	183	OFF183<17:1>	IFS5<23>	IEC5<23>	IPC45<28:26>	IPC45<25:24>	Yes
I2C5 Master Event	_I2C5_MASTER_VECTOR	184	OFF184<17:1>	IFS5<24>	IEC5<24>	IPC46<4:2>	IPC46<1:0>	Yes
SPI6 Fault	_SPI6_FAULT_VECTOR	185	OFF185<17:1>	IFS5<25>	IEC5<25>	IPC46<12:10>	IPC46<9:8>	Yes
SPI6 Receive Done	_SPI6_RX_VECTOR	186	OFF186<17:1>	IFS5<26>	IEC5<26>	IPC46<20:18>	IPC46<17:16>	Yes
SPI6 Transfer Done	_SPI6_TX_VECTOR	187	OFF187<17:1>	IFS5<27>	IEC5<27>	IPC46<28:26>	IPC46<25:24>	Yes
UART6 Fault	_UART6_FAULT_VECTOR	188	OFF188<17:1>	IFS5<28>	IEC5<28>	IPC47<4:2>	IPC47<1:0>	Yes
UART6 Receive Done	_UART6_RX_VECTOR	189	OFF189<17:1>	IFS5<29>	IEC5<29>	IPC47<12:10>	IPC47<9:8>	Yes
UART6 Transfer Done	_UART6_TX_VECTOR	190	OFF190<17:1>	IFS5<30>	IEC5<30>	IPC47<20:18>	IPC47<17:16>	Yes
SDHC Interrupt	_SDHC_VECTOR	191	OFF191<17:1>	IFS5<31>	IEC5<31>	IPC47<28:26>	IPC47<25:24>	Yes
GLCD Interrupt	_GLCD_VECTOR	192	OFF192<17:1>	IFS6<0>	IEC6<0>	IPC48<4:2>	IPC48<1:0>	Yes/No ⁽²⁾
GPU Interrupt	_GPU_VECTOR	193	OFF193<17:1>	IFS6<1>	IEC6<1>	IPC48<12:10>	IPC48<9:8>	Yes
Reserved		—	—	—	—	—	—	—
CTMU Interrupt	_CTMU_VECTOR	195	OFF195<17:1>	IFS6<3>	IEC6<3>	IPC48<28:26>	IPC48<25:24>	Yes
ADC End of Scan	_ADC_EOS_VECTOR	196	OFF196<17:1>	IFS6<4>	IEC6<4>	IPC49<4:2>	IPC49<1:0>	Yes

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

TABLE 12-6: PORTD REGISTER MAP

SSS										Bits	;								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0300	ANSELD	31:16	I	—	—	—	—	—	—	_	—	—		—	—	—	—	—	0000
	/	15:0	ANSD15	ANSD14	—	—	—		—	_	—	—	_	—	—	—	—	_	C000
0310	TRISD	31:16	—			-	—		—	_	—				—		-		0000
		15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9		TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FEFF
0320	PORTD	31:16	_			—	_	—	—		—				_		—	_	0000
		15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9		RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX
0330	LATD	31:16	—	—	—			—	—	—	—	—	—	—	—	—	-	—	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	—	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
0340	ODCD	31:16	—	—	—			—	—	—	—	—	—	—	—	—	-	—	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	—	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	_	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16	-	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
		15:0	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	_	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
0270		31:16				_					_				_		_	_	0000
0370	CINCOIND	15:0	ON	—	—	—	DETECT	—	—	—	—	—	—	—	—	—	—	—	0000
0380		31:16		_	_	-	_	_	_	—	_	_	_	_	_	_	_	_	0000
0000	CINEIND	15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	_	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
		31:16		-	-	_	_	—	—	—	—	-	_	-	—	-	_	_	0000
0390	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	—	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
	011155	31:16	_	_	_	_	—	_	_	_	_	_	—	_	_	—	_	_	0000
03A0	CNNED	15:0	CNNED15	CNNED14	CNNED13	CNNED12	CNNED11	CNNED10	CNNED9	_	CNNED7	CNNED6	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0000		31:16	_	—	—	_		_	—	—	_	_	_	_	_	—	_		0000
03B0	CNFD	15:0	CNFD15	CNFD14	CNFD13	CNFD12	CNFD11	CNFD10	CNFD9	_	CNFD7	CNFD6	CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000
0200		31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0300	SKCOND	15:0	SR1D15	SR1D14	SR1D13	SR1D12	SR1D11	SR1D10	SR1D9	_	SR1D7	SR1D6	SR1D5	SR1D4	SR1D3	SR1D2	SR1D1	SR1D0	0000
0200		31:16	_	—	—	_	_	—	—	_	_	_	_	_	_	_	_	_	0000
03D0	SKCONID	15:0	SR0D15	SR0D14	SR0D13	SR0D12	SR0D11	SR0D10	SR0D9	_	SR0D7	SR0D6	SR0D5	SR0D4	SR0D3	SR0D2	SR0D1	SR0D0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

23.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard.

Each I²C module has a 2-pin interface:

- · SCLx pin is clock
- · SDAx pin is data

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking
- · SMBus support

Figure 23-1 illustrates the I²C module block diagram.

REGISTER 24-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 10	UTXEN: Transmit Enable bit 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1) 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
	Note: The event of disabling an enabled transmitter will release the TX pin to the PORT function and reset the transmit buffers to empty. Any pending transmission is aborted and data characters in the transmit buffers are lost. All transmit status flags are cleared and the TRMT bit is set
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	 OERR: Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read

0 = Receive buffer is empty

30.1 **CAN Control Registers**

The 'i' shown in register names denotes Note: CAN1 or CAN2.

TABLE 30-1: CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES

SSS				Bits															
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	CICON	31:16		_	—	_	ABAT	l	REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	-	_	—	—	0480
0000	CICON	15:0	ON	—	SIDLE	—	CANBUSY		—		-	—	—		D	NCNT<4:0>	>		0000
0010	C1CEG	31:16	_	—	_	—	_	_	—	_	_	WAKFIL	—	_	—	S	EG2PH<2:0	>	0000
0010	01010	15:0	SEG2PHTS	SAM	S	EG1PH<2:0	>		PRSEG<2:0	>	SJW	<1:0>			BRP<	5:0>	•		0000
0020	C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	—	—	—	—	_	MODIE	CTMRIE	RBIE	TBIE	0000
		15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		_			_	_	_	MODIF	CTMRIF	RBIF	TBIF	0000
0030	C1VEC	31:16	—	—	—	—	—	—	_	—	—	—	_	—	—	_	—	—	0000
		15:0		—	—			FILHIT<4:0	>		—			1	CODE<6:0>				0040
0040	C1TREC	31:16	_	_	—	— 	—	_	_	_	—	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
	15						NI<7:0>				FIFOID22			RERRON	11<7:U>				0000
0050	C1FSTAT	15:0	FIFUIP31	FIFUIP30	FIFUIP29	FIFUIP28	FIFUIP27	FIFUIP26	FIFUIP25		FIFUIP23	FIFUIPZZ	FIFUIPZI	FIFUIP20	FIFUIP 19				0000
		31.16	PIFOIF 13						PIFUIF9										0000
0060	C1RXOVF	15.0	RXOVE15	RXOVF14	RXOVE13	RXOVF12	RXOVF11	RXOVE10	RXOVE9	RXOVE8	RXOVE7	RXOVE6	RXOVE5	RXOVF4	RXOVE3	RXOVE2	RXOVE1	RXOVE0	0000
		31:16	10101110	10101111	10101110	10(0)112	10.00111	10(01110	1010110	CANTS<	:15:0>	1010110	1010110	10.0111	10(0110	10(0112	1000111	1010110	0000
0070	C1TMR	15:0							CA	NTSPRE<15	:0>								0000
		31:16	SID<10:0> MIDF FID<17:16>									xxxx							
0080	C1RXM0	15:0	EID<15:0>									xxxx							
		31:16						SID<10:0>							MIDE		EID<1	7:16>	xxxx
0090	C1RXM1	15:0								EID<1	5:0>								xxxx
	0.151/140	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
00A0	C1RXM2	15:0								EID<1	5:0>								xxxx
0000	0452440	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
0080	C1RXM3	15:0								EID<1	5:0>								xxxx
0000		31:16	FLTEN3	MSEL:	3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
0000	CIFLICONU	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
0000		31:16	FLTEN7	MSEL	7<1:0>			FSEL7<4:03	>		FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>			0000
0000	ST LICONT	15:0	5:0 FLTEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0>								0000								
00F0	C1FLTCON2	31:16	FLTEN11	MSEL1	1<1:0>			FSEL11<4:0	>		FLTEN10	MSEL1	10<1:0>		F	SEL10<4:0>	>		0000
	15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0	>		FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			0000	

DS60001361F-page 492

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FLTEN19	MSEL19<1:0>			FSEL19<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	FLTEN18	MSEL1	8<1:0>	FSEL18<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	FLTEN17	MSEL1	7<1:0>			FSEL17<4:0>	>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN16	MSEL1	6<1:0>	FSEL16<4:0>					

REGISTER 30-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN19: Filter 19 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL19<1:0>: Filter 19 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL19<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 - Message matching filter is stored in EIEO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN18: Filter 18 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 22-21	 1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits
bit 22-21	 1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected
bit 22-21	 1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 11 = Acceptance Mask 1 selected
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected</pre>
bit 22-21 bit 20-16	 1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits
bit 22-21 bit 20-16	 1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 .</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 .</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 .</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL18<1:0>: Filter 18 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL18<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00001 = Message matching filter is stored in FIFO buffer 1</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER (n = 0 THROUGH 31)

- TXABAT: Message Aborted bit⁽²⁾ bit 6 1 = Message was aborted 0 = Message completed successfully bit 5 TXLARB: Message Lost Arbitration bit⁽³⁾ 1 = Message lost arbitration while being sent 0 = Message did not loose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a Receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest Message Priority 10 = High Intermediate Message Priority 01 = Low Intermediate Message Priority 00 = Lowest Message Priority Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	FRMRXOKCNT<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				FRMRXO	(CNT<7:0>						

REGISTER 31-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24		—	—	_	_	BPORCHX<10:8>		8>
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	BPORCHX<7:0>							
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8		—	—	—	—	BPORCHY<10:8>		8>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BPORCH	Y<7:0>			

REGISTER 36-7: GLCDBPORCH: GRAPHICS LCD CONTROLLER BACK PORCH REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 **BPORCHX<10:0>:** X Dimension Back Porch Lines bits These bits specify the front porch X dimension lines.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **BPORCHY<10:0>:** Y Dimension Back Porch Pixel Clocks bits These bits specify the front porch Y dimension pixel clocks.

REGISTER 36-8: GLCDCURSOR: GRAPHICS LCD CONTROLLER CURSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	—	—	CL	JRSORX<10:	8>
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10		CURSORX<7:0>						
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	—	CURSORY<10:8>		8>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CURSORY<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
		0 - Dit is cleared	

bit 31-27 Unimplemented: Read as '0'

bit 26-16 **CURSORX<10:0>:** Cursor X Dimension Position bits These bits specify the X dimension position of the cursor

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **CURSORY<10:0>:** Cursor Y Dimension Position bits These bits specify the Y dimension position of the cursor

REGISTER 36-14: GLCDLxRES: GRAPHICS LCD CONTROLLER LAYER 'x' RESOLUTION REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		_	_		_		RESX<10:8>	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10		RESX<7:0>						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		—	—	_	—	RESY<10:8>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	RESY<7:0>							

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 **RESX<10:0>:** X Dimension Layer Pixel Resolution bits These bits specify the layer pixel resolution in the X dimension.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **RESY<10:0>:** Y Dimension Layer Pixel Resolution bits These bits specify the layer pixel resolution in the Y dimension.

REGISTER 39-13:	SDHCCAP:	SDHC CAPABIL	ITIES REGISTER
------------------------	----------	--------------	-----------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1, HS
31:24		—	—	—	—		—	VOLT3V3
00.40	R-x, HS	U-0	R-x, HS	U-0	R-x, HS	U-0	R-0, HS	R-0, HS
23:10	SRESUME	—	HISPEED	—	ADMA2	—	MBLE	N<1:0>
15.0	U-0	U-0	R-x, HS	R-x, HS	R-x, HS	R-x, HS	R-x, HS	R-x, HS
10.0	—	—	BASECLK<5:0>					
7.0	R-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	TOCLKU	—	TOCLKFREQ<5:0>					

Legend:		HS = Hardware settable	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 VOLT3V3: 3.3V Voltage Support bit
 - 1 = Voltage of 3.3V is supported
- bit 23 SRESUME: Suspend/Resume Support bit
 - 1 = Suspend/resume is supported
 - 0 = Suspend/resume is not supported
- bit 22 Unimplemented: Read as '0'
- bit 21 HISPEED: High-speed Support bit
 - 1 = High speed is supported
 - 0 = High speed is not supported
- bit 20 Unimplemented: Read as '0'
- bit 19 ADMA2: ADMA2 Support bit
 - 1 = ADMA2 is supported
 - 0 = ADMA2 is not supported
- bit 18 Unimplemented: Read as '0'

bit 17-16 MBLEN<1:0>: Maximum Block Length bits

- 11 = Reserved
- 10 = 2048
- 01 = 1024
- 00 = 512
- bit 15-14 Unimplemented: Read as '0'

bit 13-8 BASECLK<5:0>: Base Clock Frequency for SDCLK bits

bit 6 Unimplemented: Read as '0'

bit 7

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
31.24	—	—	—		S	WDTPS<4:0>	>	
22.16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23.10	—	_	—	—	—	—	—	—
15.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
10.0	—	—	—	—	—	—	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0			_			_		

REGISTER 41-7: DEVCFG4/ADEVCFG4: DEVICE CONFIGURATION WORD 4

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	n	

bit 31-29 Reserved: Write as '1'

bit 29-24 **SWDTPS<4:0>:** Sleep Mode Watchdog Timer Postscale Select bits

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1 All athen a such in attack and a such in an article in 10100
All other combinations not shown result in operation = 10100

bit 31-29 Reserved: Write as '1'

43.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

43.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

43.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

43.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Chara	Min.	Тур.	Max.	Units	Conditions		
LV10	Vhlvd	HLVD Voltage on VDDIO Transition	HLVDL<3:0> = 0100 ⁽¹⁾		3.52	—	V		
			HLVDL<3:0> = 0101		3.29	—	V	_	
			HLVDL<3:0> = 0110		3.00	—	V	—	
			HLVDL<3:0> = 0111	_	2.79	—	V	_	
			HLVDL<3:0> = 1000	_	2.70	—	V	_	
			HLVDL<3:0> = 1001	-	2.50	_	V	—	
			HLVDL<3:0> = 1010	_	2.40	—	V	—	
			HLVDL<3:0> = 1011		2.30	—	V	_	
			HLVDL<3:0> = 1100		2.20	—	V	—	
			HLVDL<3:0> = 1101	_	2.12	—	V	_	
			HLVDL<3:0> = 1110	_	2.00	—	V	_	
LV11	VTHL	Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111	—	1.20	—	V	—	

TABLE 44-6: LOW-VOLTAGE DETECT CHARACTERISTICS

Note 1: Trip points for values of LVD<3:0>, from '0000' to '0011', are not implemented.

44.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ DA device AC characteristics and timing parameters.

FIGURE 44-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 44-22: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DO56	CL	All I/O pins	—		50	pF	EC mode for OSC2	
DO58	Св	SCLx, SDAx	_		400	pF	In I ² C mode	
DO59	Csqi	All SQI pins			10	pF	_	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

46.2 Package Details

The following sections give the technical details of the packages.

169-Ball Low Profile Fine Pitch Ball Grid Array (HF) - 11x11x1.4 mm Body [LFBGA]

Microchip Technology Drawing C04-365B Sheet 1 of 2