

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXFL

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1025dah176-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: OC1 THROUGH OC9 PINOUT I/O DESCRIPTIONS

Pin	F	Pin Numbe	r	Pin Buffer						
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Descrip	otion			
					Output C	Compare				
OC1	PPS	PPS	PPS	0		Output Compare Outputs 1-9				
OC2	PPS	PPS	PPS	0	—					
OC3	PPS	PPS	PPS	0	—					
OC4	PPS	PPS	PPS	0	—					
OC5	PPS	PPS	PPS	0	—					
OC6	PPS	PPS	PPS	0	—]				
OC7	PPS	PPS	PPS	0	—]				
OC8	PPS	PPS	PPS	0	—]				
OC9	PPS	PPS	PPS	0	—]				
OCFA	PPS	PPS	PPS	I	ST	Output Compare Fault A Input				
OCFB	PPS	PPS	PPS	I	ST	Output Compare Fault B Input				
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer			ls	Analog = Analog input O = Output PPS = Peripheral Pin Select	P = Power I = Input				

TABLE 1-5: EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS

Pin	Pin Number Pin Buffer								
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description			
					External	Interrupts			
INT0	C3	42	A6	I	ST	External Interrupt 0			
INT1	PPS	PPS	PPS	I	ST	External Interrupt 1			
INT2	PPS	PPS	PPS	I	ST	External Interrupt 2			
INT3	PPS	PPS	PPS	I	ST	External Interrupt 3			
INT4	PPS	PPS	PPS	I	ST	External Interrupt 4			
Legend:	Legend: CMOS = CMOS-compatible input or output				t	Analog = Analog input	P = Power		

d: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

I = Input

Pin	F	Pin Numbe	r	Pin	Buffer					
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Ріп Туре	Туре	Description				
					P	DRTA				
RA0	D2	53	D4	I/O	ST	PORTA is a bidirectional I/O port				
RA1	E11	160	H16	I/O	ST					
RA2	L12	129	U18	I/O	ST					
RA3	N12	128	U17	I/O	ST					
RA4	L11	127	V17	I/O	ST					
RA5	A11	174	B18	I/O	ST					
RA6	E4	54	E4	I/O	ST					
RA7	D1	55	F4	I/O	ST					
RA9	B11	1	A17	I/O	ST					
RA10	C10	2	C15	I/O	ST					
RA14	M11	126	T16	I/O	ST					
RA15	N11	125	U16	I/O	ST					
		•			PC	DRTB				
RB0	C12	169	D18	I/O	ST	PORTB is a bidirectional I/O port				
RB1	B9	11	A14	I/O	ST					
RB2	A13	172	C17	I/O	ST					
RB3	A10	8	A16	I/O	ST					
RB4	A12	175	B17	I/O	ST					
RB5	D11	167	E17	I/O	ST					
RB6	D7	13	B14	I/O	ST					
RB7	D12	170	D17	I/O	ST					
RB8	A9	10	A15	I/O	ST					
RB9	B12	173	E16	I/O	ST					
RB10	C11	168	E18	I/O	ST					
RB11	E7	12	C14	I/O	ST					
RB12	B13	171	C18	I/O	ST					
RB13	F7	9	B15	I/O	ST					
RB14	E10	175	J17	I/O	ST					
RB15	B10	7	B16	I/O	ST					
					PC	DRTC				
RC1	B7	17	A12	I/O	ST	PORTC is a bidirectional I/O port				
RC2	A8	14	C13	I/O	ST					
RC3	A7	15	B13	I/O	ST					
RC4	B8	16	A13	I/O	ST					
RC12	E12	164	G17	I/O	ST					
RC13	C13	162	H17	Ι	ST					
RC14	D13	161	H18	Ι	ST					
RC15	E13	163	G18	I/O	ST					
Legend:			mpatible in	put or outp		Analog = Analog input P = Power				

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

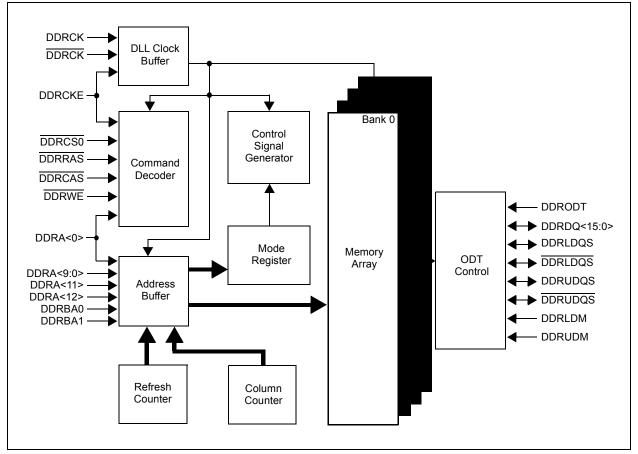
ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

© 2015-2018 Microchip Technology Inc.

4.2 DDR2 SDRAM

Stacked DDR2 SDRAM memory devices support 32 MB of DDR2 SDRAM. Memory in these devices is organized as 4,194,304 x 4 banks x 16 bits. Refer to Figure 4-1 and Table 4-1 for the DDR2 SDRAM address ranges.


4.2.1 FEATURES

The DDR2 SDRAM includes the following features:

- Double Data Rate architecture: two data transfers per clock cycle
- · CAS Latency: 3 and 4
- Burst Length: 8
- Bi-directional, differential data strobes (DDRUDQS, DDRLDQS and DDRUDQS, DDRLDQS) are transmitted / received with data
- Edge-aligned with Read data and center-aligned with Write data
- DLL aligns Data (DDRDQx) and Data Qualifier Strobe (DDRxDQS, DDRxDQS) transitions with clock
- Differential clock inputs (DDRCK and /DDRCK)

- · Data masks (DDRUDM, DDRLDM) for write data
- Commands entered on each positive DDRCK edge, data and data mask are referenced to both edges of DDRxDQS
- Posted CAS programmable additive latency supported to make command and data bus efficiency
- Read Latency = Additive Latency plus CAS Latency (RL = AL + CL)
- Off-Chip-Driver impedance adjustment (OCD) and On-Die-Termination (ODT) for better signal quality
- Auto-precharge operation for read and write bursts
- · Auto Refresh and Self Refresh modes
- Precharged Power Down and Active Power Down
- Write Latency = Read Latency 1 (WL = RL 1)

Figure 4-3 provides a block diagram of the DDR2 SDRAM.

FIGURE 4-3: DDR2 SDRAM BLOCK DIAGRAM

TABLE 4	-8: SYSTEM BUS TA	RGETS AI	ND ASSOCIA	TED PROT	ECTION R	EGISTEF	RS					
			SBTxREGy Register (see Note 7)								SBTxWRy Register	
Target Protection Number	Target Description (see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permissior (GROUP3, GROUP2, GROUP1, GROUP0)
0	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	—	0	SBT0RD0	0,1,1,1	SBT0WR0	0,1,1,1
		SBT0REG1	R	0x1F8F8000	R	32 KB	_	3	SBT0RD1	0,0,0,1	SBT0WR1	0,0,0,1

	(see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
0	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	-	0	SBT0RD0	0,1,1,1	SBT0WR0	0,1,1,1
		SBT0REG1	R	0x1F8F8000	R	32 KB	—	3	SBT0RD1	0,0,0,1	SBT0WR1	0,0,0,1
	Flash Memory ⁽⁶⁾ :	SBT1REG0	R	0x1D000000	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT1RD0	0,0,0,0	SBT1WR0	0,0,0,0
	Program Flash Boot Flash Prefetch	SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
		SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	0,0,0,0	SBT1WR3	0,0,0,0
		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	0,0,0,0	SBT1WR4	0,0,0,0
		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	0,0,0,0	SBT1WR5	0,0,0,0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	0,0,0,0	SBT1WR6	0,0,0,0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	0,0,0,0	SBT1WR7	0,0,0,0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	0,0,0,0	SBT1WR8	0,0,0,0
2	RAM Bank 1 Memory	SBT2REG0	R	0	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
		SBT2REG1	R/W	R/W	R/W	R/W	—	3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
3	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
		SBT3REG1	R/W	R/W	R/W	R/W	—	3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
	External Memory via DDR2 and	SBT4REG0	R	0x08000000	R	R(4)	—	0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
	DDR2 Target 0	SBT4REG1	R/W	R/W	R/W	R/W	—	3	SBT4RD1	R/W ⁽¹⁾	SBT4WR1	R/W ⁽¹⁾
		SBT4REG2	R/W	R/W	R/W	R/W	1	2	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
		SBT4REG3	R/W	R/W	R/W	R/W	1	2	SBT4RD3	R/W ⁽¹⁾	SBT4WR3	R/W ⁽¹⁾
		SBT4REG4	R/W	R/W	R/W	R/W	1	2	SBT4RD4	R/W ⁽¹⁾	SBT4WR4	R/W ⁽¹⁾
	External Memory via DDR2 and	SBT5REG0	R	0x08000000	R	R(4)	—	0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	DDR2 Targets 1 and 2	SBT5REG1	R/W	R/W	R/W	R/W	—	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
		SBT5REG2	R/W	R/W	R/W	R/W	1	2	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾
		SBT5REG3	R/W	R/W	R/W	R/W	1	2	SBT5RD3	R/W ⁽¹⁾	SBT5WR3	R/W ⁽¹⁾
		SBT5REG4	R/W	R/W	R/W	R/W	1	2	SBT5RD4	R/W ⁽¹⁾	SBT5WR4	R/W ⁽¹⁾

PIC32MZ Graphics

(DA)

Family

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2:

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset. The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset. 3:

4: Refer to the Device Memory Map (Figure 4-1) for specific device memory sizes and start addresses.

5: See Table 4-2 for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

7: The 'x' in the SBTxREGy, SBTxRDy, and SBTxWRy registers represents the target protection number and not the actual target number (e.g., for SQI 'x' = 13 and not 11, whereas 11 is the actual target number).

REGISTER 6-1: RCON: RESET CONTROL REGISTER

bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit 1 = Device was in Sleep mode 0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾ 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾ 1 = Power-on Reset has occurred 0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

7.2 Interrupts

The PIC32MZ DA family uses variable offsets for vector spacing. This allows the interrupt vector spacing to be configured according to application needs. A unique interrupt vector offset can be set for each vector using its associated OFFx register.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION

For details on the Variable Offset feature, refer to **8.5.2** "Variable Offset" in Section 8. "Interrupt Controller" (DS60001108) of the "*PIC32 Family Reference Manual*".

Table 7-2 provides the Interrupt IRQ, vector and bit location information.

In terms (0	XO20 Vester Name	IRQ	Maatan#		Interru	pt Bit Location	1	Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
	Highest	Natura	al Order Priority					
Core Timer Interrupt	_CORE_TIMER_VECTOR	0	OFF000<17:1>	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
Core Software Interrupt 0	_CORE_SOFTWARE_0_VECTOR	1	OFF001<17:1>	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
Core Software Interrupt 1	_CORE_SOFTWARE_1_VECTOR	2	OFF002<17:1>	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
External Interrupt 0	_EXTERNAL_0_VECTOR	3	OFF003<17:1>	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
Timer1	_TIMER_1_VECTOR	4	OFF004<17:1>	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
Input Capture 1 Error	_INPUT_CAPTURE_1_ERROR_VECTOR	5	OFF005<17:1>	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
Input Capture 1	_INPUT_CAPTURE_1_VECTOR	6	OFF006<17:1>	IFS0<6>	IEC0<6>	IPC1<20:18>	IPC1<17:16>	Yes
Output Compare 1	_OUTPUT_COMPARE_1_VECTOR	7	OFF007<17:1>	IFS0<7>	IEC0<7>	IPC1<28:26>	IPC1<25:24>	No
External Interrupt 1	_EXTERNAL_1_VECTOR	8	OFF008<17:1>	IFS0<8>	IEC0<8>	IPC2<4:2>	IPC2<1:0>	No
Timer2	_TIMER_2_VECTOR	9	OFF009<17:1>	IFS0<9>	IEC0<9>	IPC2<12:10>	IPC2<9:8>	No
Input Capture 2 Error	_INPUT_CAPTURE_2_ERROR_VECTOR	10	OFF010<17:1>	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>	Yes
Input Capture 2	_INPUT_CAPTURE_2_VECTOR	11	OFF011<17:1>	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>	Yes
Output Compare 2	_OUTPUT_COMPARE_2_VECTOR	12	OFF012<17:1>	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>	No
External Interrupt 2	_EXTERNAL_2_VECTOR	13	OFF013<17:1>	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>	No
Timer3	_TIMER_3_VECTOR	14	OFF014<17:1>	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>	No
Input Capture 3 Error	_INPUT_CAPTURE_3_ERROR_VECTOR	15	OFF015<17:1>	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>	Yes
Input Capture 3	_INPUT_CAPTURE_3_VECTOR	16	OFF016<17:1>	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>	Yes
Output Compare 3	_OUTPUT_COMPARE_3_VECTOR	17	OFF017<17:1>	IFS0<17>	IEC0<17>	IPC4<12:10>	IPC4<9:8>	No
External Interrupt 3	_EXTERNAL_3_VECTOR	18	OFF018<17:1>	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>	No
Timer4	_TIMER_4_VECTOR	19	OFF019<17:1>	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>	No
Input Capture 4 Error	_INPUT_CAPTURE_4_ERROR_VECTOR	20	OFF020<17:1>	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>	Yes
Input Capture 4	_INPUT_CAPTURE_4_VECTOR	21	OFF021<17:1>	IFS0<21>	IEC0<21>	IPC5<12:10>	IPC5<9:8>	Yes
Output Compare 4	_OUTPUT_COMPARE_4_VECTOR	22	OFF022<17:1>	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>	No

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
31:24	-	-	-	—	-	PLLODIV<2:0>					
00.40	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y			
23:16	—	PLLMULT<6:0>									
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
15:8						PLLIDIV<2:0>					
7.0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
7:0	PLLICLK			—		PL	LRANGE<2:	0>			

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR						
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-27 Unimplemented: Read as '0'

bit 26-24 **PLLODIV<2:0>:** System PLL Output Clock Divider bits

111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

1111111	=	Multiply by 128
1111110	=	Multiply by 127
1111101	=	Multiply by 126
1111100	=	Multiply by 125

•

•

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 15-11 Unimplemented: Read as '0'

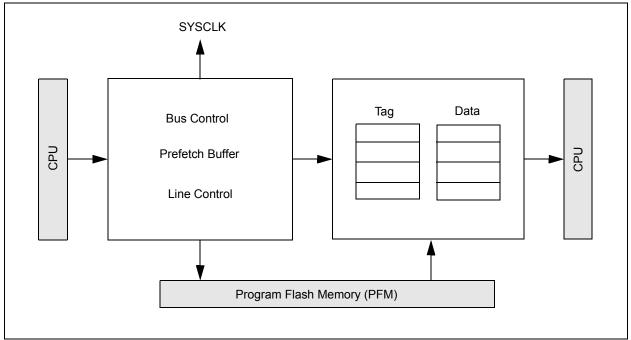
Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

9.0 PREFETCH MODULE

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Prefetch module is a performance enhancing module that is included in PIC32MZ DA family devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.


The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

9.1 Features

The Prefetch module includes the following key features:

- 4x16 byte fully-associative lines
- One line for CPU instructions
- One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- · Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
31:24	—	—	_	_	_	_	CAL	_<9:8>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16			CAL<7:0>								
	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15:8	ON ⁽¹⁾	—	SIDL	—	_	RTCCLK	(SEL<1:0>	RTC OUTSEL<1> ⁽²⁾			
	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0			
7:0	RTC OUTSEL<0> ⁽²⁾	RTC CLKON	_	_	RTC WREN ⁽³⁾	RTC SYNC	HALFSEC ⁽⁴⁾	RTCOE			

REGISTER 20-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'

bit 25-16	CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value
	0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute
	•
	0000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute 0000000000 = No adjustment
	1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute
	•
	1000000000 = Minimum negative adjustment, subtracts 512 real-time clock pulses every one minute
bit 15	ON: RTCC On bit ⁽¹⁾
	1 = RTCC module is enabled
	0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Disables RTCC operation when CPU enters Idle mode
	0 = Continue normal operation when CPU enters Idle mode
bit 12-11	Unimplemented: Read as '0'
Note 1:	The ON bit is only writable when RTCWREN = 1.
2:	Requires $RTCOE = 1$ (RTCCON<0>) for the output to be active.

- **3:** The RTCWREN bit can be set only when the write sequence is enabled.
- 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	EF	RRMODE<2:0	>		ERROP<2:0>	ERRPHASE<1:0>					
22.16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16		_		BDS	START	ACTIVE					
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	BDCTRL<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	BDCTRL<7:0>										

REGISTER 27-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 ERRMOD<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

These bits contain a number, which indicates the current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
 - 1 = DMA start has occurred0 = DMA start has not occurred

28.1 RNG Control Registers

TABLE 28-1: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

ess										Bit	s								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	RNGVER	31:16								ID<1	5:0>								xxxx
0000	Tatoven	15:0		VERSION<7:0> REVISION<7:0> xxx						xxxx									
6004	RNGCON	31:16	—	_	—	-		—	—	-	-	_	—	—	—	—	—	-	0000
0004	Riveboli	15:0	_	_	—	LOAD	TRNGMODE	CONT	PRNGEN	TRNGEN				PLEN	<7:0>				0064
6008	RNGPOLY1	31:16								POLY<	31.05								FFFF
0008	RIGFOLT	15:0								FULIS	51.0~								0000
600C	RNGPOLY2	31:16								POLY<	21.05								FFFF
0000	RINGFOLTZ	15:0								FULIS	51.0~								0000
6010	RNGNUMGEN1	31:16								RNG<	31.05								FFFF
0010	RINGINUMBENT	15:0								RING~	51.0~								FFFF
6014	RNGNUMGEN2	31:16								RNG<	21.05								FFFF
0014	RINGINUMGENZ	15:0								RING~	51.0~								FFFF
6019	RNGSEED1	31:16									21.05								0000
6018	RINGSEEDT	15:0								SEED<	51.0>								0000
004.0		31:16									24.05								0000
601C	RNGSEED2	15:0	SEED<31:0>							0000									
6020	DNCONT	31:16	_	—	-	_	—	_	—	—	—	_	—	—	_	_	_	—	0000
6020	RNGCNT	15:0	—	_	_	_	_	_	_	_	_		•		RCNT<6:0>	,	•		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Step 4: The user sets the ON bit to '1', which enables the ADC control clock. The following ADCx activation sequence is to be followed at all times:

Step 5: The user waits for the interrupt/polls the BGVR-RDY bit (ADCCON2<31>) and the WKRDYx bit (ADCANCON<15,13:8>) = 1, which signals that the device analog environment (band gap and VREF) is ready.

Step 6: Set the DIGENx bit (ADCCON3<15,13:8>) to '1', which enables the digital circuitry to immediately begin processing incoming triggers to perform data conversions.

Standard non-interleaved dedicated Class_1 ADCx throughput rate formula is shown in Equation 29-1.

EQUATION 29-1: THROUGHPUT RATE

```
ADC Throughput Rate = 1/((Sample time + Conversion time)(TAD))
= 1 / ((SAMC+# bit resolution+1)(TAD))
```

Example:

SAMC = 3 TAD, 12-bit mode, TAD = 20 ns = 50 MHz: Throughput rate: = 1 / ((3+13)(20 ns))

= 1/(16 * 20 ns)

= 3.125 msps

TABLE 29-1: PIC32MZXXDAXX INTERLEAVED ADC THROUGHPUT RATES

#No.of Interleaved	ADC TAD(min) = 20ns (50Mhz max)								
ADC Possible	12-bit (max.) msps	10-bit (max.) msps	8-bit (max.) msps	6-bit (max.) msps					
1	3.125 msps	3.571 msps	4.167 msps	5.0 msps					
2	6.250 msps	7.143 msps	8.333 msps	10.00 msps					
3	8.330 msps	10.00 msps	12.50 msps	12.50 msps					
4	12.50 msps	12.50 msps	16.667 msps	16.667 msps					

Note: Interleaved ADCs in this context means connecting the same analog source signal to multiple dedicated Class_1 ADCs (i.e., ADC0-ADC5), and using independent staggered trigger sources accordingly for each interleaved ADC.

- Note 1: Prior to enabling the ADC module, the user application must copy the ADC calibration data (DEVADC0-DEVADC4, DEVADC7; see Register 41-8) from the Configuration memory into the ADC Configuration registers (ADC0CFG-ADC4CFG, ADC7CFG).
 - 2: If VDDIO is greater than 2.5V, set the AICPMPEN bit (ADCCON1<12>) and the IOANCPEN bit (CFGCON<7>) to '0'. If VDDIO is less than 2.5V, set both bits to '1'.

29.2 ADC Control Registers

TABLE 29-2: ADC REGISTER MAP

		0								Bi	s								s
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Pocote
B000	ADCCON1	31:16	TRBEN	TRBERR	1	TRBMST<2:0	>		TRBSLV<2:0>	>	FRACT	SELRE	S<1:0>		ST	RGSRC<4:0)>	•	006
		15:0	ON	_	SIDL	AICPMPEN	CVDEN	FSSCLKEN	FSPBCLKEN	—	—		IRQVS<2:0>		STRGLVL	—	—	_	000
B004	ADCCON2	31:16	BGVRRDY	REFFLT	EOSRDY	(CVDCPL<2:0	>					SAMC	<9:0>					000
		15:0	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	—		ADCEIS<2:0>	,	—			Α	DCDIV<6:0>				000
B008	ADCCON3	31:16	ADCSE	EL<1:0>			CONCLK	CDIV<5:0>			DIGEN7	_	-	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0	000
		15:0	١	/REFSEL<2:0)>	TRGSUSP	UPDIEN	UPDRDY	SAMP	RQCNVRT	GLSWTRG	GSWTRG			ADINSE	L<5:0>		•	000
B00C	ADCTRGMODE	31:16	_	_	_	-	—	—	SH4AL	T<1:0>	SH3AL	T<1:0>	SH2AI	_T<1:0>	SH1AL	T<1:0>	SH0AL	T<1:0>	000
		15:0	_		_	STRGEN4	STRGEN3	STRGEN2	STRGEN1	STRGEN0	_	_	_	SSAMPEN4	SSAMPEN3	SSAMPEN2	SSAMPEN1	SSAMPEN	IO 000
B010	ADCIMCON1	31:16	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8	000
		15:0	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	000
B014	ADCIMCON2	31:16	DIFF31	SIGN31	DIFF30	SIGN30	DIFF29	SIGN29	DIFF28	SIGN28	DIFF27	SIGN27	DIFF26	SIGN26	DIFF25	SIGN25	DIFF24	SIGN24	000
		15:0	DIFF23	SIGN23	DIFF22	SIGN22	DIFF21	SIGN21	DIFF20	SIGN20	DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16	000
B018	ADCIMCON3	31:16	_		_	_	_	_	_	-	DIFF43	SIGN43	DIFF42	SIGN42	DIFF41	SIGN41	DIFF40	SIGN40	000
		15:0	DIFF39	SIGN39	DIFF38	SIGN38	DIFF37	SIGN37	DIFF36	SIGN36	DIFF35	SIGN35	DIFF34	SIGN34	DIFF33	SIGN33	DIFF32	SIGN32	00
B020	ADCGIRQEN1	31:16	AGIEN31	AGIEN30	AGIEN29	AGIEN28	AGIEN27	AGIEN26	AGIEN25	AGIEN24	AGIEN23	AGIEN22	AGIEN21	AGIEN20	AGIEN19	AGIEN18	AGIEN17	AGIEN16	000
		15:0	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0	000
B024	ADCGIRQEN2	31:16	_		_	_	_	_	—	_	_	_	_	—	_	_	_	_	000
		15:0	_		_	_	AGIEN43	AGIEN42	AGIEN41	AGIEN40	AGIEN39	AGIEN38	AGIEN37	AGIEN36	AGIEN35	AGIEN34	AGIEN33	AGIEN32	2 000
B028	ADCCSS1	31:16	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	000
		15:0	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	000
B02C	ADCCSS2	31:16	_		_	_	_	_	—	_	_	_	_	—	_	_	_	_	000
		15:0	_		—	-	CSS43	CSS42	CSS41	CSS40	CSS39	CSS38	CSS37	CSS36	CSS35	CSS34	CSS33	CSS32	000
B030	ADCDSTAT1	31:16	ARDY31	ARDY30	ARDY29	ARDY28	ARDY27	ARDY26	ARDY25	ARDY24	ARDY23	ARDY22	ARDY21	ARDY20	ARDY19	ARDY18	ARDY17	ARDY16	000
		15:0	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0	000
B034	ADCDSTAT2	31:16	_	_	_	_	_	_	_	-	_	_	_	_	_	—	_	-	000
		15:0	_	_	_	_	ARDY43	ARDY42	ARDY41	ARDY40	ARDY39	ARDY38	ARDY37	ARDY36	ARDY35	ARDY34	ARDY33	ARDY32	000
B038	ADCCMPEN1	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
B03C	ADCCMP1	31:16			•					DCMPH	<15:0>				•				000
		15:0								DCMPLO)<15:0>								00
B040	ADCCMPEN2	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
3044	ADCCMP2	31:16								DCMPH	<15:0>		•	•			•	•	000
		15:0								DCMPLO	D<15:0>								00
B048	ADCCMPEN3	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000

DS60001361F-page 438

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0										
31:24	ADCSE	L<1:0>		CONCLKDIV<5:0>								
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	DIGEN7	—	_	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC				
15:8	V	REFSEL<2:0	>	TRGSUSP	UPDIEN	UPDRDY	SAMP ^(1,2,3,4)	RQCNVRT				
7:0	R/W-0	R/W, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	GLSWTRG	GSWTRG			ADINS	SEL<5:0>						

REGISTER 29-3: ADCCON3: ADC CONTROL REGISTER 3

Legend:	HC = Hardware Set	HS = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-30 ADCSEL<1:0>: Analog-to-Digital Clock Source (TCLK) bits

11 = FRC 10 = REFCLK3 01 = System Clock (Tcy) 00 = PBCLK3

bit 29-24 CONCLKDIV<5:0>: Analog-to-Digital Control Clock (Tq) Divider bits

bit 23 **DIGEN7:** Shared ADC (ADC7) Digital Enable bit 1 = ADC7 is digital enabled 0 = ADC7 is digital disabled

bit 22-21 Unimplemented: Read as '0'

bit 20 DIGEN4: ADC4 Digital Enable bit

- 1 = ADC4 is digital enabled
- 0 = ADC4 is digital disabled

bit 19 **DIGEN3:** ADC3 Digital Enable bit

- 1 = ADC3 is digital enabled
- 0 = ADC3 is digital disabled
- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

REGISTER 29-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)

- bit 4 SIGN2: AN2 Signed Data Mode bit 1 = AN2 is using Signed Data mode 0 = AN2 is using Unsigned Data mode bit 3 DIFF1: AN1 Mode bit 1 = AN1 is using Differential mode 0 = AN1 is using Single-ended mode bit 2 SIGN1: AN1 Signed Data Mode bit 1 = AN1 is using Signed Data mode 0 = AN1 is using Unsigned Data mode bit 1 DIFF0: AN0 Mode bit 1 = AN0 is using Differential mode 0 = AN0 is using Single-ended mode bit 0 SIGNO: ANO Signed Data Mode bit 1 = AN0 is using Signed Data mode
 - 0 = AN0 is using Unsigned Data mode

REGISTER 29-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

- bit 3 IEHIHI: High/High Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DCMPHI<15:0> \leq DATA<31:0>
 - 0 = Do not generate an event

bit 2 IEHILO: High/Low Digital Comparator 0 Event bit

- 1 = Generate a Digital Comparator 0 Event when DATA<31:0> < DCMPHI<15:0>
- 0 = Do not generate an event
- bit 1 IELOHI: Low/High Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DCMPLO<15:0> \leq DATA<31:0>
 - 0 = Do not generate an event
- bit 0 IELOLO: Low/Low Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DATA<31:0> < DCMPLO<15:0>0 = Do not generate an event

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
51.24	FLTEN31	MSEL3	1<1:0>		FSEL31<4:0>					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	FLTEN30	MSEL3	0<1:0>	FSEL30<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN29	MSEL2	9<1:0>			FSEL29<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN28	MSEL2	8<1:0>	FSEL28<4:0>						

REGISTER 30-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN31: Filter 31 Enable bit
	1 - Filtor is enabled

- 1 = Filter is enabled
- 0 = Filter is disabled

bit 30-29 MSEL31<1:0>: Filter 31 Mask Select bits

- 11 = Acceptance Mask 3 selected
- 10 = Acceptance Mask 2 selected
- 01 = Acceptance Mask 1 selected
- 00 = Acceptance Mask 0 selected
- bit 28-24 FSEL31<4:0>: FIFO Selection bits
 - 11111 = Message matching filter is stored in FIFO buffer 31
 - 11110 = Message matching filter is stored in FIFO buffer 30
 - •

00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

- bit 23 FLTEN30: Filter 30Enable bit
 - 1 = Filter is enabled
 - 0 = Filter is disabled

bit 22-21 MSEL30<1:0>: Filter 30Mask Select bits

- 11 = Acceptance Mask 3 selected
- 10 = Acceptance Mask 2 selected
- 01 = Acceptance Mask 1 selected
- 00 = Acceptance Mask 0 selected
- bit 20-16 FSEL30<4:0>: FIFO Selection bits
 - 11111 = Message matching filter is stored in FIFO buffer 31
 - <code>11110</code> = Message matching filter is stored in FIFO buffer 30
 - •
 - 00001 = Message matching filter is stored in FIFO buffer 1
 - 00000 = Message matching filter is stored in FIFO buffer 0
- Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER (n = 0 THROUGH 31)

- TXABAT: Message Aborted bit⁽²⁾ bit 6 1 = Message was aborted 0 = Message completed successfully bit 5 TXLARB: Message Lost Arbitration bit⁽³⁾ 1 = Message lost arbitration while being sent 0 = Message did not loose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a Receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest Message Priority 10 = High Intermediate Message Priority 01 = Low Intermediate Message Priority 00 = Lowest Message Priority Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	-	_	_	—	—
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	BUFCNT<7:0> ⁽¹⁾							
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	_	_	—	—
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	ETHBUSY ⁽⁵⁾	TXBUSY ^(2,6)	RXBUSY ^(3,6)	_	_	_		—
r								

REGISTER 31-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

Leaend:

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits⁽¹⁾

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit^(4,5)
 - 1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

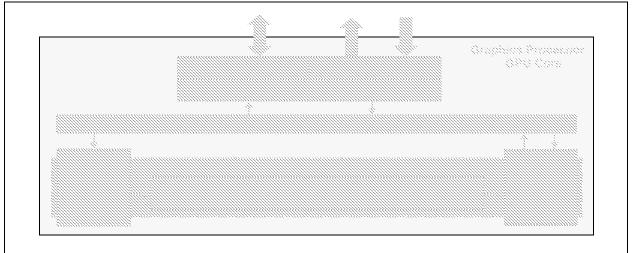
- Note 1: This bit is only used for RX operations.
 - 2: This bit is only affected by TX operations.
 - 3: This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1<15>) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

37.0 2-D GRAPHICS PROCESSING UNIT (GPU)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The 2-D Graphics Processing Unit manipulates and alters the contents of the frame buffer in system RAM or DDR2 memory to accelerate the rendering of images for eventual pixel display. Hardware acceleration is brought to numerous 2-D applications, such as graphics user interfaces (menus, objects, and so on).

The 2-D GPU also provides accelerated on-the-fly rendering of vertical and horizontal lines, rectangles, copying of a rectangular area between different locations in memory. Once initiated, the hardware will perform the rendering through DMA, which makes the CPU available for other tasks.


A block diagram showing the interface for the 2-D Graphics Processing Unit is provided in Figure 37-1.

Note: For this peripheral, no hardware interface is documented. Use the Nano-2D Library, which is available in MPLAB Harmony, to manage this module.

The following are key features of the 2-D Graphics Processing Unit:

- 64-bit bus access to memory (higher throughput)
- Global clock gating (low power)
- Command buffers
- Fixed Functions:
 - Line draw
 - Rectangle fill
 - Rectangle clear
 - Bit blit (stretch/shrink/filter)
 - Programmable raster operation (ROP2), with full alpha blending and transparency
- Source data formats:
 - RGBA8888, RGB565, RGB5551, 8-bit Index
- Destination data formats:
 - RGBA8888, RGB565, RGB5551
- Dithering (18-bit)
- · Orientation in 90-degree steps
- Clipping
 - Note 1: For RGB source formats, their related swizzle formats, such as ARGB and RGBA are supported.
 - 2: The GPU is enabled and ready out of POR. However, the GPU can be soft Reset at run-time using the GPURESET bit (CFGCON2<0>). Make sure that the GPUMD bit is set to '0' and wait 10 μs before toggling the GPURESET bit to achieve proper soft Reset.

FIGURE 37-1: 2-D GRAPHICS PROCESSING UNIT BLOCK DIAGRAM

