

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1064daa176t-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-12:	PMP PINOUT I/O DESCRIPTIONS
--------------------	------------------------------------

	I	Pin Numbe	r	Dim	Duffer								
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description							
				Pa	rallel Mast	aster Port							
PMA0	H13	142	N17	I/O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)							
PMA1	J11	136	R18	I/O	TTL/ST	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)							
PMA2	C5	33	B9	0	_	Parallel Master Port Address (Demultiplexed Master modes)							
PMA3	H11	135	R17	0	_								
PMA4	J12	139	N15	0	—								
PMA5	A11	174	B18	0	—								
PMA6	F3	69	K3	0	—								
PMA7	B12	173	E16	0	_								
PMA8	N2	96	V9	0	—								
PMA9	M2	95	Т8	0	_								
PMA10	K3	90	U7	0	—								
PMA11	L1	91	V7	0	_								
PMA12	J1	80	U5	0	—								
PMA13	J2	81	N4	0	_								
PMA14	G2	74	R6	0	—								
PMA15	G3	75	T6	0	_								
PMCS1	G2	74	R6	0	—	Parallel Master Port Chip Select 1 Strobe							
PMCS2	G3	75	Т6	0	—	Parallel Master Port Chip Select 2 Strobe							
PMD0	C4	40	B7	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or							
PMD1	A4	36	D8	I/O	TTL/ST	Address/Data (Multiplexed Master modes)							
PMD2	N3	99	V10	I/O	TTL/ST								
PMD3	M3	98	Т9	I/O	TTL/ST								
PMD4	B3	43	B6	I/O	TTL/ST								
PMD5	B7	17	A12	I/O	TTL/ST								
PMD6	F6	23	C11	I/O	TTL/ST								
PMD7	C7	24	B11	I/O	TTL/ST								
PMD8	K2	89	T7	I/O	TTL/ST								
PMD9	L3	97	U9	I/O	TTL/ST								
PMD10	A9	10	A15	I/O	TTL/ST								
PMD11	G10	143	N18	I/O	TTL/ST								
PMD12	A8	14	C13	I/O	TTL/ST								
PMD13	G12	144	M16	I/O	TTL/ST								
PMD14	L11	127	V17	I/O	TTL/ST								
PMD15	H1	76	U6	I/O	TTL/ST								
PMALL	H13	142	N17	0	—	Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)							
PMALH	J11	136	R18	0	_	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)							
PMRD	B8	16	A13	0	_	Parallel Master Port Read Strobe							
PMWR	A7	15	B13	0	_	Parallel Master Port Write Strobe							
Legend:	CMOS = C	MOS-comp	atible input	or output	An	alog = Analog input P = Power							

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output I = Input PPS = Peripheral Pin Select

TABLE 4-17: SYSTEM BUS TARGET PROTECTION GROUP 7 REGISTER MAP

ess		6								Bi	ts								
Virtual Addr (BF90_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	-	—	—		CODE	<3:0>			—	—	_	_	—	—	—	0000
8420	SB1/ELOG1	15:0				INITIC)<7:0>					REGIO	N<3:0>		—	CMD<2:0>			0000
0404		31:16	_	_	_		_	_	_	_	_	_	_	—	_	_		—	0000
8424	SBITELOG2	15:0	_	_	_	_	_	_	_	_	_	_	_	—	_	_	GROU	P<1:0>	0000
0420	SBTZECON	31:16	_	_	—	—		_		ERRP	—	—	—		_	—	_	—	0000
0420	SBITECON	15:0	_	_	—	—		_		—	—	—	—		_	—	_	—	0000
8430		31:16	_		—	_		_		_	_	_	_		—	_	_	_	0000
0430	SBITECERS	15:0	_	_	—	—	_	—	_	—	_	—	_	_		—	_	CLEAR	0000
8/38	SBT7ECL PM	31:16	_	_	—	—	_	—	_	—	_	—	_	_		—	_	—	0000
0400	SBITECER	15:0	_	—	—	·	—	—	_	—	_			—	—		—	CLEAR	0000
8440	SBT7REG0	31:16								BASE<	<21:6>								xxxx
0440	OBIIILEOU	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			—	—	—	xxxx
8450	SBT7RD0	31:16	—	—	—	—	—	—	—	—	—	—	—	—		—	—	—	xxxx
0100	0011100	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8458	SBT7WR0	31:16	—	—	—	—	—	—	—	—	—	—	—	—		—	—	—	xxxx
0100	0011110	15:0	_	_	—	—	—	—	_	—		—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8460	SBT7REG1	31:16								BASE<	<21:6>								xxxx
		15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			—	_	—	xxxx
8470	SBT7RD1	31:16	_	—	—	—	—	—	_	—	—	—	—	_		—	_	—	xxxx
		15:0	_	_	_		_	—		—	_	_	_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8478	SBT7WR1	31:16	_	_	_		_	_		_	_								XXXX
	-	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
8480	SBT7REG2	31:16								BASE<	<21:6>								XXXX
		15:0			BASE	<5:0>			PRI	_			SIZE<4:0>		-	—	—	—	XXXX
8490	SBT7RD2	31:16	—	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	XXXX
		15:0	_	—	—	—	_	—	_	_	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
8498	SBT7WR2	31:16	_	—	—	—	_	—	—	_	_	—	—	—	—	—	—	—	XXXX
		15:0	_	—	—	—	—	—	—	—	—	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Graphics (DA) Family

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

TABLE 4-24: SYSTEM BUS TARGET PROTECTION GROUP 14 REGISTER MAP

ess										Bi	ts								
Virtual Addre (BF91_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8820	SBT14ELOG1	31:16	MULTI	—	—	—		CODE	<3:0>		_		—		—		—	—	0000
0020	3011422001	15:0		-		INITID	<7:0>					REGIO	N<3:0>		—		CMD<2:0>		0000
8824	SBT14ELOG2	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—		—	_	0000
	0011122002	15:0	—	—	—	—	—	—	—	—	—	_	—	_	—	—	GROU	P<1:0>	0000
8828	SBT14FCON	31:16	—	—	—	—	—	—	—	ERRP	—	_	—	_	—	—	—	—	0000
0020	0211120011	15:0	_	_	—	_	_	—	—	_	_	_	_	_	_	_	_	_	0000
8830	SBT14ECLRS	31:16	_	_	—	—	_	—	—		_	—	_	_	—	_	—	—	0000
		15:0	_	—	—	_	—	—	_	_	—		—		—		_	CLEAR	0000
8838	SBT14ECLRM	31:16	_	—	—	_	—	—	_	_	—		—		—		_		0000
		15:0		—	—	—		—	—	—	—	—	—	—	—	—	—	CLEAR	0000
8840	SBT14REG0	31:16								BASE<	:21:6>								XXXX
		15:0			BASE	<5:0>			PRI	_			SIZE<4:0>			—	—	_	XXXX
8850	SBT14RD0	31:16	_	—	—	_	_	—	_	_	_	_	_	_	—	—	—	—	XXXX
		15:0	_	_	—	_	_	—	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
8858	SBT14WR0	31:16	_	_	—	_	_	—	_	_	_	_	_		-	—	-	-	XXXX
		15:0		—	—	—				-	-	_		_	GROUP3	GROUP2	GROUP1	GROUPU	XXXX
8860	SBT14REG1	31:16			DAOF				551	BASE	21:6>		0175 .4.0						XXXX
		15:0			BASE	<5:0>			PRI	_			SIZE<4:0>			_	_		XXXX
8870	SBT14RD1	31:16	_	_	_	_	_	_	_	_	_		_						XXXX
		15:0	_	_	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUPU	XXXX
8878	SBT14WR1	31:16	_		_	_	_	_	_	_	_	_	_	_				-	XXXX
		15:0				_	—			_	_			_	GROUP3	GROUP2	GROUP1	GROUPU	XXXX

© 2015-2018 Microchip Technology Inc.

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

8.2 **Oscillator Control Registers**

|--|

FOR CONFIGURATION REGISTER MAP

sse			Bits																
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹
1200	050000	31:16	_	_	—	—	—		FRCDIV<2:0	>	DRMEN		SLP2SPD	—	—	—	—	-	0020
1200	USCCON	15:0	_		COSC<2:0>		—		NOSC<2:0>		CLKLOCK	_	—	SLPEN	CF	—	SOSCEN	OSWEN	xx0x
1210		31:16	—	—	—	—	—	—	—		_		—	—	—	—	—	—	0000
1210	030101	15:0	_	_	—		—	—	—	—	—	_			TU	N<5:0>			00xx
1220		31:16	-	—	_	—	—	F	PLLODIV<2:0)>	—			P	LLMULT<6	:0>			01xx
1220	SFLLCON	15:0	_	_	—		—		PLLIDIV<2:0	>	PLLICLK	_	—	-	_	P	LLRANGE<2:0)>	0x02
1290	REE01CON	31:16	-								RODIV<14:0)>							0000
1200	REFUTCON	15:0	ON	—	SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	_	—	—		ROS	EL<3:0>		0000
1200		31:16					ROTRIM<8:0	>				_	—	—	-	-	—	-	0000
1290	REFOITRIN	15:0	-	—	_	—	—	—	—	_	—	_	—	—	-	-	—	-	0000
1240	REFORCON	31:16	-								RODIV<14:0)>							0000
12A0	REFUZCON	15:0	ON	—	SIDL	—	RSLP	—	DIVSWEN	ACTIVE	—	_	—	—		ROS	EL<3:0>		0000
1200	REFORTRIM	31:16					ROTRIM<8:0	>					—	—	—	—	—	—	0000
1200	REFUZI RIM	15:0	—	—	—	_	_	—			—		_	_	—	—	—	_	0000
1200	REFORCON	31:16	-								RODIV<14:0)>							0000
1200	REFUSCON	15:0	ON	—	SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	_	—	—		ROS	EL<3:0>		0000
1200	DEEO2TDIM	31:16					ROTRIM<8:0	>				_	—	—	-	-	—	-	0000
1200	KEF031 KIIVI	15:0	-	—	_	—	—	—	—	_	—	_	—	—	-	-	—	-	0000
1250		31:16	-								RODIV<14:0)>							0000
IZEU	KEF04CON	15:0	ON	—	SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	_	—	—		ROS	EL<3:0>		0000
1250		31:16					ROTRIM<8:0	>				_	—	—	-	-	—	-	0000
12F0	KEFO41KIW	15:0	-	—	_	—	—	—	—	_	—	_	—	—	-	-	—	-	0000
1200	REFORCON	31:16	-								RODIV<14:0)>							0000
1300	REFUSCON	15:0	ON	_	SIDL		RSLP	—	DIVSWEN	ACTIVE	—	_	—	-		ROS	EL<3:0>		0000
1310		31:16					ROTRIM<8:0	>				_	—	-	_	—	—	—	0000
1310	REFUSIKIM	15:0	-	—	_	—	—	—	—	_	—	_	—	—	-	-	—	-	0000
1240		31:16	-	—	_	—	—	—	—	_	—	_	—	—	-	-	—	-	0000
1340	PBIDIV	15:0	-	—	_	—	PBDIVRDY	—	—	_	—				PBDIV<6:0)>			8801
1250		31:16	—	—	—	—	—	—	—		_		—	—	—	—	—	—	0000
1350	PB2DIV	15:0	ON	_	—	_	PBDIVRDY	—	_		—				PBDIV<6:0)>			8801
1000		31:16	_	_	—	_	_	—	_		—		—	—	—	_	_	—	0000
1300	PDJUIV	15:0	ON	_	_	_	PBDIVRDY	_	—		—				PBDIV<6:0)>			8801
1270		31:16	—	—	—	—	—	—	—	—	—		_	—	—	—	—	—	0000
1370	PD4UIV	15:0	ON	_	_	_	PBDIVRDY	_	_		_				PBDIV<6:0)>			880

PIC32MZ Graphics (DA) Family

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess		6								Bit	s								
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1500		31:16	—	_	_	—	_	—	—	_				CHAIR	Q<7:0>				00FF
1360		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN		_		FF00
1500	DCH7INT	31:16	—	—		—	_	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1000	DOMINI	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
15D0	DCH7SSA	31:16								CHSSA	<31.0>								xxxx
.020	2011/00/1	15:0								011007	0.110								xxxx
15E0	DCH7DSA	31:16								CHDSA	<31:0>								xxxx
		15:0																	XXXX
15F0	DCH7SSIZ	31:16	—		_	_		—	—	-	-	—	_	_	—	_		_	0000
		15:0								CHSSIZ	<15:0>								XXXX
1600	DCH7DSIZ	31.10 15:0	—	_	_	_		_	_			_	_		_	_			0000
		31.16							_		<15.0>				_				0000
1610	DCH7SPTR	15:0								CHSPTR	<15:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1620	DCH7DPTR	15:0								CHDPTR	<15:0>								0000
	D.01/200/2	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1630	DCH/CSIZ	15:0								CHCSIZ	<15:0>								xxxx
1640		31:16	_	—	_	—	_	—	_	—	—	—	_	—	_	—	—	_	0000
1640	DCH/CPIR	15:0								CHCPTR	<15:0>								0000
1650		31:16	—	_	_	_	_	_	_		—	—	_	_	_	—	—	_	0000
1050	DOM/DAT	15:0								CHPDAT	<15:0>								xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	—	SUSPEND	DMABUSY	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	—	_	_	_	_	_

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **ON:** DMA On bit
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active and is transferring data
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'

REGISTER 21-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- bit 4 **DISSDI:** Disable SDI bit⁽⁴⁾
 - 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** This bit can only be written when the ON bit = 0. Refer to **Section 44.0 "Electrical Characteristics"** for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - 4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

TABLE 23-1: I2C1 THROUGH I2C5 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Addr (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0430	12C3MSK	31:16	_		_		_		_			_		_		—	_	—	0000
0430	120010101	15:0	—	_	—	_	—	_					ADD	<9:0>					0000
0440	I2C3BRG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
		15:0								I2C3BR	G<15:0>								0000
0450	I2C3TRN	31:16	_	_	_	_	_	_	_	_	—	—	_		-	—	_		0000
		15:0	_				_		_	_				12031 XD	ATA<7:0>				0000
0460	I2C3RCV	15.0		_		_					—	_			ΔTΔ<7:0>	—	_		0000
		31.16										PCIE	SCIE	BOEN	SDAHT	SBCDE	ΔΗΕΝ	DHEN	0000
0600	I2C4CON	15.0	ON	_	SIDI	SCI REI	STRICT	A10M	DISSI W	SMEN	GCEN	STREN		ACKEN	RCEN	PEN	RSEN	SEN	1000
		31:16	-	_	_	_	_	_	_	-	-	-	-	-	—	_	_	-	0000
0610	I2C4STAT	15:0	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0620	1204400	31:16	_		_		_					_		_		_	_	—	0000
0020	12C4ADD	15:0	-		—		-						ADD	<9:0>		-			0000
0630	I2C4MSK	31:16	—	_	—	_	—	_	—	—	—	—	—	—	—	—	—	L —	0000
	20111011	15:0	—	_		_	—	—					ADD	<9:0>					0000
0640	I2C4BRG	31:16	_	—	_	—		_	_	-	—	—	_	_	_	—	_	—	0000
		15:0								I2C4BR	<15:0>								0000
0650	I2C4TRN	15.0									-	—	—		ΔTΔ<7·0>	—	_		0000
		31.16							_		_			-		_		_	0000
0660	I2C4RCV	15:0	_	_	_	_	_	_		_				I2C4RXD	ATA<7:0>			<u>.</u>	0000
		31:16		_	_	_		_		_		PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0800	I2C5CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0010		31:16	_		_		_	_	_	_	-	_		_		_	_	—	0000
0810	12055TAT	15:0	ACKSTAT	TRSTAT	ACKTIM	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0820	I2C5ADD	31:16	—	_	—	_	—	_	—	—	—	—	—	—	—	—	—	L —	0000
0020	1200/188	15:0	_	_		_	_	_					ADD	<9:0>					0000
0830	I2C5MSK	31:16	—	—	—	—	_	—		—	—		—	—	—	—		—	0000
	-	15:0	_	_	_	_	_						ADD	<9:0>					0000
0840	I2C5BRG	31:16		—	—	—		_	—			—	—	—	—	—	—		0000
		31.16		_		_					3~10.02								0000
0850	I2C5TRN	15.0	_	_	_	_	_		_	_	_			I2C4TXD	 ATA<7:0>				0000
<u> </u>		31:16		_	_	_		_	_	_				_	_			_	0000
0860	I2C5RCV	15:0	_	_	_	_	_	_	_	_				I2C4RXD	ATA<7:0>				0000
Legen	d •	inknow	n value on	Reset: =	unimpleme	nted read	as '0' Rese	t values are	shown in h	evadecima	1								

PIC32MZ Graphics (DA) Family

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and Note 1: INV Registers" for more information.

REGISTI	ER 23-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)
	1 = Release SCLx clock
	0 = Hold SCLx clock low (clock stretch)
	$\frac{\text{If SIREN = 1}}{Pit is PAW (i.e., software can write '0' to initiate stratch and write '1' to release cleak). Hardware clear at$
	beginning of slave transmission. Hardware clear at end of slave reception.
	<u>If STREN = 0:</u> Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space. a Strict I²C Reserved Address Pule not enabled
hit 10	A10M: 10 bit Slove Address Rule not enabled
DIL TO	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit
	1 = Slew rate control disabled
	0 = Slew rate control enabled
bit 8	SMEN: SMBus Input Levels bit
	1 = Enable I/O pin thresholds compliant with SMBus specification
hit 7	0 - Disable Simbus input timesholds GCEN: General Call Enable bit (when operating as I^2 C slave)
	1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)
hit 6	0 = General call address disabled
DIL O	Used in conjunction with SCI REL bit.
	1 = Enable software or receive clock stretching
	0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge
	0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master, applicable during master receive)
	1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.
	0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. Peneated Start condition not in progress.
hit 0	$v = repeated Start Condition Fnable bit (when operating as l^2C master)$
DIL U	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
31.24	ARDY31	ARDY30	ARDY29	ARDY28	ARDY27	ARDY26	ARDY25	ARDY24
22:16	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
23.10	ARDY23	ARDY22	ARDY21	ARDY20	ARDY19	ARDY18	ARDY17	ARDY16
15.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
15.0	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8
7:0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0

REGISTER 29-12: ADCDSTAT1: ADC DATA READY STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleare	d
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ARDY31:ARDY0: Conversion Data Ready for Corresponding Analog Input Ready bits

- 1 = This bit is set when converted data is ready in the data register
- 0 = This bit is cleared when the associated data register is read

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
15:8	—	—	—	—	ARDY43	ARDY42	ARDY41	ARDY40
7.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
7:0	ARDY39	ARDY38	ARDY37	ARDY36	ARDY35	ARDY34	ARDY33	ARDY32

REGISTER 29-13: ADCDSTAT2: ADC DATA READY STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-13 Unimplemented: Read as '0'

bit 11-0 ARDY43:ARDY32: Conversion Data Ready for Corresponding Analog Input Ready bits

1 = This bit is set when converted data is ready in the data register

0 = This bit is cleared when the associated data register is read

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8		FRMRXOKCNT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				FRMRXO	(CNT<7:0>						

REGISTER 31-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
15.0	—	—	—		PH	HYADDR<4:0	>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		_	_		RE	GADDR<4:0)>	

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

34.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 38. "High/Low-Voltage Detect (HLVD)" (DS60001408), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

The HLVD module provides the following features:

- Hysteresis detection
- Low-to-high or high-to-low voltage change detection
- · Generation of Non-Maskable Interrupts (NMI)
- · LVDIN pin to provide external voltage trip point

FIGURE 34-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

PIC32MZ Graphics (DA) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	—	—	WKONREM	WKONINS	WKONINT
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	HC, R/W-0	R/W-0
23:10	—	—	—	—	INTBG	RDWTCON	CONTREQ	SBGREQ
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
10.0	—	—	—	—	—	—	_	SDBP
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	CDSSEL	CDTLVL	_	DMAS	EL<1:0>	HSEN	DTXWIDTH	_

REGISTER 39-7: SDHCCON1: SDHC CONTROL REGISTER 1

Legend:		HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-27 Unimplemented: Read as '0'

bit 26	WKONREM: Wake-up Event Enable on SD Card Removal bit 1 = Wake-up event is enabled 0 = Wake-up event is disabled
bit 25	 WKONINS: Wake-up Event Enable on SD Card Insertion bit 1 = Wake-up event is enabled 0 = Wake-up event is disabled
bit 24	WKONINT: Wake-up Event Enable on SD Card Interrupt bit
	1 = Wake-up event is enabled0 = Wake-up event is disabled
bit 23-20	Unimplemented: Read as '0'
bit 19	INTBG: Interrupt at Block Gap bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 18	RDWTCON: Read Wait Control bit
	1 = Read wait control is enabled0 = Read wait control is disabled
bit 17	CONTREQ: Continue Request bit
	A write to this bit is ignored if STOPREQ is set to '1'. 1 = Restart 0 = No effect
bit 16	SBGREQ: Stop at Block Gap Request bit
	1 = Stop 0 = Transfer
bit 15-9	Unimplemented: Read as '0'
bit 8	SDBP: SD Bus Power bit
	1 = Bus power is on 0 = Bus power is off
bit 7	CDSSEL: Card Detect Signal Selection bit
	1 = The card detect test level is select (for test purposes)0 = SDCDx is selected (for normal use)
bit 6	CDTLVL: Card Detect Test Level bit
	1 = Card is inserted0 = Card is not inserted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	_	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
15:8	—	—	—	—	—	—	—	DSINT0
7:0	R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0
	DSFLT	_	_	DSWDT	DSRTC	DSMCLR	_	_

REGISTER 40-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER

Legend:		HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-9 Unimplemented: Read as '0'

511 51-5	oninplemented. Read as 0
bit 8	DSINT0: Interrupt-on-Change bit
	1 = Interrupt-on-change was asserted during Deep Sleep
	0 = Interrupt-on-change was not asserted during Deep Sleep
bit 7	DSFLT: Deep Sleep Fault Detected bit
	 1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have beer corrupted
	0 = No Fault was detected during Deep Sleep
bit 6-5	Unimplemented: Read as '0'
bit 4	DSWDT: Deep Sleep Watchdog Timer Time-out bit
	 1 = The Deep Sleep Watchdog Timer timed out during Deep Sleep 0 = The Deep Sleep Watchdog Timer did not time-out during Deep Sleep
bit 3	DSRTC: Real-Time Clock and Calendar Alarm bit
	1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep
bit 2	DSMCLR: MCLR Event bit
	1 = The MCLR pin was active and was asserted during Deep Sleep
	0 = The MCLR pin was not active, or was active, but not asserted during Deep Sleep
bit 1-0	Unimplemented: Read as '0'
Note:	All bits in this register are cleared when the DSEN bit (DSCON<15>) is set.

Peripheral	PMDx Bit Name	Register Name and Bit Location
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
SPI5	SPI5MD	PMD5<12>
SPI6	SPI6MD	PMD5<13>
I2C1	I2C1MD	PMD5<16>
I2C2	I2C2MD	PMD5<17>
I2C3	I2C3MD	PMD5<18>
I2C4	I2C4MD	PMD5<19>
I2C5	I2C5MD	PMD5<20>
USB ⁽¹⁾	USBMD	PMD5<24>
CAN1	CAN1MD	PMD5<28>
CAN2	CAN2MD	PMD5<29>
Reference Clock Output 1	REFO1MD	PMD6<8>
Reference Clock Output 2	REFO2MD	PMD6<9>
Reference Clock Output 3	REF03MD	PMD6<10>
Reference Clock Output 4	REFO4MD	PMD6<11>
Reference Clock Output 5	REF05MD	PMD6<12>
PMP	PMPMD	PMD6<16>
EBI	EBIMD	PMD6<17>
2-D GPU	GPUMD	PMD6<18>
GLCD	GLCDMD	PMD6<20>
SDHC	SDHCMD	PMD6<21>
SQI1	SQI1MD	PMD6<23>
Ethernet	ETHMD	PMD6<28>
DMA	DMAMD	PMD7<4>
RNG	RNGMD	PMD7<20>
Crypto ⁽²⁾	CRYPTMD	PMD7<22>
DDR2 SDRAM Controller ⁽²⁾	DDR2CMD	PMD7<28>

TABLE 40-3: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS (CONTINUED)

Note 1: The USB module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

2: This peripheral is not available on all devices. Refer to the pin feature tables (Table 2 through Table 4) to determine availability.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31.24	—	—	—	—	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23.10	—	—	—	—	—	_	—	—
15:8	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	—	—	—	—	—	_	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	_	—	_	_	—		_	_

REGISTER 41-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

REGISTER 41-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	—	—	—	CP	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:10	—	—	—	—	—	—	—	—
15:8	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	—	—	—	_	—	—	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	_	_	_	_	_	_	_	_

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

REGISTER 41-14: CFGMPLL: MEMORY PLL CONFIGURATION REGISTER (CONTINUED)

bit 15-8 **MPLLMULT<7:0>:** MPLL Multiplier bits

```
11111111 = Reserved

11111110 = Reserved

.

.

10100001 = Reserved

10100000 = Multiply by 160

10011111 = Multiply by 159

.

.

00010000 = Multiply by 16

00001111 = Reserved

.
```

00000000 = Reserved

bit 7-6 INTVREFCON<1:0>: Internal DDRVREF Control bits

- 11 = Enable the internal DDRVREF circuit
- 10 = Disable the internal DDRVREF circuit and drive the DDRVREF pin to Vss1v8
- 01 = Disable the internal DDRVREF circuit and drive the DDRVREF pin to VDDR1V8
- 00 = Use the external DDRVREF circuit
 - Note: Set the INTVREFCON<1:0> bits to the desired state before applying VDDR1V8.
- bit 5-0 MPLLIDIV<5:0>: MPLL Input Divider bits

111111 = MPLL input clock is divider by 63 111110 = MPLL input clock is divider by 62 . 000001 = MPLL input clock is divider by 1 000000 = Reserved NOTES:

FIGURE 44-22: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 44-50: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No. Symbol Characteristics ⁽¹⁾			Min.	Тур.	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	_	1 TPBCLK2	_	—	_
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 TPBCLK2	_	_	_
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 TPBCLK2	_	—	_
PM4	Tahold	PMRD Inactive to Address Out Invalid (address hold time)	5	—	—	ns	_
PM5	Trd	PMRD Pulse Width		1 TPBCLK2	_		—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	5	—	—	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.