

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1064dab169-i-hf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin	F	in Numbe	r	Pin	Buffor						
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description					
					PC	DRTK					
RK0	K12	137	P16	I/O	ST	PORTK is a bidirectional I/O port					
RK1	J11	136	R18	I/O	ST						
RK2	H11	135	R17	I/O	ST						
RK3	L13	134	R16	I/O	ST						
RK4	H10	133	P15	I/O	ST						
RK5	J10	132	R15	I/O	ST						
RK6	M13	131	T18	I/O	ST						
RK7	M12	130	T17	I/O	ST						
Legend:	CMOS =	CMOS-co	mpatible in	put or outp	out	Analog = Analog input	P = Power				
	ST = Scł	nmitt Trigge	er input with	n CMOS le	vels	O = Output	I = Input				
	TTL = Tr	ansistor-tra	ansistor Log	gic input bu	ıffer	PPS = Peripheral Pin Select					

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

		Pin Numbe	r	Dim	Duffer				
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description			
				Tin	ner1 throu	gh Timer9			
T1CK	D13	161	H18	I	ST	Timer1 External Clock Input			
T2CK	PPS	PPS	PPS	I	ST	Timer2 External Clock Input			
T3CK	PPS	PPS	PPS	I	ST	Timer3 External Clock Input			
T4CK	PPS	PPS	PPS	I	ST	Timer4 External Clock Input			
T5CK	PPS	PPS	PPS	I	ST	Timer5 External Clock Input			
T6CK	PPS	PPS	PPS	I	ST	Timer6 External Clock Input			
T7CK	PPS	PPS	PPS	I	ST	Timer7 External Clock Input			
T8CK	PPS	PPS	PPS	I	ST	Timer8 External Clock Input			
T9CK	PPS	PPS	PPS	I	ST	Timer9 External Clock Input			
	Real-Time Clock and Calendar								
RTCC ⁽¹⁾	H3	79	V5	0	—	Real-Time Clock Alarm/Seconds Output			
Legend:	CMOS = 0	CMOS-com	patible inpu	t or output	t Analog = Analog input P = Power				
	ST = Schi	mitt Trigger	input with C	CMOS levels	ievels O = Output I = Input				
	TTL = Tra	nsistor-tran	istor-transistor Logic input buffer PPS = Peripheral Pin Select						

Note 1: RTCC pin function in not available during VBAT operation.

TABLE 4-8: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS (CONTINUED)

			:	SBTxREGy Reg	jister (see Note	7)			SBTxRD	y Register	SBTxWR	y Register
Target Protection Number	Target Description (see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
6	External Memory via EBI and EBI	SBT6REG0	R	0x20000000	R	64 MB	_	0	SBT6RD0	R/W ⁽¹⁾	SBT6WR0	R/W ⁽¹⁾
	Module ⁽⁶⁾	SBT6REG2	R	0x1F8EC000	R	4 KB	0	1	SBT6RD2	R/W ⁽¹⁾	SBT6WR2	R/W ⁽¹⁾
7	System Controller	SBT7REG0	R	0x1F800000	R	_	—	0	SBT7RD0	R/W ⁽¹⁾	SBT7WR0	R/W ⁽¹⁾
	Flash Controller	SBT7REG1	R/W	R/W	R/W	R/W	_	3	SBT7RD1	R/W ⁽¹⁾	SBT7WR1	R/W ⁽¹⁾
	DMT/WDT CVREF PPS Input PPS Output Interrupts DMA	SBT7REG2	R/W	R/W	R/W	R/W	0	1	SBT7RD2	R/W ⁽¹⁾	SBT7WR2	R/W ⁽¹⁾
8	SPI1-SPI6	SBT8REG0	R	0x1F820000	R	64 KB	_	0	SBT8RD0	R/W ⁽¹⁾	SBT8WR0	R/W ⁽¹⁾
	I2C1-I2C5 UART1-UART6 PMP	SBT8REG1	R/W	R/W	R/W	R/W	_	3	SBT8RD1	R/W ⁽¹⁾	SBT8WR1	R/W ⁽¹⁾
9	Timer1-Timer9	SBT9REG0	R	0x1F840000	R	64 KB	—	0	SBT9RD0	R/W ⁽¹⁾	SBT9WR0	R/W ⁽¹⁾
	IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2	SBT9REG1	R/W	R/W	R/W	R/W	—	3	SBT9RD1	R/W ⁽¹⁾	SBT9WR1	R/W ⁽¹⁾
10	PORTA-PORTK	SBT10REG0	R	0x1F860000	R	64 KB	—	0	SBT10RD0	R/W ⁽¹⁾	SBT10WR0	R/W ⁽¹⁾
		SBT10REG1	R/W	R/W	R/W	R/W	_	3	SBT10RD1	R/W ⁽¹⁾	SBT10WR1	R/W ⁽¹⁾
11	CAN1	SBT11REG0	R	0x1F880000	R	64 KB	_	0	SBT11RD0	R/W ⁽¹⁾	SBT11WR0	R/W ⁽¹⁾
	CAN2 Ethernet	SBT11REG1	R/W	R/W	R/W	R/W	—	3	SBT11RD1	R/W ⁽¹⁾	SBT11WR1	R/W ⁽¹⁾
12	GLCD	SBT12REG0	R	0x1F8EA000	R	4 KB	_	0	SBT12RD0	R/W ⁽¹⁾	SBT12WR0	R/W ⁽¹⁾
	GPU		R	0x1F8EB000	R	4 KB	_	0		R/W ⁽¹⁾		R/W ⁽¹⁾
	DDR2PHY		R	0x1F8E9000	R	4 KB	—	0		R/W ⁽¹⁾		R/W ⁽¹⁾
	DDR2SFR		R	0x1F8E8000	R	4 KB	—	0		R/W ⁽¹⁾		R/W ⁽¹⁾
13	External Memory via SQI1 and	SBT13REG0	R	0x30000000	R	64 MB	—	0	SBT13RD0	R/W ⁽¹⁾	SBT13WR0	R/W ⁽¹⁾
	SQI1	SBT13REG1	R	0x1F8E2000	R	4 KB	—	3	SBT13RD1	R/W ⁽¹⁾	SBT13WR1	R/W ⁽¹⁾
Legend:	R = Read: R/W = Rea	d/Write:	'x' in a registe	r name = 0-13:	'v' in	a register na	me = 0-8.					

Legend:

R = Read:

'y' in a register name = 0-8.

Reset values for these bits are '0', '1', '1', '1', respectively. Note 1:

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset. 2:

3: The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = $2^{(SIZE-1)} \times 1024$ bytes. For read-only bits, this value is set by hardware on Reset. Refer to the Device Memory Map (Figure 4-1) for specific device memory sizes and start addresses. 4:

5: See Table 4-2 for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

7: The 'x' in the SBTxREGy, SBTxRDy, and SBTxWRy registers represents the target protection number and not the actual target number (e.g., for SQI 'x' = 13 and not 11, whereas 11 is the actual target number).

IAB	LE 4-16:	515		EM BUS TARGET PROTECTION GROUP 6 REGISTER MAP															
ess										Bi	ts								
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII Resets
0000		31:16	MULTI	—	—	—		CODE	<3:0>		-	—	—	—	_	-	-	_	0000
9620	SBIGELOGI	15:0				INITIE)<7:0>					REGIO	N<3:0>		—		CMD<2:0>		0000
0924		31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	_	0000
9024	3BT0EL0G2	15:0	_	—	—	—	—	—	—	—		—	—	—	—	_	GROU	P<1:0>	0000
0020	SPIECON	31:16	_	—	—	—	—	—	—	ERRP		—	—	—	—	_	_	_	0000
9020	SBIGECON	15:0	—	—	—	—	—	—	—	—		—	_	_	—	_	_	_	0000
0830		31:16	—	—	—	—	—	—	—	—		—	_	_	—	_	_	_	0000
9030	SBIUECLKS	15:0	_	—	—	—	—	—	—	—		—	—	—	—	_	_	CLEAR	0000
0020		31:16	_	—	—	—	—	—	—	—		—	—	—	—	_	_	_	0000
9030	SBIOLCERM	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
0840	SPTERECO	31:16								BASE	<21:6>								xxxx
9040	SBTOREGO	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			—	—	—	xxxx
0850	SBIEDO	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
9000	SBIORDO	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0959	SBT6W/D0	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
9000	SBIOWRO	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0860	SPT6DEC1	31:16								BASE	<21:6>								xxxx
9000	SBTOREGT	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			—	—	—	xxxx
0870	SBT6DD1	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
9010		15:0	-	—	_	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0878	SBT6W/D1	31:16	—	_	_	—	_	_	—	—	_	—	—	—	—		—	—	xxxx
3010	SDIOWRI	15:0	_	_	_		_	_		_	_			_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

REGISTER 6-1: RCON: RESET CONTROL REGISTER

bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit 1 = Device was in Sleep mode 0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾ 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾ 1 = Power-on Reset has occurred 0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the
	features of the PIC32MZ DA family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 42. "Oscillators
	with Enhanced PLL" (DS60001250) in
	the "PIC32 Family Reference Manual",
	which is available from the Microchip
	web site (www.microchip.com/PIC32).

The PIC32MZ DA oscillator system has the following modules and features:

- Five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for DDR2 and USB modules
- · Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility

A block diagram of the oscillator system is provided in Figure 8-1. The clock distribution is shown in Table 8-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	_	—	—	—
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0
23.10	EP7TXIE	EP6TXIE	EP5TXIE	EP4TXIE	EP3TXIE	EP2TXIE	EP1TXIE	EP0IE
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7:0	R-0, HS	R-0, HS	U-0					
7.0	EP7RXIF	EP6RXIF	EP5RXIF	EP4RXIF	EP3RXIF	EP2RXIF	EP1RXIF	_

REGISTER 11-2: USBCSR1: USB CONTROL STATUS REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

- bit 23-17 EP7TXIE:EP1TXIE: Endpoint 'n' Transmit Interrupt Enable bits
 - 1 = Endpoint Transmit interrupt events are enabled
 - 0 = Endpoint Transmit interrupt events are not enabled
- bit 16 EP0IE: Endpoint 0 Interrupt Enable bit
 - 1 = Endpoint 0 interrupt events are enabled
 - 0 = Endpoint 0 interrupt events are not enabled
- bit 15-8 Unimplemented: Read as '0'
- bit 7-1 EP7RXIF:EP1RXIF: Endpoint 'n' RX Interrupt bit 1 = Endpoint has a receive event to be serviced 0 = No interrupt event
- bit 0 Unimplemented: Read as '0'

14.2 Timer2-Timer9 Control Registers

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP

s				Bits															
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000 T		31:16	-	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	0000
0200 1	200N	15:0	ON	—	SIDL	—	_	—		—	TGATE	-	TCKPS<2:0	>	T32	_	TCS	_	0000
0210 7	тиро	31:16	—	_	—	—	—	_	_	—	—	—	—	—	_	_	—		0000
0210 1		15:0								TMR2	<15:0>								0000
0220	PP2	31:16		—	-	_	-	_		-	_	-	-			_	-	_	0000
0220	FNZ	15:0								PR2<	:15:0>								FFFF
0400 T	3CON	31:16	_	—	—	—	—	—	_	—	—	—	—	—	_	—		—	0000
0400 1	3001	15:0	ON	—	SIDL	—	—	—	_	—	TGATE	-	TCKPS<2:0	>	_	—	TCS	—	0000
0410 7	TMR3	31:16	—	—		—	—	—	—	—	—	—	—	—	—	—	—		0000
0410	T WILCO	15:0								TMR3	<15:0>								0000
0420	PR3	31:16	—	—		—	—	—	—	—	—	—	—	—	—	—			0000
0120	110	15:0								PR3<	:15:0>								FFFF
0600 T	4CON	31:16	_	—	—	—	—	—	-	—	—	—	—	—	-	—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	_	—	TGATE	-	TCKPS<2:0	>	T32	—	TCS	_	0000
0610 1	TMR4	31:16	—	—	—	—	—	—	—	—	-	—	—	—	—	—			0000
		15:0								TMR4	<15:0>								0000
0620	PR4	31:16	—	—		—	—	—	—		—	—	—	—	—	—		_	0000
		15:0								PR4<	:15:0>								FFFF
0800 T	5CON	31:16	—	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	—	—	TGATE		TCKPS<2:0	>	—	—	TCS	—	0000
0810 1	TMR5	31:16	_	—	—	—	—	—	—		_	—	—	—	—	_	—	_	0000
		15:0								TMR5	<15:0>								0000
0820	PR5	31:16			_		_		—				_	_	—				0000
		15:0								PR5<	:15:0>								FFFF
0A00 T	6CON	31:16	_		-						-			_	-	_	-		0000
		15:0	ON	_	SIDL						IGAIE		TCKPS<2:0	>	132	_	ICS		0000
0A10 T	TMR6	31:16	—	_	_	_	—		—	—	-		—	—	—		—		0000
		15:0								TMR2	<15:0>								0000
0A20	PR6	31:16											0000						
		15:0	PK2<15:U> FFF									FFFF							
0C00 T	7CON	31:16	-	—	-	—	—	—	—	—		—		—	—	_	— T00		0000
		15:0			SIDL		— —						IUKPS<2:0	>	—	—	TCS	—	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
31:24				WDTCLR	<ey<15:8></ey<15:8>					
22.16	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
23.10				WDTCLR	KEY<7:0>					
45.0	R/W-0	U-0	U-0	R-y	R-y	R-y	R-y	R-y		
15:8	0N ⁽¹⁾	_	—	RUNDIV<4:0>						
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
7:0	_	_		SLPDIV<4:0> WDTWINEN						

REGISTER 18-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	gend: y = Values set from Configuration bits on POR								
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 31-16 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits To clear the Watchdog Timer to prevent a time-out, software must write the value 0x5743 to these bits using a single 16-bit write.

- bit 15 **ON:** Watchdog Timer Enable bit⁽¹⁾
 - 1 = The Watchdog Timer module is enabled
 - 0 = The Watchdog Timer module is disabled
- bit 14-13 Unimplemented: Read as '0'

bit 12-8 **RUNDIV<4:0>:** Watchdog Timer Postscaler Value in Run Mode bits In Run mode, these bits are set to the values of the WDTPS<4:0> Configuration bits in DEVCFG1.

- bit 7-6 **Unimplemented:** Read as '0'
- bit 5-1 **SLPDIV<4:0>:** Watchdog Timer Postscaler Value in Sleep Mode bits In Sleep mode, these bits are set to the values of the SWDTPS <4:0> Configuration bits in DEVCFG4.
- bit 0 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
- Note 1: This bit only has control when FWDTEN (DEVCFG1<23>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	DEVSEL<1:0>		MODEBYTES<1:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				MODECO	DE<7:0>			

REGISTER 22-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 **Unimplemented:** Read as '0'

- bit 11-10 **DEVSEL<1:0>:** Device Select bits
 - 11 = Reserved
 - 10 = Reserved
 - 01 = Device 1 is selected
 - 00 = Device 0 is selected

bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits

- 11 = Three cycles
- 10 = Two cycles
- 01 = One cycle
- 00 = Zero cycles

bit 7-0 MODECODE<7:0>: Mode Code Value bits

These bits contain the 8-bit code value for the mode bits.

26.0 EXTERNAL BUS INTERFACE (EBI)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "External Bus Interface (EBI)", which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The External Bus Interface (EBI) module provides a high-speed, convenient way to interface external parallel memory devices to the PIC32MZ DA family device.

With the EBI module, it is possible to connect asynchronous SRAM and NOR Flash devices, as well as non-memory devices such as camera sensors and LCDs.

- Note 1: Once the EBI module is configured, external devices will be memory mapped and can be access from KSEG2 memory space (see Figure 4-1 through Figure 4-2 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (see Section 50. "CPU for Devices with MIPS32® microAptiv[™] and M-Class Cores" (DS60001192) in the "PIC32 Family Reference Manual" for more information).
 - 2: When using the EBI module, Graphics LCD (GLCD) Controller functionality is not available, as most of the I/O between the EBI module and the GLCD is shared.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24	BDPADDR<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:10	BDPADDR<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	BDPADDR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				BDPADD	R<7:0>					

REGISTER 27-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BDPADDR<31:0>:** Current Buffer Descriptor Process Address Status bits These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

REGISTER 27-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/w-0	R/w-0	R/w-0	R/w-0	R/w-0	R/w-0	R/w-0	R/w-0		
	BASEADDR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	BASEADDR<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	BASEADDR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				BASEADE)R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BASEADDR<31:0>: DMA Base Address Status bits

These bits contain the base address of the DMA controller. After a reset, a fetch starts from this address.

TABLE 29-2: ADC REGISTER MAP (CONTINUED)

		e								Bit	5								s
Virtual Address	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
BA80	ADCDATA32	31:16			•					DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA84	ADCDATA33	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA88	ADCDATA34	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA8C	ADCDATA35	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA90	ADCDATA36	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA94	ADCDATA37	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA98	ADCDATA38	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BA9C	ADCDATA39	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BAA0	ADCDATA40	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BAA4	ADCDATA41	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BAA8	ADCDATA42	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
BAAC	ADCDATA43	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	—		TRGSRC3<4:0>					
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	—	TRGSRC2<4:0>						
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	—	—	—		Т	RGSRC1<4:0)>			
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_		Т	RGSRC0<4:0)>			

REGISTER 29-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits

11111 = Reserved 11110 = Reserved 11101 = CTMU Event 11100 = Reserved 01110 = Reserved 01101 = CTMU Event 01100 = Comparator 2 (C2OUT) (1) 01011 = Comparator 1 (C1OUT) (1) 01010 = OCMP5 (1) 01001 = OCMP3 (1) 01000 = OCMP1 ⁽¹⁾ 00111 = TMR5 match 00110 = TMR3 match 00101 = TMR1 match 00100 = INT0 External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC2<4:0>:** Trigger Source for Conversion of Analog Input AN2 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC1<4:0>:** Trigger Source for Conversion of Analog Input AN1 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC0<4:0>:** Trigger Source for Conversion of Analog Input AN0 Select bits See bits 28-24 for bit value definitions.
- Note 1: The rising edge of the module output signal triggers an ADC conversion. See Figure 16-1 in 16.0 "Output Compare" and Figure 32-1 in 32.0 "Comparator" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	-	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ADCBASE<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				ADCBAS	SE<7:0>					

REGISTER 29-24: ADCBASE: ADC BASE REGISTER

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 Unimplemented: Read as '0'

bit 15-0 ADCBASE<15:0>: ADC ISR Base Address bits

This register, when read, contains the base address of the user's ADC ISR jump table. The interrupt vector address is determined by the IRQVS<2:0> bits of the ADCCON1 register specifying the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + $x \le IRQVS \le 2:0$, where 'x' is the smallest active analog input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

REGISTER 30-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED)

bit 15	FLTEN13: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL13<1:0>: Filter 13 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask U selected
bit 12-8	FSEL13<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN12: Filter 12 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL12<1:0>: Filter 12 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
hit 4-0	ESEI 12-4:0>: FIEO Selection hits
511 + 0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

© 2015-2018 Microchip Technology Inc.

TABLE 36-1: GRAPHICS LCD CONTROLLER REGISTER MAP (CONTINUED)

Virtual Address (BF8E_#)	Register Name	Bit Range	Bit 31/15	Bit 30/14	Bit 29/13	Bit 28/12	Bit 27/11	Bit 26/10	Bit 25/9	Bit 24/8	Bit 23/7	Bit 22/6	Bit 21/5	Bit 20/4	Bit 19/3	Bit 118/2	Bit 17/1	Bit 16/0	All Resets
A054	GLCD	31:16	—	_	—	-						STAF	RTX<10:0>						0000
7004	L1START	15:0	—	—	—	—						STAF	RTY<10:0>						0000
A058	GLCD	31:16		_	_	_						SIZE	X<10:0>						0000
	LISIZE	15:0	—	—	—	—						SIZE	EY<10:0>						0000
A05C	GLCD	31:16								BASEAD	DR<31:16	>							0000
	LIBADDR	15:0								BASEAD	DR<15:0>	•			1				0000
A060		31:16	_	—	_	_	_		—		-	—	—	_	—	_	_	—	0000
		15:0								STRID	E<15:0>	DEG	X<10.0>						0000
A064	GLCD L1RES	15.0										DEG	X<10.02						0000
		15.0			FORCE	MU							51 \$10.02						0000
A070	GLCD	31:16	LAYEREN	BIFIL	ALPHA	ALPHA	—	—	—	—				ALP	HA<7:0>				0000
	LZMODE	15:0		DESTBLE	ND<3:0>			SRCBLE	ND<3:0>		-	—	_	_		COLOR	MODE<3:0>		0000
A074	GLCD	31:16	-		—			STARTX<10:0> 000						0000					
7074	L2START	15:0	_	_	—	_						STAF	RTY<10:0>						0000
A078	GLCD	31:16	—	_	_	_						SIZE	EX<10:0>						0000
	L2SIZE	15:0	—	—	—	—						SIZE	Y<10:0>						0000
A07C	GLCD	31:16								BASEAD	DR<31:16	>							0000
	L2BADDR	15:0								BASEAD	DR<15:0>	•							0000
A080		31:16	—	—		_			—	-	—	—	—		—			_	0000
	LZOTRIDL	15:0								STRID	E<15:0>		V <10.05						0000
A084	GLCDL2RES	31:16	_	_	_	_						RES	X<10:0>						0000
		31.16							_		_							_	0000
A0F8	GLCDINT	15.0																	0000
		31.16	_														—	_	00001
A0FC	GLCDSTAT	15:0	_		_	_	_	_	_	_	_	_	LROW	_	VSYNC	HSYNC	DE	ACTIVE	0000
A400		31:16	_	_	_	_	_	_	_	_				RE	D<7:0>				0000
through A7FC	(x' = 0.255)	15:0				GREEN	<7:0>							BLU	JE<7:0>				0000
A800	GLCD	31:16		PIXELxy<	<3:0>(1)			PIXELxy	<3:0> ⁽¹⁾			PIXELx	v<3:0>(1)			PIXEL	_xy<3:0>(1)		0000
through A9FC	CURDATAx ('x' = 0-127)	15:0		PIXELxy<	<3:0>(1)			PIXELxy	<3:0>(1)			PIXELx	y<3:0>(1)			PIXEL	_xy<3:0>(1)		0000
AA00	GLCD	31:16	—	—	_	_	—	_	_	_				RE	D<7:0>				0000
through AA40	CURLUTx ('x' = 0-15)	15:0				GREEN	<7:0> BLUE<7:0>					0000							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: For the PIXELxy bits, x = 0-31 and y = 0-31 (i.e., GLCDCURDATA0 contains PIXEL00 through PIXEL07 with PIXEL00 in the most significant nibble).

REGISTER 36-12: GLCDLxBADDR: GRAPHICS LCD CONTROLLER LAYER 'x' BASE ADDRESS REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	BASEADDR<31:24>									
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	BASEADDR<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	BASEADDR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	BASEADDR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BASEADDR<31:0>:** Base Address of the Framebuffer bits These bits specify the base address of the framebuffer.

REGISTER 36-13: GLCDLxSTRIDE: GRAPHICS LCD CONTROLLER LAYER 'x' STRIDE REGISTER ('x' = 0-2)

		•=/								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	-	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	-	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	STRIDE<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	STRIDE<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

bit 15-0 **STRIDE<15:0>:** Layer Stride bits

These bits specify the distance from line to line in bytes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24	RESP<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:10	RESP<23:16>									
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
10.0	RESP<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				RESP	2<7:0>					

REGISTER 39-4: SDHCRESPx: SDHC RESPONSE REGISTER 'x' ('x' = 0-3)

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RESP<31:0>: Response bits

These bits indicate the bit positions of Responses [31:0] defined in the "SD Host Controller Simplified Specification (version 2.00). Refer to Table 39-2 for full bit definitions.

TABLE 39-2:	RESPONSE BIT DEFINITION FOR EACH RESPONSE TYPE

Response Type (see Note 1)	Response Meaning	Response Register
R1, R1b (normal response)	Card status	SDHCRESP0<31:0>
R1b (Auto CMD12 response)	Card status for Auto CMD12	SDHCRESP3<31:0>
R2 (CID, CSD register)	CID or CSD register	SDHCRESP0<31:0> SDHCRESP1<31:0> SDHCRESP2<31:0> SDHCRESP3<31:0>
R3 (OCR register)	OCR register for memory	SDHCRESP0<31:0>
R4 (OCR register)	OCR register for I/O, etc.	SDHCRESP0<31:0>
R5, R5b	SDIO response	SDHCRESP0<31:0>
R6 (published RCA response)	New published RCA<31:16>, etc.	SDHCRESP0<31:0>

Note 1: For additional information, refer to the "SD Host Controller Simplified Specification" (version 2.00), the "Physical Layer Simplified Specification" (version 2.00), and the "SDIO Simplified Specification" (version 2.00). These documents are available for download by visiting the SD Association web site at: http://www.sdcard.org/downloads/pls/simplified_specs/archive/index.html

40.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ DA devices include two features to prevent alterations to enabled or disabled peripherals:

- Control Register Lock Sequence
- Configuration Bit Select Lock

40.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting the PMDLOCK bit prevents writes to the control registers and clearing the PMDLOCK bit allows writes.

To set or clear the PMDLOCK bit, an unlock sequence must be executed. Refer to **Section 42.** "**Oscillators with Enhanced PLL**" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.

40.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If the PMDLOCK bit remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

FIGURE 44-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS