

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025dab169-i-hf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 176-PIN DEVICES (CONTINUED)

176-1 	PIN LQFP (TOP VIEW) PIC32MZ1025DAA176 PIC32MZ1025DAB176 PIC32MZ1064DAB176 PIC32MZ2025DAA176 PIC32MZ2025DAB176 PIC32MZ2064DAB176 PIC32MZ2064DAB176 PIC32MZ1025DAG176 PIC32MZ1025DAH176 PIC32MZ1064DAG176 PIC32MZ2025DAH176 PIC32MZ2064DAG176 PIC32MZ2064DAG176 PIC32MZ2064DAG176 PIC32MZ2064DAG176 PIC32MZ2064DAG176 PIC32MZ2064DAG176 PIC32MZ2064DAH176	176	1
Pin	Full Pin Name	Pin	Eull Din Nome
Number		Number	rui Pin Name
Number 145	GD9/EBIBS0/RJ12	Number 161	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾
Number 145 146	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10	Number 161 162	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾
Number 145 146 147	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7	Number 161 162 163	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15
Number 145 146 147 148	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6	Number 161 162 163 164	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12
Number 145 146 147 148 149	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5	Number 161 162 163 164 165	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO
Number 145 146 147 148 149 150	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4	Number 161 162 163 164 165 166	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT
Number 145 146 147 148 149 150 151	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3	Number 161 162 163 164 165 166 167	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5
Number 145 146 147 148 149 150 151 152	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2	Number 161 162 163 164 165 166 167 168	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10
Number 145 146 147 148 149 150 151 152 153	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2 VSS	Number 161 162 163 164 165 166 167 168 169	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0
Number 145 146 147 148 149 150 151 152 153 154	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2 Vss	Number 161 162 163 164 165 166 167 168 169 170	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0 PGED2/C1INA/AN46/RPB7/RB7
Number 145 146 147 148 149 150 151 152 153 154	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2 VSS VSS	Number 161 162 163 164 165 166 167 168 169 170 171	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0 PGED2/C1INA/AN46/RPB7/RB7 AN6/RB12
Number 145 146 147 148 149 150 151 152 153 154 155 156	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2 VSS VSS VDDI0 VDDI0	Number 161 162 163 164 165 166 167 168 169 170 171 172	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0 PGED2/C1INA/AN46/RPB7/RB7 AN6/RB12 AN1/C2INB/RPB2/RB2
Number 145 146 147 148 149 150 151 152 153 154 155 156 157	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2 VSS VSS VDDIO VDDIO VDDIO AN33/SCK6/RD15	Number 161 162 163 164 165 166 167 168 169 170 171 172 173	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0 PGED2/C1INA/AN46/RPB7/RB7 AN6/RB12 AN1/C2INB/RPB2/RB2 EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9
Number 145 146 147 148 149 150 151 152 153 154 155 156 157 158	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS1/RJ5 VSYNC/EBICS0/RJ4 GD20/EBIA22/RJ3 EBIRDY3/AN32/RJ2 Vss Vss VbDio VDDio VDDio AN33/SCK6/RD15 AN22/RPD14/RD14	Number 161 162 163 164 165 166 167 168 169 170 171 172 173 174	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0 PGED2/C1INA/AN46/RPB7/RB7 AN6/RB12 AN1/C2INB/RPB2/RB2 EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9 EBIA5/AN7/PMA5/RA5
Number 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	GD9/EBIBS0/RJ12 GD18/EBIBS1/RJ10 GEN/EBICS3/RJ7 GCLK/EBICS2/RJ6 HSYNC/EBICS2/RJ6 HSYNC/EBICS0/RJ4 GD20/EBICS2/RJ3 EBIRDY3/AN32/RJ2 Vss Vss Vss VbDio VDDio AN33/SCK6/RD15 AN22/RPD14/RD14 AN29/SCK3/RB14	Number 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾ SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾ OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDDIO VBAT AN45/RPB5/RB5 AN5/RPB10/RB10 PGED1/AN0/RPB0/CTED2/RB0 PGED2/C1INA/AN46/RPB7/RB7 AN6/RB12 AN1/C2INB/RPB2/RB2 EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9 EBIA5/AN7/PMA5/RA5 AN2/C1INB/RB4

1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 3 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is internally tied to VSS1V8 and should be connected to 1.8V ground externally.

5: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

6: This pin is a No Connect in devices without DDR.

7: These pins are restricted to input functions only.

3.2 Architecture Overview

The MIPS32 microAptiv Microprocessor core in PIC32MZ DA family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- Memory Management Unit (MMU)
- · Instruction/Data cache controllers
- · Power Management
- Instructions and data caches
- microMIPS support
- Enhanced JTAG (EJTAG) controller

3.2.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Trap condition comparator
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- · Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x32) represents the *rs* operand. The second number ('32' of 32x32) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bitper-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1:	MIPS32 microAptiv MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER
	MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	5	1
MSUB/MSUBU (HI/LO destination)	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24		CHPIGN<7:0>								
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	-	—	-	—	—		
45.0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0		
15:8	CHBUSY	—	CHIPGNEN	_	CHPATLEN	_	_	CHCHNS ⁽¹⁾		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0		
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>		

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit
 - 1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled
 0 = Disable this feature
- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
 - 1 = 2 byte length
 - 0 = 1 byte length
- bit 10-9 Unimplemented: Read as '0'

bit 8 **CHCHNS:** Chain Channel Selection bit⁽¹⁾

- 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
- 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

CHEN: Channel Enable bit⁽²⁾

1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
 - 1 = Allow channel to be chained
 - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

NOTES:

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R-0	R/W-0
31:24		ISO		DISNYET			—	
	AUTOCLK	AUTORQ	DIVIAREQUI	PIDERR	DIVIAREQIVID	DATATWEN	DATATGGL	
	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0, HC	R-0, HS	R/W-0, HS	R-0, HS, HC	R/W-0, HS
23:16	CLRDT	SENTSTALL	SENDSTALL	FLUSH	DATAERR	OVERRUN		עחסדאסעס
		RXSTALL	REQPKT		FLUSIT	1 20011	DERRNAKT	ERROR
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0		MULT<4:0>				R	XMAXP<10:8	>
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXMAXP<7:0>							

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOCLR: RXPKTRDY Automatic Clear Control bit

- 1 = RXPKTRDY will be automatically cleared when a packet of RXMAXP bytes has been unloaded from the RX FIFO. When packets of less than the maximum packet size are unloaded, RXPKTRDY will have to be cleared manually. When using a DMA to unload the RX FIFO, data is read from the RX FIFO in 4-byte chunks regardless of the RXMAXP.
- 0 = No automatic clearing of RXPKTRDY

This bit should not be set for high-bandwidth Isochronous endpoints.

- bit 30 ISO: Isochronous Endpoint Control bit (Device mode)
 - 1 = Enable the RX endpoint for Isochronous transfers
 - 0 = Enable the RX endpoint for Bulk/Interrupt transfers

AUTORQ: Automatic Packet Request Control bit (*Host mode*)

- 1 = REQPKT will be automatically set when RXPKTRDY bit is cleared.
- 0 = No automatic packet request

This bit is automatically cleared when a short packet is received.

- bit 29 DMAREQEN: DMA Request Enable Control bit
 - 1 = Enable DMA requests for the RX endpoint.
 - 0 = Disable DMA requests for the RX endpoint.
- bit 28 **DISNYET:** Disable NYET Handshakes Control/PID Error Status bit (*Device mode*)
 - 1 = In Bulk/Interrupt transactions, disables the sending of NYET handshakes. All successfully received RX packets are ACKed including at the point at which the FIFO becomes full.
 - 0 = Normal operation.

In Bulk/Interrupt transactions, this bit only has any effect in Hi-Speed mode, in which mode it should be set for all Interrupt endpoints.

PIDERR: PID Error Status bit (Host mode)

1 = In ISO transactions, this indicates a PID error in the received packet.

0 = No error

- bit 27 DMAREQMD: DMA Request Mode Selection bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

REGISTER 11-10:	USBIENCSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2
	(ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXINTERV<7:0>								
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	SPEED<1:0>		PROTOCOL<1:0>		TEP<3:0>			
15.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
15.0	—	_	RXCNT<13:8>					
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0		RXCNT<7:0>						

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 TXINTERV<7:0>: Endpoint TX Polling Interval/NAK Limit bits (Host mode)

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and interpretation for these bits:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	Low/Full	0x01 to 0xFF	Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

bit 23-22 SPEED<1:0>: TX Endpoint Operating Speed Control bits (Host mode)

- 11 = Low-Speed
- 10 = Full-Speed
- 01 = Hi-Speed
- 00 = Reserved

bit 21-20 PROTOCOL<1:0>: TX Endpoint Protocol Control bits

- 11 = Interrupt
- 10 **= Bulk**
- 01 = Isochronous

00 = Control

bit 19-16 **TEP<3:0>:** TX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

- bit 15-14 Unimplemented: Read as '0'
- bit 13-0 RXCNT<13:0>: Receive Count bits

The number of received data bytes in the endpoint RX FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

TABLE 12-13: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SSS	Register Name									E	lits								
Virtual Addre (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1400	SSED	31:16		—	—	—		—	-			—				—	_	—	0000
14DC	330K	15:0		_	—	-		-				—		_		SS6R	<3:0>		0000
1450		31:16		—	—	—		—				—				—	_	—	0000
14E0	UIRAR' /	15:0		—	—	—		—				_			C1RXR<3:0>			0000	
1454		31:16		—	—		-		_	-		_	-	_	-	_	—	—	0000
1464	02NAN ··	15:0		—	—		-		_	-		_	-	_		C2RXI	R<3:0>		0000
1400		31:16	_	—	—	—	_	—	_	_		—	_		_	—	—	—	0000
140	REFULNIK	15:0		—	—	—		—				—				REFCLK	I1R<3:0>		0000
1450		31:16		—	—	—		—				—				—	_	—	0000
1460	REFULNISK	15:0		—	—	—		—				—				REFCLK	I3R<3:0>		0000
1454	REFCLKI4R	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
1464		15:0	_		-	_	_	_	_	_		—	_			REFCLK	I4R<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	_	—	_	—	—	_
	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	—	—	EDGE DETECT	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0							_	

REGISTER 12-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER ('x' = A – G)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled

bit 14-12 Unimplemented: Read as '0'

- bit 11 EDGEDETECT: Edge Detection Type Control bit
 - 1 = Detects any edge on the pin (CNFx is used for the CN event)
 - 0 = Detects any edge on the pin (CNSTATx is used for the CN event)
- bit 10-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0 R/W-0		R/W-0	R/W-0	R/W-0		
31:24	—	—	—	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TYPE<1:0>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	INIT2CMD3<7:0>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	INIT2CMD2<7:0>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		INIT2CMD1<7:0>								

REGISTER 22-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit
 - 1 = Check the status after executing the INIT2 commands
 - 0 = Do not check the status
- bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits
 - 11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent
 - 10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending
 - 01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits
 - 11 = Reserved
 - 10 = INIT2 commands are sent in Quad Lane mode
 - 01 = INIT2 commands are sent in Dual Lane mode
 - 00 = INIT2 commands are sent in Single Lane mode
- bit 24-16 **INIT2CMD3<7:0>:** Flash Initialization Command 3 bits Third command of the Flash initialization.
- bit 15-8 **INIT2CMD2<7:0>:** Flash Initialization Command 2 bits Second command of the Flash initialization.
- bit 7-0 **INIT2CMD1<7:0>:** Flash Initialization Command 1 bits First command of the Flash initialization.

Note: Some Flash devices require write enable and sector unprotect commands before write/read operations and this register is useful in working with those Flash types (XIP mode only)

27.1 Crypto Engine Control Registers

TABLE 27-2: CRYPTO ENGINE REGISTER MAP

ess				Bits																
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
5000		31:16				REVISIO	ON<7:0>							VERSIC)N<7:0>				0000	
3000	CLVLK	15:0								١D<	<15:0>								0000	
5004	CECON	31:16	_	—	—	—	_	—	—	_	—	-	—	—	—	—	_	_	0000	
5004	CECON	15:0		—	—	—	_	_	—	_	SWAPOEN	SWRST	SWAPEN	—	—	BDPCHST	BDPPLEN	DMAEN	0000	
5008 CEBDADDR 31:16 BDPADDR<31:0>								0000												
								0000												
									0000											
	0200110011	15:0				T				5, 102, 1			1							
5010	CESTAT	31:16	ER	RRMODE<2	2:0>	E	RROP<2:0	>	ERRPHA	SE<1:0>	—	—		BDSTA	TE<3:0>		START	ACTIVE	0000	
		15:0								BDCT	RL<15:0>								0000	
5014	CEINTSRC	31:16					—	—		—	_		—	—	—	—	—	—	0000	
		15:0					—	—		—	_		—	—	AREIF	PKTIF	CBDIF	PENDIF	0000	
5018	CEINTEN	31:16					—	—		—			—	—	—	—	—	—	0000	
		15:0					—	—		—			—	—	AREIE	PKTIE	CBDIE	PENDIE	0000	
501C	CEPOLLCON	31:16		_	—	—			—		—	—	—	—		—	—		0000	
		15:0								BDPPL	CON<15:0>								0000	
5020	CEHDLEN	31:16	_				—	—	-	—	_	—	—	_	—	—	—	—	0000	
		15:0												HDRLE	N<7:0>				0000	
5024	CETRLLEN	31:16	—	-	-	-	—	—	-	—	—	—	—			—	—	—	0000	
		15:0	—	—	—	—	—	—	—	—				TRLRLE	:N<7:0>				0000	

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
		REVISION<7:0>									
22.16	R-0 R-0		R-0	R-0	R-0	R-0	R-0	R-0			
23.10		VERSION<7:0>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	ID<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
				ID<7	:0>						

REGISTER 27-1: CEVER: CRYPTO ENGINE REVISION, VERSION, AND ID REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 **REVISION<7:0>:** Crypto Engine Revision bits

bit 23-16 VERSION<7:0>: Crypto Engine Version bits

bit 15-0 ID<15:0>: Crypto Engine Identification bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	-	—	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	-	—	—		
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	—	—	—	—		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		HDRLEN<7:0>								

REGISTER 27-9: CEHDLEN: CRYPTO ENGINE HEADER LENGTH REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **HDRLEN<7:0>:** DMA Header Length bits For every packet, skip this length of locations and start filling the data.

REGISTER 27-10: CETRLLEN: CRYPTO ENGINE TRAILER LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	—	—	—	—	—	—	—	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	-	—	—			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		TRLRLEN<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 **Unimplemented:** Read as '0'

bit 7-0 **TRLRLEN<7:0>:** DMA Trailer Length bits For every packet, skip this length of locations at the end of the current packet and start putting the next packet.

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2 (CONTINUED)

bit 25-16 **SAMC<9:0>:** Sample Time for the Shared ADC (ADC7) bits

511 20 10	OAmo S									
	111111111 = 1025 TAD7									
	0000000 0000000	001 = 3 TAD7 000 = 2 TAD7								
	Where TA ADCDIV<	AD7 = period of the ADC conversion clock for the Shared ADC (ADC7) controlled by the :6:0> bits.								
	Note:	Unlike the high-speed Class 1 ADC modules, the trigger event for the shared Class-3 ADC7 module initiates the SAMC sampling sequence, rather than the convert sequence.								
		Shared ADC7 Throughput rate:								
		=((1/((Sample time + Conversion time) (TAD))) / #of ADC inputs used in scan list)								
		=((1/((SAMC + # bit resolution +1)(TAD))) / #of ADC inputs used in scan list)								
		For example:								
		SCAN mode enabled with (2) ANx inputs in scan list (i.e., ADCCSSx <cssy>), SAMC = 4</cssy>								
		TAD. 12-bit mode. TAD. = 20 ns = 50 MHz								
		Throughput rate = $(1/((4+13)(20ns)))/2)$								
		= ((1/(17 * 20 ns))/2)								
		= 1.470588 msns								
bit 15	BGVRIEN	Band Gap/VREE Voltage Ready Interrupt Enable bit								
	1 = Interrupt will be generated when the BGVRDDY bit is set									
	0 = No int	terrupt is generated when the BGVRRDY bit is set								
bit 14	REFFLTIEN: Band Gap/VREF Voltage Fault Interrupt Enable bit									
	1 = Intern 0 = No int	upt will be generated when the REFFLT bit is set terrupt is generated when the REFFLT bit is set								
bit 13	EOSIEN: End of Scan Interrupt Enable bit									
	1 = Intern 0 = No int	upt will be generated when EOSRDY bit is set terrupt is generated when the EOSRDY bit is set								
bit 12	ADCEIO\	/R: Early Interrupt Request Override bit								
	1 = Early interrupt generation is not overridden and interrupt generation is controlled by the ADCEIEN1 and ADCEIEN2 registers									
	0 = Early and A	interrupt generation is overridden and interrupt generation is controlled by the ADCGIRQEN1 DCGIRQEN2 registers								
bit 11	Unimpler	nented: Read as '0'								
bit 10-8	ADCEIS<	2:0>: Shared ADC (ADC7) Early Interrupt Select bits								
	These bits select the number of clocks (TAD7) prior to the arrival of valid data that the associated interrupt is generated.									
	 111 = The data ready interrupt is generated 8 ADC clocks prior to end of conversion 110 = The data ready interrupt is generated 7 ADC clocks prior to end of conversion 									
	•									
	001 = The 000 = The	• 001 = The data ready interrupt is generated 2 ADC module clocks prior to end of conversion 000 = The data ready interrupt is generated 1 ADC module clock prior to end of conversion								
	Note: All options are available when the selected resolution, set by the SELRES<1:0> bits (ADCCON1<22:21>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid.									
bit 7	Unimpler	nented: Read as '0'								

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	DIFF43	SIGN43	DIFF42	SIGN42	DIFF41	SIGN41	DIFF40	SIGN40
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	DIFF39	SIGN39	DIFF38	SIGN38	DIFF37	SIGN37	DIFF36	SIGN36
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DIFF35	SIGN35	DIFF34	SIGN34	DIFF33	SIGN33	DIFF32	SIGN32

REGISTER 29-7: ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	DIFF43: AN43 Mode bit
	1 = AN43 is using Differential mode
	0 = AN43 is using Single-ended mode
bit 22	SIGN43: AN43 Signed Data Mode bit
	1 = AN43 is using Signed Data mode
	0 = AN43 is using Unsigned Data mode
bit 21	DIFF42: AN42 Mode bit
	1 = AN42 is using Differential mode
	0 = AN42 is using Single-ended mode
bit 20	SIGN42: AN42 Signed Data Mode bit
	1 = AN42 is using Signed Data mode
	0 = AN42 is using Unsigned Data mode
bit 19	DIFF41: AN41 Mode bit
	1 = AN41 is using Differential mode
	0 = AN41 is using Single-ended mode
bit 18	SIGN41: AN41 Signed Data Mode bit
	1 = AN41 is using Signed Data mode
	0 = AN41 is using Unsigned Data mode
bit 17	DIFF40: AN40 Mode bit
	1 = AN40 is using Differential mode
	0 = AN40 is using Single-ended mode
bit 16	SIGN40: AN40 Signed Data Mode bit
	1 = AN40 is using Signed Data mode
	0 = AN40 is using Unsigned Data mode
bit 15	DIFF39: AN39 Mode bit
	1 = AN39 is using Differential mode
	0 = AN39 is using Single-ended mode
bit 14	SIGN39: AN39 Signed Data Mode bit
	1 = AN39 is using Signed Data mode
	0 = AN39 is using Unsigned Data mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	FLTEN7	MSEL	7<1:0>		FSEL7<4:0>							
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0				
23.10	FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>						
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15.0	FLTEN5 MSEL5<1:0>			F	SEL5<4:0>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0				
	FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>						

REGISTER 30-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
h:+ 00 04	FOR Z 440 + EIEO Coloritor bits
DIL 28-24	FSEL/<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 20
	00001 - Mossage matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
hit 20.16	ESEL 6 -4.0. FIEO Solocition bits
DIL 20-10	F3EL0<4.0>. FIFO Selection bits
	11111 - Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

39.1 Control Registers

TABLE 39-1: SDHC SFR SUMMARY

											Bits								
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	SDHC	31:16								E	COUNT<15:)>							000
C004	BLKCON	15:0	—	—	_	_	—	_					BSIZ	E<9:0>					000
C008	SDHC	31:16									ARG<31:16>	•							000
0000	ARG	15:0									ARG<15:0>								000
COOC	SDHC	31:16	—	—			CIE	DX<5:0>			CTYP	E<1:0>	DPSEL	CIDXCEN	CCRCCEN	—	RESPTY	PE<1:0>	000
0000	MODE	15:0	—	—	—	—	—	—	—	_	_	—	BSEL	DTXDSEL	ACE	N<1:0>	BCEN	DMAEN	000
C010	SHDC	31:16									RESP<31:16	>							000
	RESP0	15:0									RESP<15:0>	•							000
C014	SHDC	31:16									RESP<31:16	>							000
	RESP1	15:0									RESP<15:0>								000
C018	SHDC	31:16									RESP<31:16	>							000
	RESPZ	15:0									RESP<15:0>	•							000
C01C	SHDC	31:16									RESP<31:16	>							000
	RESF3	15:0									RESP<15:0>	•							000
C020	SHDC	31:16									DATA 445-05	>							000
	DAIA	15:0								CMDCUV/							000		
C024	SDHC STAT1	31:10			_	_					DATASSLVL	DATAZSEVE	DATATSLVL	DATAUSLVL	WPSLVL				000
	0000	15.0					DREN												000
C028	CON1	15.0						WRONKEIW		SDBD	CDSSEL					HSEN		JOBOREQ	000
	00110	31.16								SUDF SW/DALL	CD33EL	CDILVL		DIMAGE	L<1.02			_	000
C02C	CON2	15.0							SWITCHID	SWITALL	_						ICI KSTABI E	ICI KEN	000
	SDHC	31.16	_	_	_	_	_		ADEIE	ACEIE	CLEIF	DEBEIE	DCRCEIE	DTOFIE	CIDXEIE	CEBEIE	CCRCEIF	CTOFIE	000
C030	INTSTAT	15:0	EIF	_		_	_		_	CARDIF	CARDRIF	CARDIIF	BRRDYIF	BWRDYIF	DMAIF	BGIF	TXCIF	CCIF	000
	SDHC	31:16	_	_	_	_	_	_	ADEIE	AACEIE	CLEIE	DEBEIE	DCRCEIE	DTOEIE	CIDXEIE	CDEBEIE	CCRCEIE	CTOEIE	000
C034	INTEN	15:0	FTZIE	_	_	_	_	_	_	CARDIE	CARDRIE	CARDIIE	BRRDYIE	BWRDYIE	DMAIE	BGIE	TXCIE	CCE	000
	SDHC	31:16	_	_		_	_	_	ADEISE	ACEISE	CLEISE	DEBEISE	DCRCEISE	DTOEISE	CIDXEISE	CEBEISE	CEBEISE	CCRCEISE	000
C038	INTSEN	15:0	FTZEISE	_	_	_	_	_	-	CARDISE	CARDRISE	CARDIISE	BRRDYISE	BWRDYISE	DMAISE	BGISE	TXCISE	CCISE	000
0000	SDHC	31:16	—	_	_	_	_	_	_	_	1 <u> </u>	_	_	_	_	_	_	—	000
C03C	STAT2	15:0	_	—	_	_	_	_	_	_	CNISSE	—	—	ACIDXE	ACEBE	ACCRCE	ACTOE	ACNEXEC	000
0040	SDHC	31:16	SLOTTY	PE<1:0>	ASYNCINT	_	_	_	_	VOLT3V3	SRESUME	—	HISPEED	—	ADMA2	_	MBLEN	l<1:0>	000
C040	CAP	15:0				BAS	ECLK<7:0>	>	•		TOCLKU	—			TOCLK	FREQ<5:0>	•		000
C049	SDHC	31:16	—	_	—	—	—				_	—		_	_		—	—	000
C048	MAXCAP	15:0	—	—	_	—		_	_	_				MC3\	/3<7:0>				000
C050	SDHCEE	31:16	—	_	—	—	—	—	FEAE	FEACE	FECLE	FEDEBE	FEDCRCE	FEDTOE	FEIDXE	FECEBE	FECCRCE	FECTOE	000
0050	SUNCE	15:0	_	—	_	—		_	_	_	FECNIACE	—	_	FEACIDXE	FEACEBE	FEACCRCE	FEACTOE	FEACNEE	000
								-		-									

Legend: '--' = unimplemented; read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	—			CIDX<5:0>	(1)		
00.40	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	U-0	R/W-0	R/W-0
23:16	CTYPI	E<1:0>	DPSEL	CIDXCEN ⁽²⁾	CCRCCEN ⁽³⁾	—	RESPTYF	PE<1:0>
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—		—	—	_	_	_
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0
7:0			BSEL	DTXDSEL	ACEN<1:0>		BCEN	DMAEN

REGISTER 39-3: SDHCMODE: SDHC MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-24 **CIDX<5:0>:** Command Index bits⁽¹⁾ These bits represent the command number (0-63).
- bit 23-22 **CTYPE<1:0>:** Command Type bits
 - 11 = Abort
 - 10 = Resume
 - 01 = Suspend
 - 00 = Normal
- bit 21 **DPSEL:** Data Present Select bit
 - 1 = Data is present
 - 0 = Data is not present
- bit 20 CIDXCEN: Command Index Check Enable bit⁽²⁾
 - 1 = Command index check is enabled
 - 0 = Command index check is disabled
- bit 19 CCRCCEN: Command CRC Check Enable bit⁽³⁾
 - 1 = Command CRC check is enabled
 - 0 = Command CRC check is disabled
- bit 18 Unimplemented: Read as '0'

bit 17-16 **RESPTYPE<1:0>:** Response Type Select bits

- 11 = Response length 48; check busy after response
- 10 = Response length 48
- 01 = Response length 136
- 00 = No response
- bit 15-6 Unimplemented: Read as '0'
- bit 5 BSEL: Multiple/Single Block Select bit
 - 1 = Multiple block, set when issuing multiple transfer commands using DAT lines
 - 0 = Single block
- **Note 1:** Refer to bits 45-40 of the command format in the "SD Host Controller Simplified Specification" (version 2.00).
 - 2: If these bits are set to '1', the SDHC will check the index field in the response to see if it has the same value as the CIDX<5:0> bits, if not, it will be reported as a command index error.
 - **3:** If these bits are set to '1', the SDHC will check the CRC field in the response and reports a command CRC error upon a CRC error detection.

FIGURE 44-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

FIGURE 44-30: EJTAG TIMING CHARACTERISTICS

TABLE 44-59: EJTAG TIMING REQUIREMENTS

AC CHA	RACTERISTI	CS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions			
EJ1	Ттсксус	TCK Cycle Time	25	—	ns				
EJ2	Ттскнідн	TCK High Time	10		ns	_			
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—			
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_			
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_			
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	—	5	ns	_			
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_			
EJ8	TTRSTLOW	TRST Low Time	25		ns	_			
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

176-Lead Low Profile Quad Flat Pack (2J) - 20x20x1.4 mm Body [LQFP] With 7x7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-367A Sheet 1 of 2