

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025dab176t-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

288-P	IN LFBGA (BOTTOM VIE	N)				
		A1			V1	
PI	C32MZ1025DAA288 C32MZ1025DAB288 C32MZ1064DAA288	F6			N6	
PI PI PI PI	C32MZ1064DAB288 C32MZ2025DAA288 C32MZ2025DAB288 C32MZ2025DAB288 C32MZ2064DAA288 C32MZ2064DAB288	F13			N1	3 V18
	Polarity Indica	A1	8			
Ball/Pin Number	Full Pin Name			Ball/Pin Number	Full Pin Name	
V3	DDRA15		-	V11	ERXDV/ECRSDV/RH13	
V4	VDDCORE			V12	ERXD3/RH9	
V5	RTCC/RPD0/RD0			V13	ETXD2/RH0	
V6	SCK4/RD10			V14	ETXD0/RJ8	
V7	GD6/EBIA11/RPF0/PMA11/RF0			V15	ETXERR/RJ0	
V8	GD21/EBIA23/RH15			V16	ETXEN/RPD6/RD6	
				V17	GD1/EBID14/PMD14/RA4	
V9	GD3/EBIA8/RPG0/PMA8/RG0			V 17		

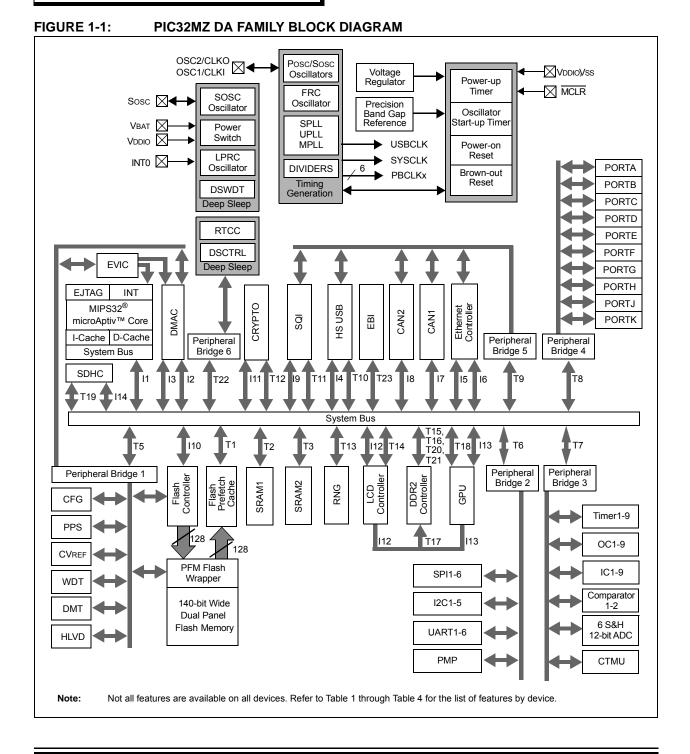
The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.

5: This pin is a No Connect when DDR is not connected in the system.


6: These pins are restricted to input functions only.

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This data sheet contains device-specific information for the PIC32MZ DA family of devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ DA family of devices.

Table 1-1 through Table 1-24 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 5 through Table 7).

		Pin Number			5.4	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
			DDR2 S	SDRAM Co	ntroller	
DDRCK	DDR Internal	DDR Internal	K2	0	SSTL	Differential Clocks
DDRCK	to the Package	to the Package	K1	0	SSTL	
DDRCKE			L2	0	SSTL	Clock Enable
DDRCS0			N2	0	SSTL	Chip Select 0
DDRRAS			M1	0	SSTL	Row Address Strobe
DDRCAS			P2	0	SSTL	Column Address Strobe
DDRWE			L1	0	SSTL	Write Enable Strobe
DDRLDM			G3	0	SSTL	Lower Data Byte Mask
DDRUDM			A3	0	SSTL	Upper Data Byte Mask
DDRODT			N1	0	SSTL	On-Die Termination
DDRLDQS			E1	I/O	SSTL	Lower Data Byte Qualifier Strobes (Differential)
DDRLDQS			E2	I/O	SSTL	
DDRUDQS			B2	I/O	SSTL	Upper Data Byte Qualifier Strobes (Differential)
DDRUDQS			A2	I/O	SSTL	
DDRBA0			M2	0	SSTL	Bank Address Select 0
DDRBA1			M3	0	SSTL	Bank Address Select 1
DDRBA2			U4	0	SSTL	Bank Address Select 2
DDRA0			R1	0	SSTL	DDR2 Address Bus
DDRA1			L3	0	SSTL	-
DDRA2			N3	0	SSTL	
DDRA3			R2	0	SSTL	-
DDRA4			P3	0	SSTL	
DDRA5			T1	0	SSTL	
DDRA6			U1	0	SSTL	
DDRA7			T2	0	SSTL	
DDRA8			U2	0	SSTL	
DDRA9			R3	0	SSTL	
DDRA10]		P1	0	SSTL	
DDRA11]		V2	0	SSTL	
DDRA12			Т3	0	SSTL	
DDRA13			U3	0	SSTL	
DDRA14]	ļ [T4	0	SSTL	
DDRA15		_	V3	0	SSTL]
Legend:	CMOS = CMOS	-compatible input	or output	Analog = A	nalog input	P = Power

TABLE 1-22: DDR2 SDRAM CONTROLLER PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels O = Output

9.....

I = Input

TTL = Transistor-transistor Logic input buffer PPS = Peripheral Pin Select SSTL = Stub Series Terminated Logic

SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS (CONTINUED) **TABLE 4-8:**

			:	SBTxREGy Reg	jister (see Note	7)			SBTxRD	y Register	SBTxWR	/ Register
Target Protection Number	Target Description (see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
14	DSCTRL	SBT14REG0	R	0x1F8C0000	R	4 KB	_	0	SBT14RD0	R/W ⁽¹⁾	SBT14WR0	R/W ⁽¹⁾
	RTCC	SBT14REG1	R/W	R/W	R/W	R/W	_	3	SBT14RD1	R/W ⁽¹⁾	SBT14WR1	R/W ⁽¹⁾
15	USB	SBT15REG0	R	0x1F8E0000	R	4 KB	—	0	SBT15RD0	R/W ⁽¹⁾	SBT15WR0	R/W ⁽¹⁾
	Crypto		R	0x1F8E5000	R	4 KB	_	0		R/W ⁽¹⁾		R/W ⁽¹⁾
	RNG		R	0x1F8E6000	R	4 KB	_	0		R/W ⁽¹⁾		R/W ⁽¹⁾
	SDHC		R	0x1F8EC000	R	4 KB	—	0		R/W ⁽¹⁾		R/W ⁽¹⁾
16	External Memory via DDR2 and	SBT16REG0	R	0x08000000	R	R(4)	_	0	SBT16RD0	R/W ⁽¹⁾	SBT16WR0	R/W ⁽¹⁾
	DDR2 Targets 3 and 4	SBT16REG1	R/W	R/W	R/W	R/W	_	3	SBT16RD1	R/W ⁽¹⁾	SBT16WR1	R/W ⁽¹⁾
		SBT16REG2	R/W	R/W	R/W	R/W	1	2	SBT16RD2	R/W ⁽¹⁾	SBT16WR2	R/W ⁽¹⁾
		SBT16REG3	R/W	R/W	R/W	R/W	1	2	SBT16RD3	R/W ⁽¹⁾	SBT16WR3	R/W ⁽¹⁾
		SBT16REG4	R/W	R/W	R/W	R/W	1	2	SBT16RD4	R/W ⁽¹⁾	SBT16WR4	R/W ⁽¹⁾
_egend:	R = Read; R/W = Rea	ad/Write;	'x' in a registe	r name = 0-13;	'y' in	a register na	me = 0-8.		•		•	•

Legend:

R = Read; R/W = Read/Write;

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2:

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset. The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset. 3:

Refer to the Device Memory Map (Figure 4-1) for specific device memory sizes and start addresses. 4:

5: See Table 4-2 for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

7: The 'x' in the SBTxREGy, SBTxRDy, and SBTxWRy registers represents the target protection number and not the actual target number (e.g., for SQI 'x' = 13 and not 11, whereas 11 is the actual target number).

TABLE 4-10: SYSTEM BUS TARGET PROTECTION GROUP 0 (T0PGV0 - T0PGV3) REGISTER MAP

	LL 4 -10.	010		000					0 (101		<u>oi oi o</u> ,			-11					
ess		0									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	SBT0ELOG1	31:16	MULTI	—	—	—		CODE	<3:0>		_			—	—		—		0000
0020	8020 SBT0ELOG1					INI	FID<7:0>					REGIO	N<3:0>		—	С	MD<2:0>		0000
8024	SBT0ELOG2	31:16		—	_	_	_	_	_		_			_	—		_		0000
0024	3BTUELOG2	15:0		—	_	_	_	_	_		_			_	—		GROU	P<1:0>	0000
8028	SBT0ECON	31:16	_	—	—	—	—	—	—	ERRP	_		_	_	—		_		0000
0020	SEIVECON	15:0		—	_	_	_	_	_		_			_	—		_		0000
8030	SBT0ECLRS	31:16		—	_	_	_	_	_		_			_	—		_		0000
8030	SBIUECLKS	15:0		—	_	_	_	_	_		_			_	—		_	CLEAR	0000
8038	SBT0ECLRM	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0030	SBIULCERM	15:0		—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
8040	SBT0REG0	31:16								BA	SE<21:6>								xxxx
0040	SBIOKEGO	15:0			BA	ASE<5:0>			PRI	—			SIZE<4:0	>		—	—	—	xxxx
8050	SBT0RD0	31:16	—		—	—	—	—	—	_	_	_	_	—	—	_	_	_	xxxx
0000	SBIORED	15:0	—		—	—	—	—	—	_	_	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8058	SBT0WR0	31:16	—		—	—	—	—	—	_	_	_	_	—	—	_	—		xxxx
0000	36100010	15:0	—	—	—	—	—	_	—	_	_	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8060	SBT0REG1	31:16								BA	SE<21:6>								xxxx
0000	OBTINEOT	15:0			BA	SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	xxxx
8070	SBT0RD1	31:16	_	—	—	—	—	—	—	_	_	_	_	—	—	—	—	—	xxxx
0010	GETUKET	15:0	—	_	—	—	_	—	—	_	—	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8078	SBT0WR1	31:16	—	_	—	—	_	—	—	_	—	_	_	—	—	_	—	_	xxxx
0070	00100011	15:0	—	—	—	—	—	—	—	—	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Graphics (DA) Family

DS60001361F-page 78

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

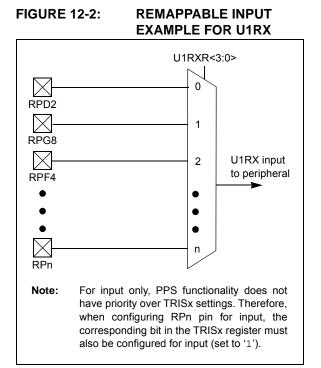
bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 TXMAXP<10:0>: Maximum TX Payload per transaction Control bits


This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

TXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

12.4.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 12-1, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-1.

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

TABLE 12-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX 0010 = U4RTS
RPF4	RPF4R	RPF4R<3:0>	0011 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0100 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0101 = SDO1
RPB10	RPB10R	RPB10R<3:0>	0110 = SDO2 0111 = SDO3
RPB5	RPB5R	RPB5R<3:0>	1000 = Reserved
RPC1	RPC1R	RPC1R<3:0>	1001 = SDO5
RPD14	RPD14R	RPD14R<3:0>	1010 = SS6 1011 = OC3
RPG1	RPG1R	RPG1R<3:0>	1100 = OC6
RPA14	RPA14R	RPA14R<3:0>	1101 = REFCLKO4
RPD6	RPD6R	RPD6R<3:0>	1110 = C2OUT 1111 = C1TX
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U1TX 0010 = U2RTS
RPF5	RPF5R	RPF5R<3:0>	0011 = U5TX
RPD11	RPD11R	RPD11R<3:0>	0100 = U6RTS
RPF0	RPF0R	RPF0R<3:0>	
RPB1	RPB1R	RPB1R<3:0>	0111 = SDO3
RPE5	RPE5R	RPE5R<3:0>	1000 = SDO4
RPB3	RPB3R	RPB3R<3:0>	1001 = SDO5 1010 = Reserved
RPC4	RPC4R	RPC4R<3:0>	1011 = OC4
RPG0	RPG0R	RPG0R<3:0>	1100 = OC7 1101 = Reserved
RPA15	RPA15R	RPA15R<3:0>	1101 = Reserved
RPD7	RPD7R	RPD7R<3:0>	1111 = REFCLKO1

NOTES:

REGISTER 25-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

00 = Wait of 0 TPB (default)

- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

REGISTER 29-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 5-6 Unimplemented: Read as '0'

bit 7

- bit 4-0 **ANEN4: ANEN0:** ADC4-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	FLTEN15	MSEL1	5<1:0>		FSEL15<4:0>							
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	FLTEN14	MSEL1	4<1:0>	FSEL14<4:0>								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
10.0	FLTEN13	MSEL1	3<1:0>		F	SEL13<4:0>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0	FLTEN12	MSEL1	2<1:0>	FSEL12<4:0>								

REGISTER 30-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	FLTEN15: Filter 15 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL14<4:0>: FIFO Selection bits
511 20 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in EIEO buffer 1
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 31-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—			_	—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—			_	—	—	
15:8	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	HTEN	MPEN	—	NOTPM	PMMODE<3:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	CRCERREN	CRCOKEN	RUNTERREN	RUNTEN	UCEN	NOTMEEN	MCEN	BCEN	

Legend:

R = Readable bit	Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **HTEN:** Enable Hash Table Filtering bit
 - 1 = Enable Hash Table Filtering
 - 0 = Disable Hash Table Filtering
- bit 14 **MPEN:** Magic Packet[™] Enable bit 1 = Enable Magic Packet Filtering 0 = Disable Magic Packet Filtering
 - 0 = Disable Magic Packet Filtering
- bit 13 Unimplemented: Read as '0'
- bit 12 NOTPM: Pattern Match Inversion bit

1 = The Pattern Match Checksum must not match for a successful Pattern Match to occur

0 = The Pattern Match Checksum must match for a successful Pattern Match to occur

This bit determines whether Pattern Match Checksum must match in order for a successful Pattern Match to occur.

- bit 11-8 **PMMODE<3:0>:** Pattern Match Mode bits
 - 1001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Packet = Magic Packet)^(1,3)
 - 1000 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Hash Table Filter match)^(1,1)
 - 0111 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0110 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0101 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0100 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0011 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0010 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches)⁽¹⁾
 - 0000 = Pattern Match is disabled; pattern match is always unsuccessful

Note 1: XOR = True when either one or the other conditions are true, but not both.

- 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
- 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
31:24	_	_	_	_	—	BPORCHX<10:8>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	BPORCHX<7:0>										
15.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15:8		—	_	_	—	BPORCHY<10:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	BPORCHY<7:0>										

REGISTER 36-7: GLCDBPORCH: GRAPHICS LCD CONTROLLER BACK PORCH REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 **BPORCHX<10:0>:** X Dimension Back Porch Lines bits These bits specify the front porch X dimension lines.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **BPORCHY<10:0>:** Y Dimension Back Porch Pixel Clocks bits These bits specify the front porch Y dimension pixel clocks.

REGISTER 36-8: GLCDCURSOR: GRAPHICS LCD CONTROLLER CURSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
31:24	—	—	_	_	_	CURSORX<10:8>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CURSORX<7:0>											
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
15:8	—	—	_	—	_	CURSORY<10:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CURSOR	Y<7:0>							

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-27 Unimplemented: Read as '0'

bit 26-16 **CURSORX<10:0>:** Cursor X Dimension Position bits These bits specify the X dimension position of the cursor

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **CURSORY<10:0>:** Cursor Y Dimension Position bits These bits specify the Y dimension position of the cursor NOTES:

TABLE 39-1: SDHC SFR SUMMARY (CONTINUED)

											Bits								
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0054	SDHC	31:16	_	_	-		_	_	-	_	_	_	—	_	_	_	-	_	0000
C054		15:0	_	_	_	_	—	_	_	_	_	_	—	—		ALMERR	AERRS	T<1:0>	0000
0050	SDHC	31:16		ADDR<31:16> 000									0000						
C058	8 AABBB	15:0									ADDR<15:0>								0000

Legend: '—' = unimplemented; read as '0'.

REGISTER 39-13:	SDHCCAP: SDHC CAPABILITIES REG	GISTER
-----------------	--------------------------------	--------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1, HS		
31:24	—	—	—	—	—	_	—	VOLT3V3		
00.40	R-x, HS	U-0	R-x, HS	U-0	R-x, HS	U-0	R-0, HS	R-0, HS		
23:16	SRESUME	—	HISPEED	—	ADMA2	_	MBLE	N<1:0>		
15:0	U-0	U-0	R-x, HS	R-x, HS	R-x, HS	R-x, HS	R-x, HS	R-x, HS		
15:8	—	—	BASECLK<5:0>							
7.0	R-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0	TOCLKU	_			TOCLKF	REQ<5:0>				

Legend:		HS = Hardware settable				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-25 Unimplemented: Read as '0'

- bit 24 VOLT3V3: 3.3V Voltage Support bit
 - 1 = Voltage of 3.3V is supported
- bit 23 SRESUME: Suspend/Resume Support bit
 - 1 = Suspend/resume is supported
 - 0 = Suspend/resume is not supported
- bit 22 Unimplemented: Read as '0'
- bit 21 HISPEED: High-speed Support bit
 - 1 = High speed is supported
 - 0 = High speed is not supported
- bit 20 Unimplemented: Read as '0'
- bit 19 ADMA2: ADMA2 Support bit
 - 1 = ADMA2 is supported
 - 0 = ADMA2 is not supported
- bit 18 Unimplemented: Read as '0'

bit 17-16 MBLEN<1:0>: Maximum Block Length bits

- 11 = Reserved
- 10 = 2048
- 01 = 1024
- 00 = 512
- bit 15-14 Unimplemented: Read as '0'

bit 13-8 BASECLK<5:0>: Base Clock Frequency for SDCLK bits

bit 6 Unimplemented: Read as '0'

bit 7

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	_	_	_	_	_	_	—
22:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—				—	_	_	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	_	_	_	—	_	_	_
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_			_	_			_

REGISTER 41-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

Legend:	r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

REGISTER 41-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	_	—	—	CP	_	_	—	_
22:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	_	—	—	-	—	_	—	_
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	—	_	—	_	—	_
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_		_	_	_		_

Legend:	r = Reserved bit	P = Programmable bit	le bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

DC CHA	ARACT	ERISTICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾	
		Output High Voltage I/O Pins 4x Sink Driver Pins - RA0-RA3, RA9, RA10, RA14, RA15 RB0, RB4, RB6, RB7, RB10, RB11, RB12, RB14 RC12-RC15 RD6, RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8, RF12 RG15 RH0, RH1, RH4-RH14 RJ0-RJ2, RJ8, RJ9, RJ11	2.4	_	_	V	IOH ≥ -10 mA, VDDIO = 3.3\	
DO20	Vон	Output High Voltage I/O Pins: 8x Sink Driver Pins - RA4, RA5 RB2, RB3, RB5, RB8, RB9, RB13, RB14, RB15 RC1-RC4 RD0-RD3, RD9, RD10, RD12, RD13 RE0-RE7 RF0, RF1, RF4, RF5, RF13 RG0, RG1, RG6, RG7, RG8, RG9 RH2, RH3, RH7, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	2.4	_	_	V	IOH ≥ -15 mA, VDDIO = 3.3V	
		Output High Voltage I/O Pins: 12x Source Driver Pins - RA6, RA7 RD4, RD5 RG12-RG14	2.4	_	_	V	IOH ≥ -20 mA, VDDIO = 3.3\	

TABLE 44-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
25.0 "Parallel Master Port (PMP)"	The All Resets value for bits 15:0 of the PMSTAT register in the Parallel Master Port Register Map was updated (see Table 25-1).
26.0 "External Bus Interface (EBI)"	The All Resets values were updated in the EBI Register Map (see Table 26-2).
29.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to- Digital Converter (ADC)"	The All Resets values for the ADCCON1 and ADCxTIME registers were updated and the Virtual Addresses for the ADCxCFG, ADCSYSCFGx, and ADCDATAx registers were updated in the ADC Register Map (see Table 29-1).
34.0 "High/Low-Voltage Detect (HLVD)"	The chapter was renamed and the introduction was updated.
	The HLVDCON register was updated (see Table 34-1 and Register 34-1).
	High/Low-Voltage Detect (HLVD) Module Block Diagram was updated (see Figure 34-1)
36.0 "Graphics LCD (GLCD) Controller"	The Graphics LCD Controller Register Map was updated (see Table 36-1).
	These registers were updated:
	 Register 36-2: "GLCDCLKCON: Graphics LCD Controller Clock Control Register"
	 Register 36-4: "GLCDRES: Graphics LCD Controller Resolution Register" Register 36-5: "GLCDFPORCH: Graphics LCD Controller Front Porch Register"
	 Register 36-6: "GLCDBLANKING: Graphics LCD Controller Blanking Register"
	 Register 36-7: "GLCDBPORCH: Graphics LCD Controller Back Porch Register"
	• Register 36-8: "GLCDCURSOR: Graphics LCD Controller Cursor Register"
	 Register 36-10: "GLCDLxstart: graphics lcd controller layer 'x' start register ('x' = 0-2)"
	 Register 36-11: "GLCDLxsize: graphics lcd controller layer 'x' size register ('x' = 0-2)"
	 Register 36-14: "GLCDLxres: graphics lcd controller layer 'x' resolution register ('x' = 0-2)"
37.0 "2-D Graphics Processing Unit (GPU)"	The introduction was updated.
39.0 "Secure Digital Host Controller (SDHC)"	The SDHC block diagram was updated (see Figure 39-1).
	The SDHC Register Map was updated (see Table 39-1).
	The bit values for the CDSLVL bit in the SDHCSTAT1 register were updated (see Register 39-6).
	The SDHCCAP register was updated (see Register 39-13).
40.0 "Power-Saving Features"	40.2.3 "Deep Sleep Mode" was updated.
	References to High-Voltage Detect were removed in the PMD Register Summary (Table 40-2) and the PMD Bits and Locations (Table 40-3).
41.0 "Special Features"	The CFGCON2 register was updated (see Table 41-3 and Register 41-12).