

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	288-LFBGA
Supplier Device Package	288-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1064daa288t-i-4j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name		Pin Numbe	r	Pin	Buffer	Description
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	
VSS1V8	G4, H4, J4, K4, L4, L5	See Note 1	D3, F6, F7, F8, G6, G7, G8, G9, H9, J9, K9, L9, M6, M7, M8, M9, N6, N7, N8, N9, R4	Ρ	_	Ground reference for DDR2 SDRAM memory.
				Vol	tage Refere	ence
DDRVREF	F4 (Note 3)	66 (Note 3)	J11	Р	_	1.8V Voltage Reference to DDR2 SDRAM memory.
VREF+	C10	2	C15	I	Analog	Analog Voltage Reference (High) Input
VREF-	B11	1	A17	I	Analog	Analog Voltage Reference (Low) Input
Legend:	CMOS = CI ST = Schmi TTL = Trans	MOS-compa itt Trigger in sistor-transis	atible input o put with CM stor Logic in	r output OS levels put buffer	Anal O = PPS	og = Analog input P = Power Output I = Input = Peripheral Pin Select

TABLE 1-23: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: The metal plane at the bottom of the device is internally tied to VSS1V8 and must be connected to 1.8V ground externally.

2: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

3: This pin is a No Connect in devices without DDR.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	_	—
22.16	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y
23.10	—	IPLW	<1:0>		MMAR<2:0>		MCU	ISAONEXC ⁽¹⁾
15.0	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1
15.0	ISA<1	:0> ⁽¹⁾	ULRI	RXI	DSP2P	DSPP	—	ITL
7:0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-1
7.0	_	VEIC	VINT	SP	CDMM	_	_	TL

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Legend:	r = Reserved bit	y = Value set from Configuration bits on POR				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 Reserved: This bit is hardwired as '1' to indicate the presence of the Config4 register

- bit 30-23 Unimplemented: Read as '0'
- bit 22-21 **IPLW<1:0>:** Width of the Status IPL and Cause RIPL bits 01 = IPL and RIPL bits are 8-bits in width
- bit 20-18 **MMAR<2:0>:** microMIPS Architecture Revision Level bits 000 = Release 1
- bit 17 **MCU:** MIPS MCU ASE Implemented bit $1 = MCU^{TM} ASE$ is implemented
 - ASE IS Implemented
- bit 16 **ISAONEXC:** ISA on Exception bit⁽¹⁾ 1 = microMIPS is used on entrance to an exception vector
 - 0 = MIPS32 ISA is used on entrance to an exception vector
- bit 15-14 ISA<1:0>: Instruction Set Availability bits⁽¹⁾
 - 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
 - 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset
- bit 13 ULRI: UserLocal Register Implemented bit
- 1 = UserLocal Coprocessor 0 register is implemented
- bit 12 **RXI:** RIE and XIE Implemented in PageGrain bit
- 1 = RIE and XIE bits are implemented
- bit 11 **DSP2P:** MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present
- bit 10 **DSPP:** MIPS DSP ASE Presence bit
- 1 = DSP is present
- bit 9 Unimplemented: Read as '0'
- bit 8 ITL: Indicates that iFlowtrace hardware is present
 - 1 = The iFlowtrace is implemented in the core
- bit 7 Unimplemented: Read as '0'
- bit 6 **VEIC:** External Vector Interrupt Controller bit
- 1 = Support for an external interrupt controller is implemented.
- bit 5 VINT: Vector Interrupt bit
- 1 = Vector interrupts are implemented
- bit 4 SP: Small Page bit
- 0 = 4 KB page size
- bit 3 **CDMM:** Common Device Memory Map bit
- 1 = CDMM is implemented
- bit 2-1 Unimplemented: Read as '0'
- bit 0 **TL:** Trace Logic bit

0 = Trace logic is not implemented (this is old trace logic, which is replaced by iFlowtrace (ITL bit))

Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

TABLE 4-22: SYSTEM BUS TARGET PROTECTION GROUP 12 REGISTER MAP

ess		6	Bits																
Virtual Addr (BF90_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0820		31:16	MULTI			_		CODE	<3:0>		_	_		I					0000
9020	SBITZELOGT	15:0				INITID	<7:0>					REGIO	N<3:0>		—		CMD<2:0>		0000
0024		31:16	_		_	_	_	_	_	—	_	_	—			—	—		0000
9024	SBT IZELOGZ	15:0	_		_	_	_	_	_	—	_	_	—			—	GROU	P<1:0>	0000
0000		31:16	—		_	-			-	ERRP			—		—	—	—	—	0000
9020	SBITZECON	15:0	_	_	_	-		_	_	_	Ι	_	_	_	_	_	_	_	0000
0020		31:16	_	_	_	-		_	_	_	Ι	_	_	_	_	_	_	_	0000
9030	SBI IZECLKS	15:0	_	_	_	-		_	_	_	Ι	_	_	_	_	_	_	CLEAR	0000
0020		31:16	_	_	_	-		_	_	_	Ι	_	_	_	_	_	_	_	0000
9000	SBITZEGLRIM	15:0	_	_	_	-		_	_	_	Ι	_	_	_	_	_	_	CLEAR	0000
0040		31:16								BASE<	:21:6>								xxxx
9040	SBIIZREGU	15:0			BASE	<5:0>			PRI	_			SIZE<4:0>			—	—	—	xxxx
0050		31:16	_	_	_	-		_	_	_	Ι	_	_	_	_	_	_	_	xxxx
9650	SBIIZRDU	15:0	_	_	_	-		_	_	_	Ι	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0050		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	xxxx
9000	36112WRU	15:0	_		_	_	_	—	_	_	_	_	_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx

L

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	_	—	—	—	—	—	—	—
22:16	U-0	U-0						
23.10	_	—	—	—	—	—	—	—
15.0	U-0	U-0						
10.0	_	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	_		_	_			T0PGV3 ⁽¹⁾	T16PGV

REGISTER 4-5: SBFLAG3: SYSTEM BUS STATUS FLAG REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-2 Unimplemented: Read as '0'

- bit 1 **TOPGV3:** Target 0 (System Bus 3) Permission Group Violation Status bit⁽¹⁾
 - 1 = Target 0 (System Bus 3) is reporting a Permission Group (PG) violation
 - 0 = Target 0 (System Bus 3) is not reporting a PG violation
- bit 0 T16PGV: Target 16 (DDR2 Target 3 and Target 4) Permission Group Violation Status bit
 - 1 = Target 16 is reporting a Permission Group (PG) violation
 - 0 = Target 16 is not reporting a PG violation
- **Note 1:** System Bus 3 represents an internal sub-system element and should be treated as a general System Bus violation.

Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

(1)	YOOD Victor Name	IRQ	Maatan #		Interrupt Bit Location				
Interrupt Source	XC32 vector Name	#	vector #	Flag	Enable	Priority	Sub-priority	Interrupt	
External Interrupt 4	_EXTERNAL_4_VECTOR	23	OFF023<17:1>	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	No	
Timer5	_TIMER_5_VECTOR	24	OFF024<17:1>	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	No	
Input Capture 5 Error	_INPUT_CAPTURE_5_ERROR_VECTOR	25	OFF025<17:1>	IFS0<25>	IEC0<25>	IPC6<12:10>	IPC6<9:8>	Yes	
Input Capture 5	_INPUT_CAPTURE_5_VECTOR	26	OFF026<17:1>	IFS0<26>	IEC0<26>	IPC6<20:18>	IPC6<17:16>	Yes	
Output Compare 5	_OUTPUT_COMPARE_5_VECTOR	27	OFF027<17:1>	IFS0<27>	IEC0<27>	IPC6<28:26>	IPC6<25:24>	No	
Timer6	_TIMER_6_VECTOR	28	OFF028<17:1>	IFS0<28>	IEC0<28>	IPC7<4:2>	IPC7<1:0>	No	
Input Capture 6 Error	_INPUT_CAPTURE_6_ERROR_VECTOR	29	OFF029<17:1>	IFS0<29>	IEC0<29>	IPC7<12:10>	IPC7<9:8>	Yes	
Input Capture 6	_INPUT_CAPTURE_6_VECTOR	30	OFF030<17:1>	IFS0<30>	IEC0<30>	IPC7<20:18>	IPC7<17:16>	Yes	
Output Compare 6	_OUTPUT_COMPARE_6_VECTOR	31	OFF031<17:1>	IFS0<31>	IEC0<31>	IPC7<28:26>	IPC7<25:24>	No	
Timer7	_TIMER_7_VECTOR	32	OFF032<17:1>	IFS1<0>	IEC1<0>	IPC8<4:2>	IPC8<1:0>	No	
Input Capture 7 Error	_INPUT_CAPTURE_7_ERROR_VECTOR	33	OFF033<17:1>	IFS1<1>	IEC1<1>	IPC8<12:10>	IPC8<9:8>	Yes	
Input Capture 7	_INPUT_CAPTURE_7_VECTOR	34	OFF034<17:1>	IFS1<2>	IEC1<2>	IPC8<20:18>	IPC8<17:16>	Yes	
Output Compare 7	_OUTPUT_COMPARE_7_VECTOR	35	OFF035<17:1>	IFS1<3>	IEC1<3>	IPC8<28:26>	IPC8<25:24>	No	
Timer8	_TIMER_8_VECTOR	36	OFF036<17:1>	IFS1<4>	IEC1<4>	IPC9<4:2>	IPC9<1:0>	No	
Input Capture 8 Error	_INPUT_CAPTURE_8_ERROR_VECTOR	37	OFF037<17:1>	IFS1<5>	IEC1<5>	IPC9<12:10>	IPC9<9:8>	Yes	
Input Capture 8	_INPUT_CAPTURE_8_VECTOR	38	OFF038<17:1>	IFS1<6>	IEC1<6>	IPC9<20:18>	IPC9<17:16>	Yes	
Output Compare 8	_OUTPUT_COMPARE_8_VECTOR	39	OFF039<17:1>	IFS1<7>	IEC1<7>	IPC9<28:26>	IPC9<25:24>	No	
Timer9	_TIMER_9_VECTOR	40	OFF040<17:1>	IFS1<8>	IEC1<8>	IPC10<4:2>	IPC10<1:0>	No	
Input Capture 9 Error	_INPUT_CAPTURE_9_ERROR_VECTOR	41	OFF041<17:1>	IFS1<9>	IEC1<9>	IPC10<12:10>	IPC10<9:8>	Yes	
Input Capture 9	_INPUT_CAPTURE_9_VECTOR	42	OFF042<17:1>	IFS1<10>	IEC1<10>	IPC10<20:18>	IPC10<17:16>	Yes	
Output Compare 9	_OUTPUT_COMPARE_9_VECTOR	43	OFF043<17:1>	IFS1<11>	IEC1<11>	IPC10<28:26>	IPC10<25:24>	No	
ADC Global Interrupt	_ADC_VECTOR	44	OFF044<17:1>	IFS1<12>	IEC1<12>	IPC11<4:2>	IPC11<1:0>	Yes	
ADC FIFO Interrupt	_ADC_FIFO_VECTOR	45	OFF045<17:1>	IFS1<13>	IEC1<13>	IPC11<12:10>	IPC11<9:8>	Yes	
ADC Digital Comparator 1	_ADC_DC1_VECTOR	46	OFF046<17:1>	IFS1<14>	IEC1<14>	IPC11<20:18>	IPC11<17:16>	Yes	
ADC Digital Comparator 2	_ADC_DC2_VECTOR	47	OFF047<17:1>	IFS1<15>	IEC1<15>	IPC11<28:26>	IPC11<25:24>	Yes	
ADC Digital Comparator 3	_ADC_DC3_VECTOR	48	OFF048<17:1>	IFS1<16>	IEC1<16>	IPC12<4:2>	IPC12<1:0>	Yes	
ADC Digital Comparator 4	_ADC_DC4_VECTOR	49	OFF049<17:1>	IFS1<17>	IEC1<17>	IPC12<12:10>	IPC12<9:8>	Yes	
ADC Digital Comparator 5	_ADC_DC5_VECTOR	50	OFF050<17:1>	IFS1<18>	IEC1<18>	IPC12<20:18>	IPC12<17:16>	Yes	
ADC Digital Comparator 6	_ADC_DC6_VECTOR	51	OFF051<17:1>	IFS1<19>	IEC1<19>	IPC12<28:26>	IPC12<25:24>	Yes	

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

	Yoo Y A N	IRQ			Interru	upt Bit Location		Persistent
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
SPI1 Receive Done	_SPI1_RX_VECTOR	110	OFF110<17:1>	IFS3<14>	IEC3<14>	IPC27<20:18>	IPC27<17:16>	Yes
SPI1 Transfer Done	_SPI1_TX_VECTOR	111	OFF111<17:1>	IFS3<15>	IEC3<15>	IPC27<28:26>	IPC27<25:24>	Yes
UART1 Fault	_UART1_FAULT_VECTOR	112	OFF112<17:1>	IFS3<16>	IEC3<16>	IPC28<4:2>	IPC28<1:0>	Yes
UART1 Receive Done	_UART1_RX_VECTOR	113	OFF113<17:1>	IFS3<17>	IEC3<17>	IPC28<12:10>	IPC28<9:8>	Yes
UART1 Transfer Done	_UART1_TX_VECTOR	114	OFF114<17:1>	IFS3<18>	IEC3<18>	IPC28<20:18>	IPC28<17:16>	Yes
I2C1 Bus Collision Event	_I2C1_BUS_VECTOR	115	OFF115<17:1>	IFS3<19>	IEC3<19>	IPC28<28:26>	IPC28<25:24>	Yes
I2C1 Slave Event	_I2C1_SLAVE_VECTOR	116	OFF116<17:1>	IFS3<20>	IEC3<20>	IPC29<4:2>	IPC29<1:0>	Yes
I2C1 Master Event	_I2C1_MASTER_VECTOR	117	OFF117<17:1>	IFS3<21>	IEC3<21>	IPC29<12:10>	IPC29<9:8>	Yes
PORTA Input Change Interrupt	_CHANGE_NOTICE_A_VECTOR	118	OFF118<17:1>	IFS3<22>	IEC3<22>	IPC29<20:18>	IPC29<17:16>	Yes
PORTB Input Change Interrupt	_CHANGE_NOTICE_B_VECTOR	119	OFF119<17:1>	IFS3<23>	IEC3<23>	IPC29<28:26>	IPC29<25:24>	Yes
PORTC Input Change Interrupt	_CHANGE_NOTICE_C_VECTOR	120	OFF120<17:1>	IFS3<24>	IEC3<24>	IPC30<4:2>	IPC30<1:0>	Yes
PORTD Input Change Interrupt	_CHANGE_NOTICE_D_VECTOR	121	OFF121<17:1>	IFS3<25>	IEC3<25>	IPC30<12:10>	IPC30<9:8>	Yes
PORTE Input Change Interrupt	_CHANGE_NOTICE_E_VECTOR	122	OFF122<17:1>	IFS3<26>	IEC3<26>	IPC30<20:18>	IPC30<17:16>	Yes
PORTF Input Change Interrupt	_CHANGE_NOTICE_F_VECTOR	123	OFF123<17:1>	IFS3<27>	IEC3<27>	IPC30<28:26>	IPC30<25:24>	Yes
PORTG Input Change Interrupt	_CHANGE_NOTICE_G_VECTOR	124	OFF124<17:1>	IFS3<28>	IEC3<28>	IPC31<4:2>	IPC31<1:0>	Yes
PORTH Input Change Interrupt	_CHANGE_NOTICE_H_VECTOR	125	OFF125<17:1>	IFS3<29>	IEC3<29>	IPC31<12:10>	IPC31<9:8>	Yes
PORTJ Input Change Interrupt	_CHANGE_NOTICE_J_VECTOR	126	OFF126<17:1>	IFS3<30>	IEC3<30>	IPC31<20:18>	IPC31<17:16>	Yes
PORTK Input Change Interrupt	_CHANGE_NOTICE_K_VECTOR	127	OFF127<17:1>	IFS3<31>	IEC3<31>	IPC31<28:26>	IPC31<25:24>	Yes
Parallel Master Port	_PMP_VECTOR	128	OFF128<17:1>	IFS4<0>	IEC4<0>	IPC32<4:2>	IPC32<1:0>	Yes
Parallel Master Port Error	_PMP_ERROR_VECTOR	129	OFF129<17:1>	IFS4<1>	IEC4<1>	IPC32<12:10>	IPC32<9:8>	Yes
Comparator 1 Interrupt	_COMPARATOR_1_VECTOR	130	OFF130<17:1>	IFS4<2>	IEC4<2>	IPC32<20:18>	IPC32<17:16>	No
Comparator 2 Interrupt	_COMPARATOR_2_VECTOR	131	OFF131<17:1>	IFS4<3>	IEC4<3>	IPC32<28:26>	IPC32<25:24>	No
USB General Event	_USB1_VECTOR	132	OFF132<17:1>	IFS4<4>	IEC4<4>	IPC33<4:2>	IPC33<1:0>	Yes
USB DMA Event	_USB1_DMA_VECTOR	133	OFF133<17:1>	IFS4<5>	IEC4<5>	IPC33<12:10>	IPC33<9:8>	Yes
DMA Channel 0	_DMA0_VECTOR	134	OFF134<17:1>	IFS4<6>	IEC4<6>	IPC33<20:18>	IPC33<17:16>	No
DMA Channel 1	_DMA1_VECTOR	135	OFF135<17:1>	IFS4<7>	IEC4<7>	IPC33<28:26>	IPC33<25:24>	No
DMA Channel 2	_DMA2_VECTOR	136	OFF136<17:1>	IFS4<8>	IEC4<8>	IPC34<4:2>	IPC34<1:0>	No
DMA Channel 3	_DMA3_VECTOR	137	OFF137<17:1>	IFS4<9>	IEC4<9>	IPC34<12:10>	IPC34<9:8>	No
DMA Channel 4	_DMA4_VECTOR	138	OFF138<17:1>	IFS4<10>	IEC4<10>	IPC34<20:18>	IPC34<17:16>	No

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				NMIK	EY<7:0>			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	—	MVEC	—		TPC<2:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 **NMIKEY<7:0>:** Non-Maskable Interrupt Key bits When the correct key (0x4E) is written, a software NMI will be generated. The status is indicated by the GNMI bit (RNMICON<19>).

bit 23-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for multi-vectored mode
 - 0 = Interrupt controller configured for single vectored mode

bit 11 Unimplemented: Read as '0'

- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DATA<31:24>										
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DATA<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0				DATA	<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				DATA	<7:0>						

REGISTER 11-12: USBFIFOX: USB FIFO DATA REGISTER 'x' ('x' = 0-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: USB Transmit/Receive FIFO Data bits

Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.

Transfers may be 8-bit, 16-bit or 32-bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

14.2 Timer2-Timer9 Control Registers

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP

s										В	its								
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000 T		31:16	-	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	0000
0200 1	200N	15:0	ON	—	SIDL	—	_	—		—	TGATE	-	TCKPS<2:0	>	T32	_	TCS	_	0000
0210 7	тиро	31:16	—	_	—	_	—	_	_	—	—	—	—	—	_	_	—		0000
0210 1		15:0								TMR2	<15:0>								0000
0220	PP2	31:16		—	-	_	-	_		-	_	-	-			_	-	_	0000
0220	FNZ	15:0								PR2<	:15:0>								FFFF
0400 T	3CON	31:16	_	—	—	—	—	—	_	—	—	—	—	—	_	—		—	0000
0400 1	3001	15:0	ON	—	SIDL	—	—	—	_	—	TGATE	-	TCKPS<2:0	>	_	—	TCS	—	0000
0410 7	TMR3	31:16	—	—		—	—	—	—	—	—	—	—	—	—	—	—		0000
0410	T WILCO	15:0								TMR3	<15:0>								0000
0420	PR3	31:16	—	—		—	—	—	—	—	—	—	—	—	—	—			0000
0120	110	15:0								PR3<	:15:0>								FFFF
0600 T	4CON	31:16	_	—	—	—	—	—	-	—	—	—	—	—	-	—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	_	—	TGATE	-	TCKPS<2:0	>	T32	—	TCS	_	0000
0610 1	TMR4	31:16	—	-	—	—	—	—	—	—	-	—	—	—	—	—			0000
		15:0								TMR4	<15:0>								0000
0620	PR4	31:16	—	—		—	—	—	—		—	—	—	—	—	—		_	0000
		15:0								PR4<	:15:0>								FFFF
0800 T	5CON	31:16	—	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	—	—	TGATE		TCKPS<2:0	>	—	—	TCS	—	0000
0810 1	TMR5	31:16	_	—	—	—	—	—	—		_	—	—	—	—	_	—	_	0000
		15:0								TMR5	<15:0>								0000
0820	PR5	31:16			_		_		—				_	_	—				0000
		15:0								PR5<	:15:0>								FFFF
0A00 T	6CON	31:16	_		-						-			_	-	_	-		0000
		15:0	ON	_	SIDL						IGAIE		TCKPS<2:0	>	132	_	ICS		0000
0A10 T	TMR6	31:16	—	_	_	_	—		—	—	-		—	—	—		_		0000
		15:0								TMR2	<15:0>								0000
0A20	PR6	31:16	-	_	—	_	—	—	—	—	-	—	—	—	—	_	—	—	0000
		15:0								PR2<	:15:0>								FFFF
0C00 T	7CON	31:16	-	—	-	—	—	—	—	—		—		—	—	_	— T00		0000
		15:0			SIDL		— —						IUKPS<2:0	>	—	—	TCS	—	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Note 1:

REGIST	ER 20-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER
bit 10-9	RTCCLKSEL<1:0>: RTCC Clock Select bits
	When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC. 11 = Reserved
	10 = Reserved
	 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC) 00 = RTCC uses the internal 32 kHz oscillator (LPRC)
bit 8-7	RTCOUTSEL<1:0>: RTCC Output Data Select bits ⁽²⁾
	11 = Reserved
	10 = RTCC Clock is presented on the RTCC pin
	01 = Seconds Clock is presented on the RTCC pin
	00 = Alarm Pulse is presented on the RICC pin when the alarm interrupt is triggered
bit 6	RTCCLKON: RTCC Clock Enable Status bit
	1 = RTCC Clock is actively running
	0 = RICC Clock is not running
bit 5-4	Unimplemented: Read as '0'
bit 3	RTCWREN: Real-Time Clock Value Registers Write Enable bit ⁽³⁾
	 1 = Real-Time Clock Value registers can be written to by the user 0 = Real-Time Clock Value registers are locked out from being written to by the user
bit 2	RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
	 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
	0 = Real-time clock value registers can be read without concern about a rollover ripple
bit 1	HALFSEC: Half-Second Status bit ⁽⁴⁾
	 1 = Second half period of a second 0 = First half period of a second
bit 0	RTCOE: RTCC Output Enable bit
	· · · · · · · · · · · · · · · · · · ·

- 1 = RTCC output is enabled
- 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

REGIST	ER 25-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
bit 8	PTRDEN: Read/Write Strobe Port Enable bit
	1 = PMRD/PMWR port is enabled
	0 = PMRD/PMWR port is disabled
bit 7-6	CSF<1:0>: Chip Select Function bits ⁽²⁾
	11 = Reserved
	10 = PMCS1 and PMCS2 function as Chip Select
	01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
hit 5	00 = PMCST and PMCS2 function as address bits 14 and 15, respectively
DIL 5	1 - Active bick (DMALL and DMALL)
	$1 = \text{Active-high} (\underline{PMAL} \text{ and } \underline{PMAL} \text{ h})$ $0 = \text{Active-low} (\underline{PMAL} \text{ and } \underline{PMAL} \text{ h})$
bit 4	CS2P: Chip Select 0 Polarity bit ⁽²⁾
	1 = Active-high (PMCS2)
	$0 = \text{Active-low}(\overline{\text{PMCS2}})$
bit 3	CS1P: Chip Select 0 Polarity bit ⁽²⁾
	1 = Active-high (PMCS1)
	$0 = \text{Active-low}(\overline{\text{PMCS1}})$
bit 2	Unimplemented: Read as '0'
bit 1	WRSP: Write Strobe Polarity bit
	For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Write strobe active-high (PMWR)
	0 = Write strobe active-low (PMWR)
	For Master mode 1 (MODE<1:0> = 11):
	1 = Enable strobe active-high (PMENB)
	0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (MODE<1:0> = $00,01,10$):
	1 = Read Strobe active-high (PMRD)
	0 = Read Strobe active-low (PNRD)
	For Master mode 1 (MODE<1:0> = 11):
	1 = Read/write strobe active-high (PMRD/PMWR)
	U = Reau/while Shope active-low (PIVIRD/PIVIVR)
Note 1	• When using 1.1 PRCLK divisor, the user software should not read/write the peripheral's

- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0						
31.24	ADCSE	L<1:0>			CONCL	.KDIV<5:0>		
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	DIGEN7	—	—	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC
15:8	VREFSEL<2:0>			TRGSUSP	UPDIEN	UPDRDY	SAMP ^(1,2,3,4)	RQCNVRT
7.0	R/W-0	R/W, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	GLSWTRG	GSWTRG			ADINS	SEL<5:0>		

REGISTER 29-3: ADCCON3: ADC CONTROL REGISTER 3

Legend:	HC = Hardware Set	HS = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 31-30 ADCSEL<1:0>: Analog-to-Digital Clock Source (TCLK) bits

11 = FRC 10 = REFCLK3 01 = System Clock (Tcy) 00 = PBCLK3

bit 29-24 CONCLKDIV<5:0>: Analog-to-Digital Control Clock (Tq) Divider bits

bit 23 **DIGEN7:** Shared ADC (ADC7) Digital Enable bit 1 = ADC7 is digital enabled 0 = ADC7 is digital disabled

bit 22-21 Unimplemented: Read as '0'

bit 20 DIGEN4: ADC4 Digital Enable bit

- 1 = ADC4 is digital enabled
- 0 = ADC4 is digital disabled

bit 19 **DIGEN3:** ADC3 Digital Enable bit

- 1 = ADC3 is digital enabled
- 0 = ADC3 is digital disabled
- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

REGISTER 29-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 5-6 Unimplemented: Read as '0'

bit 7

- bit 4-0 **ANEN4: ANEN0:** ADC4-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN7	MSEL	7<1:0>	FSEL7<4:0>				
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	FLTEN6 MSEL6<1:0>			FSEL6<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	FLTEN5	5 MSEL5<1:0>			F	SEL5<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN4 MSEL4<1:0>		FSEL4<4:0>					

REGISTER 30-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
h:+ 00 04	50 - Acceptance Mask o selected
DIT 28-24	FSEL/<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
hit 20.16	ESEL 6 (4:0) + ELEO Selection bits
DIL 20-16	F3EL0<4:0>: FIFO Selection bits
	11111 - Message matching filter is stored in FIFO buffer 20
	· · · · · · · · · · · · · · · · · · ·
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	-	—			
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	RXFWM<7:0>										
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
10.0	_	_	_	_	_	_		_			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	RXEWM<7:0>										

REGISTER 31-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-24 Unimplemented: Read as '0'
- bit 23-16 **RXFWM<7:0>:** Receive Full Watermark bits

The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer.

- bit 15-8 Unimplemented: Read as '0'
- bit 7-0 **RXEWM<7:0>:** Receive Empty Watermark bits

The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer.

Note: This register is only used for RX operations.

REGISTER 31-13:	ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER
-----------------	---

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—		—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—		—	—	—	—
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾		—	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾	_	TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt
 - 0 = Disable RXBUS Error Interrupt
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt
	0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾
	1 = Enable FWMARK Interrupt
	0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾
	1 = Enable RXDONE Interrupt
	0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾
	1 = Enable PKTPEND Interrupt
	0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit ⁽²⁾
	1 = Enable RXACT Interrupt
	0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾
	1 = Enable TXDONE Interrupt
	0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾
	1 = Enable TXABORT Interrupt
	0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾
	1 = Enable RXBUFNA Interrupt
	0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾
	1 = Enable RXOVFLW Interrupt
	0 = Disable RXOVFLW Interrupt

- Note 1: This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

REGISTER 31-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
15:8	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
	—	NB2BIPKTGP1<6:0>						
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
	_	NB2BIPKTGP2<6:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits

This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1 "Deference" of the IEEE 80.23 Specification. If carrier is detected during the timing of IPGR1, the MAC defers to carrier. If, however, carrier becomes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to medium. Its range of values is 0x0 to IPGR2. Its recommend value is 0xC (12d).

bit 7 Unimplemented: Read as '0'

bit 6-0 **NB2BIPKTGP2<6:0>:** Non-Back-to-Back Interpacket Gap Part 2 bits This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is 0x12 (18d), which represents the minimum IPG of 0.96 µs (in 100 Mbps) or 9.6 µs (in 10 Mbps).

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 34-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit Select bits⁽¹⁾

- 1111 = Selects analog input on HLVDIN
 - 1110 = Selects trip point 14 1101 = Selects trip point 13 1100 = Selects trip point 12 1011 = Selects trip point 12 1010 = Selects trip point 10 1000 = Selects trip point 9 1000 = Selects trip point 8 0111 = Selects trip point 7 0110 = Selects trip point 6 0101 = Selects trip point 5 0100 = Selects trip point 5 0100 = Selects trip point 4 0011 = Reserved; do not use 0001 = Reserved; do not use 0000 = Reserved; do not use
- **Note 1:** To avoid false HLVD events, all HLVD module setting changes should occur only when the module is disabled (ON = 0). See Table 44-6 in **44.0** "Electrical Characteristics" for the actual trip points.
 - 2: Once this bit is set to '1', it can only be cleared by disabling or enabling the HLVD module (or through the HLVDMD bit).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	R/W-0	R/W-0	U-0	W-0	U-0	R/W-0
31:24	—	—	SCL PHCAL	SCL START	—	SCLEN	_	—
22.16	U-0	U-0						
23:10	—	—	_		—	-	_	—
15:8	U-0	U-0						
					—	—		_
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R-0	R-0
			_				SCLUB PASS ⁽¹⁾	SCLLB PASS ⁽¹⁾

REGISTER 38-24: DDRSCLSTART: DDL SELF CALIBRATION LOGIC START REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-30 Unimplemented: Write as '0'
- bit 29 SCLPHCAL: Start Phase Self-calibration Logic bit
 - 1 = Phase calibration is enabled
 - 0 = Phase calibration is disabled
- bit 28 SCLSTART: Start Self Calibration Logic bit
 - 1 = Start self calibration
 - 0 = Do not start self calibration
- bit 27 Unimplemented: Write as '0'
- bit 26 SCLEN: Self Calibration Logic Enable bit
 - 1 = Enable dynamic self calibration logic
 - 0 = Disable dynamic self calibration logic

Note: Enabling dynamic self calibration may impact performance.

- bit 25-2 Unimplemented: Write as '0'
- bit 1 SCLUBPASS: Self Calibration Logic Upper Data Byte Status bit⁽¹⁾
 - 1 = Self calibration logic for upper data byte passed
 - 0 = Self calibration logic for upper data byte failed
- bit 0 SCLLBPASS: Self Calibration Logic Lower Data Byte Status bit⁽¹⁾
 - 1 = Self calibration logic for lower data byte passed
 - 0 = Self calibration logic for lower data byte failed
- Note 1: This bit is set by hardware when the SCL process has passed and is complete.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
25.0 "Parallel Master Port (PMP)"	The All Resets value for bits 15:0 of the PMSTAT register in the Parallel Master Port Register Map was updated (see Table 25-1).
26.0 "External Bus Interface (EBI)"	The All Resets values were updated in the EBI Register Map (see Table 26-2).
29.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to- Digital Converter (ADC)"	The All Resets values for the ADCCON1 and ADCxTIME registers were updated and the Virtual Addresses for the ADCxCFG, ADCSYSCFGx, and ADCDATAx registers were updated in the ADC Register Map (see Table 29-1).
34.0 "High/Low-Voltage Detect	The chapter was renamed and the introduction was updated.
(HLVD)"	The HLVDCON register was updated (see Table 34-1 and Register 34-1).
	High/Low-Voltage Detect (HLVD) Module Block Diagram was updated (see Figure 34-1)
36.0 "Graphics LCD (GLCD)	The Graphics LCD Controller Register Map was updated (see Table 36-1).
Controller"	These registers were updated:
	 Register 36-2: "GLCDCLKCON: Graphics LCD Controller Clock Control Register"
	Register 36-4: "GLCDRES: Graphics LCD Controller Resolution Register"
	 Register 36-5: "GLCDFPORCH: Graphics LCD Controller Front Porch Register"
	 Register 36-6: "GLCDBLANKING: Graphics LCD Controller Blanking Register"
	 Register 36-7: "GLCDBPORCH: Graphics LCD Controller Back Porch Register"
	• Register 36-8: "GLCDCURSOR: Graphics LCD Controller Cursor Register"
	 Register 36-10: "GLCDLxstart: graphics lcd controller layer 'x' start register ('x' = 0-2)"
	 Register 36-11: "GLCDLxsize: graphics lcd controller layer 'x' size register ('x' = 0-2)"
	 Register 36-14: "GLCDLxres: graphics lcd controller layer 'x' resolution register ('x' = 0-2)"
37.0 "2-D Graphics Processing Unit (GPU)"	The introduction was updated.
39.0 "Secure Digital Host	The SDHC block diagram was updated (see Figure 39-1).
Controller (SDHC)"	The SDHC Register Map was updated (see Table 39-1).
	The bit values for the CDSLVL bit in the SDHCSTAT1 register were updated (see Register 39-6).
	The SDHCCAP register was updated (see Register 39-13).
40.0 "Power-Saving Features"	40.2.3 "Deep Sleep Mode" was updated.
	References to High-Voltage Detect were removed in the PMD Register Summary (Table 40-2) and the PMD Bits and Locations (Table 40-3).
41.0 "Special Features"	The CFGCON2 register was updated (see Table 41-3 and Register 41-12).