

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	288-LFBGA
Supplier Device Package	288-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025dab288t-i-4j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

288-P	IN LFBGA (BOTTOM VIEW)		
	A1		V1
PI	C32MZ1025DAA288 F6 C32MZ1025DAB288		N6
PI PI PI PI	C32MZ1064DAA288 C32MZ1064DAB288 C32MZ2025DAA288 C32MZ2025DAB288 C32MZ2064DAA288 C32MZ2064DAA288 C32MZ2064DAB288		N13 V18
		A18	
	Polarity Indicator		
Ball/Pin Number	Full Pin Name	Ball/Pin Number	Full Pin Name
D15	Vddio	G8	VSS1V8
D16	VDDIO	G9	VSS1V8
D17	PGED2/C1INA/AN46/RPB7/RB7	G10	Vss
D18	PGED1/AN0/RPB0/CTED2/RB0	G11	Vddio
E1	DDRLDQS	G12	AVss
E2	DDRLDQS	G13	AVdd
E3	DDRDQ12	G15	Vddio
E4	TRCLK/SDCK/SQICLK/RA6	G16	No Connect
E15	VDDIO	G17	OSC1/CLKI/RC12
E16	EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9	G18	OSC2/CLKO/RC15
E17	AN45/RPB5/RB5	H1	DDRDQ2
E18	CVREFOUT/AN5/RPB10/RB10	H2	DDRDQ5
F1	DDRDQ0	H3	DDRDQ6
F2	DDRDQ7	H4	TRD0/SDDATA0/SQID0/RG13
F3	DDRDQ11	H6	VDDR1V8 ⁽⁴⁾
F4	TRD3/SDDATA3/SQID3/RA7	H7	VDDR1V8 ⁽⁴⁾
F6	VSS1V8	H8	VDDR1V8 ⁽⁴⁾
F7	VSS1V8	H9	VSS1V8
F8	VSS1V8	H10	Vss
F9	Vss	H11	VDDIO
F10	Vss	H12	VDDIO
F11	VDDIO	H13	VDDIO
F12	AVss	H15	VDDIO
F13	AVDD	H16	TCK/AN24/RA1
F15	VDDIO	H17	SOSCI/RPC13 ⁽⁶⁾ /RC13 ⁽⁶⁾
F15 F16	VBAT	H18	SOSCO/RPC13 ⁽⁶⁾ /T1CK/RC14 ⁽⁶⁾
F16 F17	No Connect	J1	DDRVREF ⁽⁵⁾
F18	No Connect		No Connect DDRDQ1
G1	DDRDQ3		
G2	DDRDQ4		TRD2/SDDATA2/SQID2/RG14
G3			VDDR1V8(4)
G4	TRD1/SDDATA1/SQID1/RG12		VDDR1V8 ⁽⁴⁾
G6	VSS1V8	J8	VDDR1V8 ⁽⁴⁾
G7	VSS1V8	J9	Vss1v8 ble 4 for the available peripherals and 12.4 "Peripheral Pin

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.

5: This pin is a No Connect when DDR is not connected in the system.

6: These pins are restricted to input functions only.

3.2 Architecture Overview

The MIPS32 microAptiv Microprocessor core in PIC32MZ DA family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- Memory Management Unit (MMU)
- · Instruction/Data cache controllers
- · Power Management
- Instructions and data caches
- microMIPS support
- Enhanced JTAG (EJTAG) controller

3.2.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Trap condition comparator
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- · Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x32) represents the *rs* operand. The second number ('32' of 32x32) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bitper-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1:	MIPS32 microAptiv MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER
	MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	5	1
MSUB/MSUBU (HI/LO destination)	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	_	—	—	
00.16	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
23:16	—	—	—	—	—	_	VOFF<	:17:16>	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				VOFF	-<15:8>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
7:0	VOFF<7:1>								

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER (x = 0-190)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

bit 17-1 VOFF<17:1>: Interrupt Vector 'x' Address Offset bits

bit 0 Unimplemented: Read as '0'

TABLE 12-4: PORTB REGISTER MAP

ess										Bits									
Virtual Address (BF86_#) Register Name ⁽¹⁾	Register Name ⁽¹⁾ Bit Range		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0100 ANSELE	3 31:		—	_	_	_	_	_	_	—	—	—	—	_	—	_	—	_	0000
	15		ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	FFBF
0110 TRISB	31:				-		-	-	-	-			-		-	TRISB2		-	0000
	15		TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	-	TRISB1	TRISB0	FFFF
0120 PORTB	31: 15		— RB15	— RB14	— RB13	— RB12	 RB11	— RB10	RB9		— RB7	— RB6	RB5	RB4	RB3	— RB2	— RB1		0000
	31:	-	RDIJ	KD14	- KD13	- KD12		- KB10	KD9	RDO	RD7	RDU	RDJ	- KD4	квэ —	- KD2	RDI	RDU	xxxx 0000
0130 LATB	15		LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
	31:													-					0000
0140 ODCB	15		ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
	31.		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0150 CNPUE	15		CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
	31:	16	_		_	_	_	_	_	_	_		_	_	_	_	_	_	0000
0160 CNPDE	15	:0 C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
	31:	16	_	_	_	_	_	_	_	_	_	—	_	_	—	_	_	_	0000
0170 CNCON	B 15	:0	ON	_	_	_	EDGE DETECT	_	_	_	_	_	_	_	_	_	_	_	0000
0180 CNENE	31:	16	—	_	_	_	_	—	—	—	_	_	_	_	_	_	_	_	0000
UIOU CINEINE	15	:0 (CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
	31:	16	—			_	—		_	_		—			—	_	-	_	0000
0190 CNSTAT	B 15	:0 g	CN STATB15	CN STATB14	CN STATB13	CN STATB12	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000
01A0 CNNEE	31:	16	—			_	—	-	_	_		_			—	—		—	0000
OTAO CINILL	15	:0 C	CNNEB15	CNNEB14	CNNEB13	CNNEB12	CNNEB11	CNNEB10	CNNEB9	CNNEB8	CNNEB7	CNNEB6	CNNEB5	CNNEB4	CNNEB3	CNNEB2	CNNEB1	CNNEB0	0000
01B0 CNFB	31:		—	_	_	—	—	—	—	—		—	_		—	—		—	0000
	15		CNFB15	CNFB14	CNFB13	CNFB12	CNFB11	CNFB10	CNFB9	CNFB8	CNFB7	CNFB76	CNFB5	CNFB4	CNFB3	CNFB2	CNFB1	CNFB0	0000
01C0 SRCON	31:		—	_	_	_		_	—	—	—	—	—	—	—	—	—	—	0000
	15		SR1B15	SR1B14	SR1B13	SR1B12	SR1B11	SR1B10	SR1B9	SR1B8	SR1B7	SR1B6	SR1B5	SR1B4	SR1B3	SR1B2	SR1B1	SR1B0	0000
01D0 SRCON1	B 31:		—	—	—	—		—	—	—	—		—		—		—	—	0000
	15		SR0B15	SR0B14	SR0B13	SR0B12	SR0B11	SR0B10	SR0B9	SR0B8	SR0B7	SR0B6	SR0B5	SR0B4	SR0B3	SR0B2	SR0B1	SR0B0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				PSINTV<	31:24>					
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	PSINTV<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8				PSINTV•	<15:8>					
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				PSINTV	<7:0>					

REGISTER 17-7: DMTPSINTV: POST STATUS CONFIGURE DMT INTERVAL STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	
-n = Bit Value at POR: ('0', '1', x = unkne	own)	P = Programmable bit	r = Reserved bit

bit 31-8 **PSINTV<31:0>:** DMT Window Interval Configuration Status bits

This is always the value of the DMTINTV<2:0> bits in the DEVCFG1 Configuration register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	_	_	_	_	_	—
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

REGISTER 23-1: I2CxCON: I²C CONTROL REGISTER

Legend:	HC = Cleared in Hardware	9	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

bit 31-23	Unimplemented: Read as '0'
bit 22	PCIE: Stop Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Stop condition
	0 = Stop detection interrupts are disabled
bit 21	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Start or Restart conditions
	0 = Start detection interrupts are disabled
bit 20	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)
	1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of the
	I2COV bit (I2CxSTAT<6>)only if the RBF bit (I2CxSTAT<2>) = 0
1.11.40	0 = I2CxRCV is only updated when the I2COV bit (I2CxSTAT<6>) is clear
bit 19	SDAHT: SDA Hold Time Selection bit
	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
L:1 40	0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 18	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)
	 1 = Enable slave bus collision interrupts 0 = Slave bus collision interrupts are disabled
bit 18	AHEN: Address Hold Enable bit (Slave mode only)
	1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared and the SCL will be held low.
	0 = Address holding is disabled
bit 16	DHEN: Data Hold Enable bit (I ² C Slave mode only)
	1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
	0 = Data holding is disabled
bit 15	ON: I ² C Enable bit
	1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
	0 = Disables the I^2C module; all I^2C pins are controlled by PORT functions
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode

- 1 = Discontinue module operation when device enters Idle mode
- 0 = Continue module operation in Idle mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	—	—	_	_	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	_	—	—	—	_	—				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				BDPPLCO	N<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	BDPPLCON<7:0>											

REGISTER 27-8: CEPOLLCON: CRYPTO ENGINE POLL CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 BDPPLCON<15:0>: Buffer Descriptor Processor Poll Control bits

These bits determine the number of cycles that the DMA transmit BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 29-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

NEO131 EN	23-0. ADCINICONZ. ADC INFOT W
bit 21	DIFF26: AN26 Mode bit
	1 = AN26 is using Differential mode
	0 = AN26 is using Single-ended mode
bit 20	SIGN26: AN26 Signed Data Mode bit
	1 = AN26 is using Signed Data mode
	0 = AN26 is using Unsigned Data mode
bit 19	DIFF25: AN25 Mode bit
	1 = AN25 is using Differential mode
	0 = AN25 is using Single-ended mode
bit 18	SIGN25: AN25 Signed Data Mode bit
	1 = AN25 is using Signed Data mode
	0 = AN25 is using Unsigned Data mode
bit 17	DIFF24: AN24 Mode bit
	1 = AN24 is using Differential mode
	0 = AN24 is using Single-ended mode
bit 16	SIGN24: AN24 Signed Data Mode bit
	1 = AN24 is using Signed Data mode
	0 = AN24 is using Unsigned Data mode
bit 15	DIFF23: AN23 Mode bit
	1 = AN23 is using Differential mode
	0 = AN23 is using Single-ended mode
bit 14	SIGN23: AN23 Signed Data Mode bit
	1 = AN23 is using Signed Data mode
	0 = AN23 is using Unsigned Data mode
bit 13	DIFF22: AN22 Mode bit
	1 = AN22 is using Differential mode
	0 = AN22 is using Single-ended mode
bit 12	SIGN22: AN22 Signed Data Mode bit
	1 = AN22 is using Signed Data mode
	0 = AN22 is using Unsigned Data mode
bit 11	DIFF21: AN21 Mode bit
	1 = AN21 is using Differential mode
	0 = AN21 is using Single-ended mode
bit 10	SIGN21: AN21 Signed Data Mode bit
	1 = AN21 is using Signed Data mode
	0 = AN21 is using Unsigned Data mode
bit 9	DIFF20: AN20 Mode bit
	1 = AN20 is using Differential mode
	0 = AN20 is using Single-ended mode
bit 8	SIGN20: AN20 Signed Data Mode bit
	1 = AN20 is using Signed Data mode
	0 = AN20 is using Unsigned Data mode
bit 7	DIFF19: AN19 Mode bit
	1 = AN19 is using Differential mode
	0 = AN19 is using Single-ended mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	—	—	—	TRGSRC3<4:0>							
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	—	—	—		Т	RGSRC2<4:0)>				
15:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	—	—	—		Т	RGSRC1<4:0)>				
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0			_		Т	RGSRC0<4:0)>				

REGISTER 29-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits

11111 = Reserved 11110 = Reserved 11101 = CTMU Event 11100 = Reserved 01110 = Reserved 01101 = CTMU Event 01100 = Comparator 2 (C2OUT) (1) 01011 = Comparator 1 (C1OUT) (1) 01010 = OCMP5⁽¹⁾ 01001 = OCMP3 (1) 01000 = OCMP1 ⁽¹⁾ 00111 = TMR5 match 00110 = TMR3 match 00101 = TMR1 match 00100 = INT0 External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC2<4:0>:** Trigger Source for Conversion of Analog Input AN2 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC1<4:0>:** Trigger Source for Conversion of Analog Input AN1 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC0<4:0>:** Trigger Source for Conversion of Analog Input AN0 Select bits See bits 28-24 for bit value definitions.
- Note 1: The rising edge of the module output signal triggers an ADC conversion. See Figure 16-1 in 16.0 "Output Compare" and Figure 32-1 in 32.0 "Comparator" for more information.

30.1 **CAN Control Registers**

The 'i' shown in register names denotes Note: CAN1 or CAN2.

TABLE 30-1: CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES

ess										Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	C1CON	31:16	_	—	_		ABAT		REQOP<2:0	>	C	PMOD<2:0	>	CANCAP			—	—	0480
	0.000	15:0	ON	—	SIDLE	_	CANBUSY	—	—	—	—	_	—		D	NCNT<4:0>			0000
0010	C1CFG	31:16	_	WAKFIL SEG2PH<2:0>								>	0000						
0010			SEG2PHTS	SAM									0000						
0020	C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	—	—	—	_	—	_	MODIE	CTMRIE	RBIE	TBIE	0000
0020	0	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		_	_		_	_	_	MODIF	CTMRIF	RBIF	TBIF	0000
0030	C1VEC	31:16	—											0000					
0000	OTVEO	15:0	_											0040					
0040	C1TREC	31:16	—	—	—	—	—	—	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
0040	OTINEO	15:0		TERRCNT<7:0> RERRCNT<7:0>							0000								
0050	C1FSTAT		FIFOIP31	FIFOIP30		FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16	0000
0030	CIISIAI	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
0060	C1RXOVF	31:16	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
0000	ontoon	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
0070	C1TMR	31:16								CANTS<	<15:0>								0000
0070	CITIMIN	15:0							CA	NTSPRE<15	:0>								0000
0080	C1RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
0000	CTRAINIO	15:0								EID<1	5:0>								xxxx
0000	C1RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
0090	CIRXIVII	15:0								EID<1	5:0>								xxxx
0040	0457440	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
00A0	C1RXM2	15:0								EID<1	5:0>								xxxx
		31:16		SID<10:0> MIDE EID<17:16> xx									xxxx						
00B0	C1RXM3	15:0										xxxx							
		31:16	FLTEN3	MSEL	3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
00C0	C1FLTCON0	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
		31:16	FLTEN7	MSEL	7<1:0>			FSEL7<4:03	>		FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>			0000
00D0	C1FLTCON1	15:0	FLTEN5	MSEL	5<1:0>			FSEL5<4:0	>		FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>			0000
		31:16	FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 000								0000								
00E0	C1FLTCON2	15:0		ETELNI MSELITION FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000															

DS60001361F-page 492

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

TABLE 30-2: CAN2 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES

	LE 30-2.																		
ese										Bi	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	00001	31:16				_	ABAT	I	REQOP<2:0	>	(OPMOD<2:0	>	CANCAP			—	_	0480
1000	C2CON	15:0	ON	_	SIDLE	_	CANBUSY	-	—	—	—	—	_		. [DNCNT<4:0>			0000
1010	C2CFG	31:16	_	_	_	_	_	_	—	_	_	WAKFIL	_	_	_	S	EG2PH<2:0)>	0000
1010	C2CFG	15:0	SEG2PHTS	SAM	S	EG1PH<2:0	>		PRSEG<2:0	>	SJW	<1:0>			BRP	<5:0>			0000
1020	C2INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE				—	_	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
1020	CZINT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		—	—	—	—	-	—	MODIF	CTMRIF	RBIF	TBIF	0000
1030	C2VEC	31:16	_									0000							
1050	OZVEC	15:0	_	FILHIT<4:0> - ICODE<6:0> 0040									0040						
1040	C2TREC	31:16	_	TXBO TXBP RXBP TXWARN RXWARN EWARN 000									0000						
1040	OZITEO	15:0		1			NT<7:0>			1					NT<7:0>	-	•	•	0000
1050	C2FSTAT	31:16	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16	0000
		15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
1060	C2RXOVF		RXOVF31				RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	-
			RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
1070	C2TMR	31:16								CANTS								ł	0000
		15:0								NTSPRE<15	:0>				1		1		0000
1080	C2RXM0	31:16						SID<10:0>							MIDE	—	EID<	17:16>	XXXX
		15:0								EID<1	5:0>								XXXX
10A0	C2RXM1	31:16						SID<10:0>		515					MIDE		EID<	17:16>	xxxx
		15:0						010 (40.0)		EID<1	5:0>				MIDE		EID .	17.10	xxxx
10B0	C2RXM2	31:16 15:0						SID<10:0>		EID<1	C .0>				MIDE		EID<	17:16>	XXXX
		31:16						SID<10:0>		EIDS	5:0>				MIDE			17:16>	XXXX
10B0	C2RXM3	15:0						310<10.02			5.0>				WIDE		EID	17.10-	xxxx
		31:16	FLTEN3	MSEL	8<1.0>									0000					
1010	C2FLTCON0	15:0	FLTEN1	MSEL		FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0>								0000					
		31:16		MSEL				FSEL7<4:02			FLTEN6	MSEL				FSEL6<4:0			0000
10D0	C2FLTCON1	15:0	FLTEN5	MSEL				FSEL5<4:02			FLTEN4	MSEL				FSEL4<4:0			0000
		31:16		MSEL1				FSEL11<4:0			FLTEN10	MSEL1				SEL10<4:0			0000
10E0	C2FLTCON2	15:0	FLTEN9	MSEL	-			FSEL9<4:0			FLTEN8	MSEL				FSEL8<4:0			0000
			FLTEN15	MSEL1				FSEL9~4.0			FLTEN14	-				SEL14<4:0			0000
10F0	C2FLTCON3		-										-						
		10.0		FLTEN13 MSEL13<1:0> FSEL13<4:0> FLTEN12 MSEL12<1:0> FSEL12<4:0> 0000															

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	_	_	_	—	_	_	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	_	_	_	—	_	_	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	FRMRXOKCNT<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0		FRMRXOKCNT<7:0>											

REGISTER 31-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

35.1 CTMU Control Registers

TABLE 35-1: CTMU REGISTER MAP

dress #)		е								Bits									s
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
<u></u>	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	SEL<3:0>				0000
C200	CTWOCON	15:0	ON	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			ITRIM•	<5:0>			IRNG	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	_	-	—	_	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	—		—	—
7.0	U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0
7:0		—	LROW		VSYNC	HSYNC	DE	ACTIVE

REGISTER 36-16: GLCDSTAT: GRAPHICS LCD CONTROLLER STATUS REGISTER

Legend:

R = Readable bit	= Readable bit
------------------	----------------

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-6 Unimplemented: Read as '0'
- bit 5 LROW: Last Row bit
 - 1 = Last row is currently being displayed 0 = Last row is not currently being displayed
- bit 4 Unimplemented: Read as '0'
- bit 3 VSYNC: VSYNC Signal Level bit This bit returns the VSYNC signal level.
- bit 2 HSYNC: HSYNC Signal Level bit This bit returns the HSYNC signal level.
- bit 1 DE: DE Signal Level bit This bit returns the DE signal level.

bit 0 **ACTIVE:** Active bit

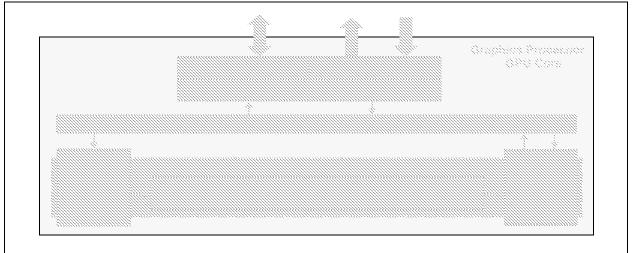
- 1 = LCD Controller is not in active vertical blanking
- 0 = LCD Controller is in active vertical blanking

37.0 2-D GRAPHICS PROCESSING UNIT (GPU)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The 2-D Graphics Processing Unit manipulates and alters the contents of the frame buffer in system RAM or DDR2 memory to accelerate the rendering of images for eventual pixel display. Hardware acceleration is brought to numerous 2-D applications, such as graphics user interfaces (menus, objects, and so on).

The 2-D GPU also provides accelerated on-the-fly rendering of vertical and horizontal lines, rectangles, copying of a rectangular area between different locations in memory. Once initiated, the hardware will perform the rendering through DMA, which makes the CPU available for other tasks.


A block diagram showing the interface for the 2-D Graphics Processing Unit is provided in Figure 37-1.

Note: For this peripheral, no hardware interface is documented. Use the Nano-2D Library, which is available in MPLAB Harmony, to manage this module.

The following are key features of the 2-D Graphics Processing Unit:

- 64-bit bus access to memory (higher throughput)
- Global clock gating (low power)
- Command buffers
- Fixed Functions:
 - Line draw
 - Rectangle fill
 - Rectangle clear
 - Bit blit (stretch/shrink/filter)
 - Programmable raster operation (ROP2), with full alpha blending and transparency
- Source data formats:
 - RGBA8888, RGB565, RGB5551, 8-bit Index
- Destination data formats:
 - RGBA8888, RGB565, RGB5551
- Dithering (18-bit)
- · Orientation in 90-degree steps
- Clipping
 - Note 1: For RGB source formats, their related swizzle formats, such as ARGB and RGBA are supported.
 - 2: The GPU is enabled and ready out of POR. However, the GPU can be soft Reset at run-time using the GPURESET bit (CFGCON2<0>). Make sure that the GPUMD bit is set to '0' and wait 10 μs before toggling the GPURESET bit to achieve proper soft Reset.

FIGURE 37-1: 2-D GRAPHICS PROCESSING UNIT BLOCK DIAGRAM

REGIST	ER 38-28: DDRPHYPADCON: DDR PHY PAD CONTROL REGISTER (CONTINUED)
bit 9	NOEXTDLL: No External DLL bit
	1 = Use internal digital DLL.
	0 = Use external DLL.
bit 8	EOENCLKCYC: Extra Output Enable bit
	1 = Drive pad output enables for an extra clock cycle after a write burst
	0 = Do not drive pad output enables for an extra clock cycle after a write burst
bit 7-6	ODTPUCAL<1:0>: On-Die Termination Pull-up Calibration bits
	11 = Maximum ODT impedance
	•
	•
	• 00 = Minimum ODT impedance
bit 5-4	ODTPFDCAL<1:0>: On-Die Termination Pull-down Calibration bits
	11 = Maximum ODT impedance
	•
	•
	00 = Minimum ODT impedance
bit 3	ADDCDRVSEL: Address and Control Pads Drive Strength Select bit
	1 = Full drive strength
	0 = 60% driver strength
bit 2	DATDRVSEL: Data Pad Drive Strength Select bit
	1 = Full Drive Strength
	0 = 60% Drive Strength
bit 1	ODTEN: On-Die Termination Enable bit
	1 = ODT Enabled
	0 = ODT Disabled
bit 0	ODTSEL: On-Die Termination Select bit
	1 = 150 ohm On-Die Termination
	0 = 75 ohm On-Die Termination

REGISTER 39-9: SDHCINTSTAT: SDHC INTERRUPT STATUS REGISTER (CONTINUED)

bit 14-9	Unimplemented: Read as '0'
bit 8	CARDIF: Card Interrupt Status bit
	1 = Generate card interrupt
	0 = Do not generate card interrupt
bit 7	CARDRIF: Card Removal Interrupt Flag bit
	1 = Card has been removed
	0 = Card state is stable or debouncing
bit 6	CARDIIF: Card Insertion Interrupt Flag bit
	1 = Card has been inserted
	0 = Card state is stable or debouncing
bit 5	BRRDYIF: Buffer Read Ready Interrupt Flag bit
	1 = Ready to read buffer
	0 = Not ready to read buffer
bit 4	BWRDYIF: Buffer Write Ready Interrupt Flag bit
	1 = Ready to write buffer
	0 = Not ready to write buffer
bit 3	DMAIF: DMA Interrupt Status bit
	1 = DMA interrupt was generated
	0 = DMA interrupt was not generated
bit 2	BGIF: Block Gap Interrupt Flag bit
	1 = Transaction stopped at block gap
	0 = No block gap event has occurred
bit 1	TXEIF: Transfer Complete Interrupt Flag bit
	1 = Command execution has completed
	0 = Command execution has not completed
bit 0	CEIF: Command Complete Interrupt Flag bit

1 = Command is complete

0 = Command is not complete

DC CHARACTERISTICS ^(1,2)			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param. No.	Typical ⁽²⁾	Maximum	Units	Conditions		
Power-Down Current (IPD) (Note 1)						
DC40k	9	14	mA	-40°C		
DC40I	9.5	14	mA	+25°C	Sleep ⁽¹⁾	
DC40m	15	25	mA	+85°C		
Module Differential Current						
DC44a	50	350	μA	3.6V	Watchdog Timer Current: ΔIwDT ⁽³⁾	
DC44b	3.5	5	mA	3.6V	ADC Current: ∆IADC ^(3,4)	
DC44c	50	350	μA	3.6V Deadman Timer Current: ΔIDMT		

TABLE 44-9: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- · L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDDIO
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0; IOANCPEN = 0)
- 2: Data in the "Typical" column is at 3.3V, unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Voltage regulator is operational (VREGS = 1).

TABLE 44-26: MPLL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MP10	MFIN	MPLL Input Frequency	8		64	MHz	—
MP11	MFVco	MPLL Vco Frequency Range	400	_	1600	MHz	—
MP12	MFMPLL	MPLL Output Frequency	8	_	400	MHz	—
MP13	Mlock	MPLL Start-up Time (Lock Time)	_	_	1500 x 1/MFIN	μs	—
MP14	Mpj	MPLL Period Jitter	_		0.015	%	—
MP15	Мсј	MPLL Cycle Jitter	_	_	0.02	%	—
MP16	Mltj	MPLL Long-term Jitter	_	_	0.5	%	—

Note 1: These parameters are characterized, but not test in manufacturing.

Revision F (January 2018)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-5.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE A-5:	MAJOR SECTION UPDATES

Section Name	Update Description
1.0 "Device Overview"	The PIC32MZ DA Family Block Diagram was updated (see Figure 1-1).
	The 176-pin LQFP pin number for SDA3 in the I1C1 through I2C5 Pinout I/O Descriptions was updated (see Table 1-10).
	The 169-pin LFBGA pin numbers for EBIOE and EBIWE in the EBI Pinout I/O Descriptions were updated (see Table 1-13).
2.0 "Guidelines for	The following sections were added:
Getting Started with 32-bit Microcontrollers"	2.7.1 "Crystal Oscillator Design Consideration"
wicrocontrollers	2.9 "Considerations When Interfacing to Remotely Powered Circuits"
4.0 "Memory Organization"	The PIC32MZ DA Family Memory Map was updated (see Figure 4-1).
10.0 "Direct Memory	CRCTYP bit number references in the DMA CRC Control Register were updated (see
Access (DMA) Controller"	Register 10-4, Register 10-5, and Register 10-6).
36.0 "Graphics LCD (GLCD) Controller"	The key features for the module were updated.
37.0 "2-D Graphics	The key features for the module were updated.
Processing Unit (GPU)"	The GPURESET bit reference in Note 2 was updated.
38.0 "DDR2 SDRAM Controller"	The definition when SCLLBPASS is set to '0' was updated and the SCLPHCAL bit was added (see Register 38-24).
	The following registers were added:
	Register 38-31: "DDRPHYCLKDLY: DDR Clock Delta Delay Register"
	Register 38-32: "DDRADLLBYP: DDR ANALOG DLL BYPASS Register"
	Register 38-33: "DDRSCLCFG2: DDR SCL Configuration Register 2"
	Register 38-34: "DDRPHYSCLADR: DDR PHY SCL Address Register"
41.0 "Special Features"	The Device Configuration Word 0 registers, DEVCFG0/ADEVCFG0, was extensively updated (see Register 41-3).
	The bit value definitions for the FCKSM<1:0> bits and the POSCMOD<1:0> bits in the Device Configuration Word 1 registers, DEVCFG1/ADEVCFG1, were updated (see Register 41-4).
44.0 "Electrical Characteristics"	Parameter DO50 (Cosco) was removed from the Capacitive Loading Requirements on Output Pins (see Table 44-22).