

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXFL

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K × 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1064dag176-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. For detailed information, refer to Section 48. "Memory Organization and Permissions" (DS60001214), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ DA microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ DA devices allow execution from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- · Separate Boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read-Write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ DA microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ DA devices are illustrated in Figure 4-1. Figure 4-2 provides memory map information for Boot Flash and boot alias. Table 4-1 provides memory map information for Program Flash, RAM, and DDR2 SDRAM. Table 4-2 provides memory map information for Special Function Registers (SFRs).

TABLE 4-9: SYSTEM BUS VIOLATION FLAG REGISTER MAP

ess		0								Bi	ts								
Virtual Address (BFxx_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8F_ 0510	SBFLAG0	31:16	_	—	—	_	_	_	_	-		—	-	_	_	-	—	—	0000
0510	SBFLAGU	15:0		_	_	_	-	_	_	_	_	T0PGV0	T3PGV	T6PGV	T2PGV	T5PGV	T4PGV	T1PGV	0000
90_ 0510		31:16		_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	0000
0510	SBFLAG1	15:0		_	_	_	-	_	_	_	_	T0PGV1	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV	T7PGV	0000
91_ 0510		31:16	-	_	_	_		_	_	_	_	-	_	_	_	_	_	_	0000
0510	SBFLAG2	15:0	_	_	—	—	_	—	_	_		—	_	_	T0PGV2	T15PGV	T14PGV	T13PGV	0000
92_ 0510		31:16	_	_	—	—	_	—	_	_		—	_	_	_	_	_	_	0000
0510	SBFLAG3	15:0	—		_	—	—	_	_	_	_	—	—	_	_	—	T0PGV3	T16PGV	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SYSTEM BUS TARGET PROTECTION GROUP 3 REGISTER MAP

	LL 4 -13.				_					Bi									
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	—	—		CODE	<3:0>		_	_	—		_	_	_		0000
8C20	SBT3ELOG1	15:0		•	•	INITIC)<7:0>					REGIO	N<3:0>	•	_		CMD<2:0>		0000
8C24	SBT3ELOG2	31:16	-	—	—	—		—	—	—	_	_	—		—	—	_		0000
0024	SBISELOG2	15:0	-	—	—	—		—	—	—	_	_	—		—	—	GROU	P<1:0>	0000
8C28	SBT3ECON	31:16	-	—	—	—		—	—	ERRP	_	_	—		—	—	_		0000
0020	SBIJECON	15:0	-	—	—	—		—	—	—	_	_	—		—	—	_		0000
8C30	SBT3ECLRS	31:16	-	—	—	—		—	—	—	_	_	—		—	—	_		0000
8030	SBISECLKS	15:0		—	—	—		—	_	—	—	—	—	—	—	_	_	CLEAR	0000
8C38	SBT3ECLRM	31:16		—	—	_		—	_	—	_	_	_		—	_	_		0000
0030	SBISECLRIN	15:0		—	—	—		—	_	—	—	—	—	—	—	_	_	CLEAR	0000
8C40	SBT3REG0	31:16								BASE<	:21:6>								xxxx
8040	SBISKEGU	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			_	_		xxxx
8C50	SBT3RD0	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-	xxxx
80.30	SBISKDU	15:0	_	—	—	—	_	—	—	—	_	—	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8C58	SBT3WR0	31:16	_	—	—	—	_	—	—	—	_	—	—	—		—	—	_	xxxx
0000	3013000	15:0	_	—	—	·	—	—		—	_	—		—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8C60	SBT3REG1	31:16							-	BASE<	:21:6>					-			xxxx
0000	OBTOREOT	15:0			BASE	<5:0>		-	PRI	—			SIZE<4:0>		_	—	—	_	xxxx
8C70	SBT3RD1	31:16	_	—	—	—	_	—	—	—	_	—	—	—		—	—	_	xxxx
0070	SBISKET	15:0	_	—	—	—	_	—	—	—	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8C78	SBT3WR1	31:16	_	—	_		_	_	_	—	_	_	_	—	_	_	—		xxxx
0070	3613000	15:0	_	—	—	—	_	—	—	—	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8C80	SBT3REG2	31:16								BASE<	:21:6>								xxxx
0000	OBTOREOZ	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>						xxxx
8C90	SBT3RD2	31:16	_	—	—	—	_	—	—	—	_	—	—	—		—	—	_	xxxx
0000	0010102	15:0	_	—	—	—	_	—	—	—	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8C98	SBT3WR2	31:16	_	—	—	—	_	—	—	—	_	—	—	—		—	—	_	xxxx
0000	OBTOWINE	15:0	_	—	—	·	—	—		—	_	—	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Graphics (DA) Family

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER (CONTINUED)

bit 6 **BFSWAP:** Boot Flash Bank Swap Control bit^(3,4)

- 1 = Boot Flash Bank 2 is mapped to the lower boot region and Boot Flash Bank 1 is mapped to the upper mapped region
- 0 = Boot Flash Bank 1 is mapped to the lower boot region and Boot Flash Bank 2 is mapped to the upper mapped region
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 NVMOP<3:0>: NVM Operation bits
 - These bits are only writable when WREN = 0.
 - 1111 = Reserved
 - •

 - 1000 = Reserved
 - 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
 - 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
 - 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
 - 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
 - 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
 - 0010 = Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
 - 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected⁽²⁾ 0000 = No operation
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.
 - **3:** This bit can only be modified when the WREN bit = 0, the NVMKEY unlock sequence is satisfied, and the SWAPLOCK<1:0> bits (NVMCON2<7:6>) are cleared to '0'.
 - **4:** The BFSWAP value is determined by the values the user programmed Sequence Numbers in each boot panel.

REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

bit 4	UBWP4: Upper Boot Alias Page 4 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC30000 through 0x1FC33FFF enabled 0 = Write protection for physical address 0x01FC30000 through 0x1FC33FFF disabled
bit 3	UBWP3: Upper Boot Alias Page 3 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC2C000 through 0x1FC2FFFF enabled 0 = Write protection for physical address 0x01FC2C000 through 0x1FC2FFFF disabled
bit 2	UBWP2: Upper Boot Alias Page 2 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC28000 through 0x1FC2BFFF enabled 0 = Write protection for physical address 0x01FC28000 through 0x1FC2BFFF disabled
bit 1	UBWP1: Upper Boot Alias Page 1 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC24000 through 0x1FC27FFF enabled 0 = Write protection for physical address 0x01FC24000 through 0x1FC27FFF disabled
bit 0	UBWP0: Upper Boot Alias Page 0 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC20000 through 0x1FC23FFF enabled 0 = Write protection for physical address 0x01FC20000 through 0x1FC23FFF disabled

Note 1: These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

11.0 HI-SPEED USB WITH ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MZ DA family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 51. "Hi-Speed (OTG)" USB with **On-The-Go** (DS60001326) in the "PIC32 Family Reference Manual", which is available the site from Microchip web (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 embedded host, device, or OTG implementation with a minimum of external components.

The module supports Hi-Speed, Full-Speed, or Low-Speed in any of the operating modes. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the RAM controller, packet encode/decode, UTM synchronization, endpoint control, a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is illustrated in Figure 11-1.

The USB module includes the following features:

- USB Hi-Speed, Full-Speed, and Low-Speed support for host and device
- USB OTG support with one or more Hi-Speed, Full-Speed, or Low-Speed device
- · Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- · Integrated USB transceiver
- Transaction handshaking performed by hardware
- Integrated 8-channel DMA to access system RAM and Flash
- Seven transmit endpoints and seven receive endpoints, in addition to Endpoint 0
- Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) support
- Suspend and resume signaling support
- Dynamic FIFO sizing
- Integrated RAM for the FIFOs, eliminating the need for system RAM for the FIFOs
- · Link power management support
 - Note 1: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.
 - 2: If the USB module is used, the Primary Oscillator (POSC) is limited to either 12 MHz or 24 MHz.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 TXMAXP<10:0>: Maximum TX Payload per transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

TXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

TABLE 12-13: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

ess										E	Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1400	SS6R	31:16	_	—	—	-	—	—	—	-	—	—	-	—	—	—	—	—	0000
14DC	220K	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SS6R	<3:0>		0000
4450	C1RXR ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
14E0	UIRAR' /	15:0	_	_	_	—	—	_	—	_	_	_	_	_		C1RX	R<3:0>		0000
14E4	C2RXR ⁽¹⁾	31:16	_	_	_	—	—	_	—	_	_	_	_	_	_	—	_	—	0000
1464	GZRAR ^Y	15:0		—	—	—	—	—	—	-	—	—	-	—		C2RX	R<3:0>		0000
1400	REFCLKI1R	31:16	_	_	_	—	—	_	—	_	_	_	_	_	_	—	_	—	0000
14E0	REFULKIIR	15:0	_	_	_	—	—	_	—	_	_	_	_	_		REFCLK	l1R<3:0>		0000
1450	REFCLKI3R	31:16	_	_	_	—	—	_	—	_	_	_	_	_	_	—	_	—	0000
14F0	REFULKISK	15:0	_	—	—	—	—	—	—	—	—	—	_	—		REFCLK	I3R<3:0>		0000
1454	REFCLKI4R	31:16	_	—	—	—	—	—	—	—	—	—	_	—	—	—		—	0000
1464	REFULKI4R	15:0	_	_	_	—	_	—	_	_	_	_	_	_		REFCLK	14R<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGIST	ER 20-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER
bit 10-9	RTCCLKSEL<1:0>: RTCC Clock Select bits
	When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.
	11 = Reserved
	10 = Reserved
	01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)00 = RTCC uses the internal 32 kHz oscillator (LPRC)
bit 8-7	RTCOUTSEL<1:0>: RTCC Output Data Select bits ⁽²⁾
	11 = Reserved
	10 = RTCC Clock is presented on the RTCC pin
	01 = Seconds Clock is presented on the RTCC pin
	00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
bit 6	RTCCLKON: RTCC Clock Enable Status bit
	1 = RTCC Clock is actively running
	0 = RTCC Clock is not running
bit 5-4	Unimplemented: Read as '0'
bit 3	RTCWREN: Real-Time Clock Value Registers Write Enable bit ⁽³⁾
	1 = Real-Time Clock Value registers can be written to by the user
	0 = Real-Time Clock Value registers are locked out from being written to by the user
bit 2	RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
	1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
	0 = Real-time clock value registers can be read without concern about a rollover ripple
bit 1	HALFSEC: Half-Second Status bit ⁽⁴⁾
	1 = Second half period of a second
	0 = First half period of a second
bit 0	RTCOE: RTCC Output Enable bit

- 1 = RTCC output is enabled
- 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_	_	_	-	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	—	_	_	-	_	-	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 25-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Hardware Set	SC = Software Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 - 0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 - 0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	:7:0>			
SA_ENCKEY3	31:24				ENCKEY<3	31:24>			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	:7:0>			
SA_ENCKEY4	31:24				ENCKEY<3	31:24>			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	:7:0>			
SA_ENCKEY5	31:24				ENCKEY<3	31:24>			
	23:16				ENCKEY<2	23:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	:7:0>			
SA_ENCKEY6	31:24				ENCKEY<3	31:24>			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<				
	7:0				ENCKEY<	:7:0>			
SA_ENCKEY7	31:24				ENCKEY<3	31:24>			
_	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	:7:0>			
SA_ENCKEY8	31:24				ENCKEY<3				
-	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<				
	7:0				ENCKEY<				
SA_AUTHIV1	31:24				AUTHIV<3				
-	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1				
	7:0				AUTHIV<	7:0>			
SA_AUTHIV2	31:24				AUTHIV<3				
-	23:16				AUTHIV<2				
	15:8				AUTHIV<1				
	7:0				AUTHIV<				
SA_AUTHIV3	31:24				AUTHIV<3	1:24>			
-	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV4	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2				
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV5	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV6	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV7	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1				
	7:0				AUTHIV<				
SA_AUTHIV8	31:24				AUTHIV<3				
-	23:16				AUTHIV<2				
	15:8				AUTHIV<1				
	7:0				AUTHIV<				

FIGURE 27-11: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

TABLE 29-2: ADC REGISTER MAP (CONTINUED)

		ø								Bit	6								
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
3608	ADC2CFG ¹⁾	31:16							I	ADCCFG	<31:16>								0
		15:0								ADCCFG	<15:0>								(
360C	ADC3CFG ¹⁾	31:16								ADCCFG-	<31:16>								
		15:0								ADCCFG	<15:0>								
B610	ADC4CFG ¹⁾	31:16								ADCCFG-									
		15:0								ADCCFG	<15:0>								
361C	ADC7CFG ¹⁾	31:16								ADCCFG-	<31:16>								
		15:0								ADCCFG	<15:0>								-
B640	ADCSYSCFG1	31:16								AN<31	:16>								
		15:0		-		-		-		AN<1	5:0>								
3644	ADCSYSCFG2	31:16	_	_	_	-	_	—	—	—	_	_	—	-	-	-	-	-	
		15:0	—	—	—	-						AN<43	:32>						
8A00	ADCDATA0	31:16		DATA<31:16>															
		15:0		DATA<01.102 DATA<15:0>															
3A04	ADCDATA1	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA08	ADCDATA2	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA0C	ADCDATA3	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA10	ADCDATA4	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA14	ADCDATA5	31:16								DATA<3	1:16>								-
		15:0								DATA<	5:0>								(
BA18	ADCDATA6	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								1
3A1C	ADCDATA7	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA20	ADCDATA8	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
3A24	ADCDATA9	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA28	ADCDATA10	31:16								DATA<3	1:16>								(
		15:0								DATA<	5:0>								
BA2C	ADCDATA11	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								
BA30	ADCDATA12	31:16								DATA<3	1:16>								
		15:0								DATA<	5:0>								

PIC32MZ Graphics (DA) Family

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2 (CONTINUED)

The ADCDIV<6:0> bits divide the ADC control clock (TQ) to generate the clock for the Shared ADC, ADC7 (TAD7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R/W-0	R/W-0												
31:24	ADCSE	L<1:0>		CONCLKDIV<5:0>										
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	DIGEN7	—	_	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC						
15:8	V	REFSEL<2:0	>	TRGSUSP	UPDIEN	UPDRDY	SAMP ^(1,2,3,4)	RQCNVRT						
7:0	R/W-0	R/W, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0	GLSWTRG	GSWTRG			ADINS	SEL<5:0>								

REGISTER 29-3: ADCCON3: ADC CONTROL REGISTER 3

Legend:	HC = Hardware Set	HS = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-30 ADCSEL<1:0>: Analog-to-Digital Clock Source (TCLK) bits

11 = FRC 10 = REFCLK3 01 = System Clock (Tcy) 00 = PBCLK3

bit 29-24 CONCLKDIV<5:0>: Analog-to-Digital Control Clock (Tq) Divider bits

bit 23 **DIGEN7:** Shared ADC (ADC7) Digital Enable bit 1 = ADC7 is digital enabled 0 = ADC7 is digital disabled

bit 22-21 Unimplemented: Read as '0'

bit 20 DIGEN4: ADC4 Digital Enable bit

- 1 = ADC4 is digital enabled
- 0 = ADC4 is digital disabled

bit 19 **DIGEN3:** ADC3 Digital Enable bit

- 1 = ADC3 is digital enabled
- 0 = ADC3 is digital disabled
- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

REGISTER 29-4: ADCTRGMODE: ADC TRIGGERING MODE FOR DEDICATED ADC REGISTER bit 9 STRGEN1: ADC1 Presynchronized Triggers bit 1 = ADC1 uses presynchronized triggers 0 = ADC1 does not use presynchronized triggers

- bit 8 **STRGEN0:** ADC0 Presynchronized Triggers bit 1 = ADC0 uses presynchronized triggers
 - a ADC0 uses presynchronized triggers
 a ADC0 does not use presynchronized triggers
- bit 7 5 Unimplemented: Deed es '.'
- bit 7-5 **Unimplemented:** Read as ' '
- bit 4 SSAMPEN4: ADC4 Synchronous Sampling bit
 - 1 = ADC4 uses synchronous sampling for the first sample after being idle or disabled
 0 = ADC4 does not use synchronous sampling
- bit 3 **SSAMPEN3:** ADC3 Synchronous Sampling bit 1 = ADC3 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC3 does not use synchronous sampling
- bit 2 **SSAMPEN2:** ADC2Synchronous Sampling bit 1 = ADC2 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC2 does not use synchronous sampling
- bit 1 **SSAMPEN1:** ADC1 Synchronous Sampling bit 1 = ADC1 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC1 does not use synchronous sampling
- bit 0 **SSAMPEN0:** ADC0 Synchronous Sampling bit 1 = ADC0 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC0 does not use synchronous sampling

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN3	MSEL3<1:0>		FSEL3<4:0>				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN2	MSEL2<1:0>		FSEL2<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN1	MSEL1<1:0>		FSEL1<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN0	MSEL0<1:0>		FSEL0<4:0>				

REGISTER 30-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

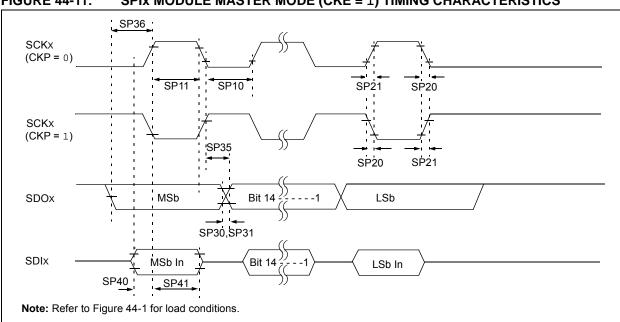
bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
DIL 20-24	
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
	1 = Filter is enabled
	1 = Filter is enabled 0 = Filter is disabled
bit 22-21	
bit 22-21	0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected
bit 22-21	 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected
bit 22-21	 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 22-21 bit 20-16	0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits
	 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31
	0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits
	 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31
	 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31
	<pre>0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • • • • • • • • • • • • • •</pre>
	<pre>0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 .</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—	—	—	—	—	—
7:0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RQPER<7:0>							

REGISTER 38-3: DDRRQPER: DDR REQUEST PERIOD REGISTER


Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 RQPER<7:0>: Request Period bits

These bits in conjunction with the MINCMD<7:0> bits (DDRMINCMD<7:0>), determine the percentage of total bandwidth that is allocated to the target. If the number of DDR bursts specified by MINCMD<7:0> are not serviced for the target when it has been requesting access for (RQPER<7:0> * 4) number of clocks, the target's requests are treated with high priority until this condition becomes satisfied.

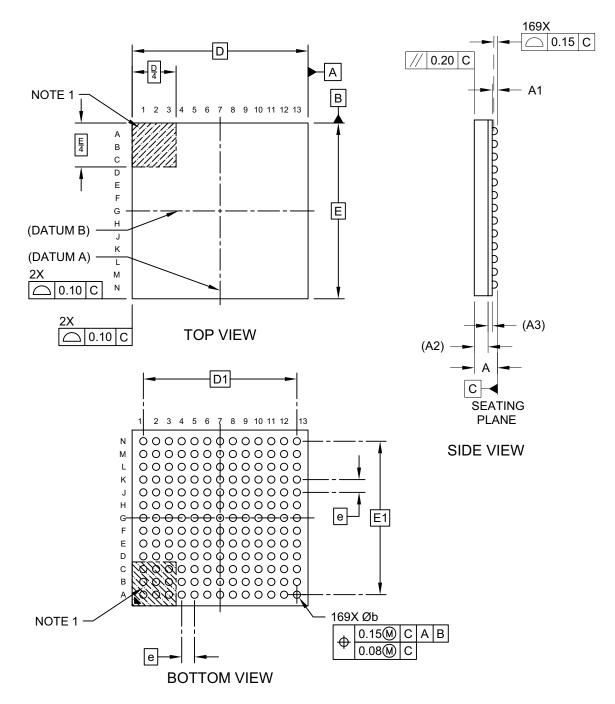

Note: The TSEL<7:0> bits (DDRTSEL<7:0>) must be programmed with the target number multiplied by the size of the MINLIMIT field (5) before this register is used to program the minimum burst limit for that target.

FIGURE 44-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

169-Ball Low Profile Ball Grid Array (6JX) - 11x11 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-439A Sheet 1 of 2