

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	288-LFBGA
Supplier Device Package	288-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2025daa288t-i-4j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	F	Pin Numbe	er	Pin	Buffer	
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description
					PC	DRTD
RD0	H3	79	V5	I/O	ST	PORTD is a bidirectional I/O port
RD1	G1	73	M4	I/O	ST	
RD2	G2	74	R6	I/O	ST	
RD3	G3	75	T6	I/O	ST	
RD4	F1	70	K4	I/O	ST	
RD5	F2	71	L4	I/O	ST	
RD6	K11	121	V16	I/O	ST	
RD7	M10	120	T15	I/O	ST	
RD9	H1	76	U6	I/O	ST	
RD10	H2	77	V6	I/O	ST	
RD11	N10	119	U15	I/O	ST	
RD12	J1	80	U5	I/O	ST	
RD13	J2	81	N4	I/O	ST	
RD14	E9	158	J18	I/O	ST	
RD15	F11	157	J16	I/O	ST	
					PC	DRTE
RE0	C4	40	B7	I/O	ST	PORTE is a bidirectional I/O port
RE1	A4	36	D8	I/O	ST	
RE2	N3	99	V10	I/O	ST	
RE3	M3	98	T9	I/O	ST	
RE4	B3	43	B6	I/O	ST	
RE5	F3	17	K3	I/O	ST	
RE6	F6	23	C11	I/O	ST	
RE7	C7	24	B11	I/O	ST	
RE8	E6	25	C10	I/O	ST	
RE9	D6	26	B10	I/O	ST	
					P	DRTF
RF0	L1	91	V7	I/O	ST	PORTF is a bidirectional I/O port
RF1	K3	90	U7	I/O	ST	
RF2	A3	41	A7	I/O	ST	
RF3	M1	93	U8	I/O	ST	
RF4	L3	44	U9	I/O	ST	
RF5	K2	89	T7	I/O	ST	
RF8	J3	82	P4	I/O	ST	
RF12	C6	27	A11	I/O	ST	
RF13	A6	28	A10	I/O	ST	
Legend:	ST = Sch	nmitt Trigge	mpatible in er input with ansistor Log	CMOS le	vels	Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

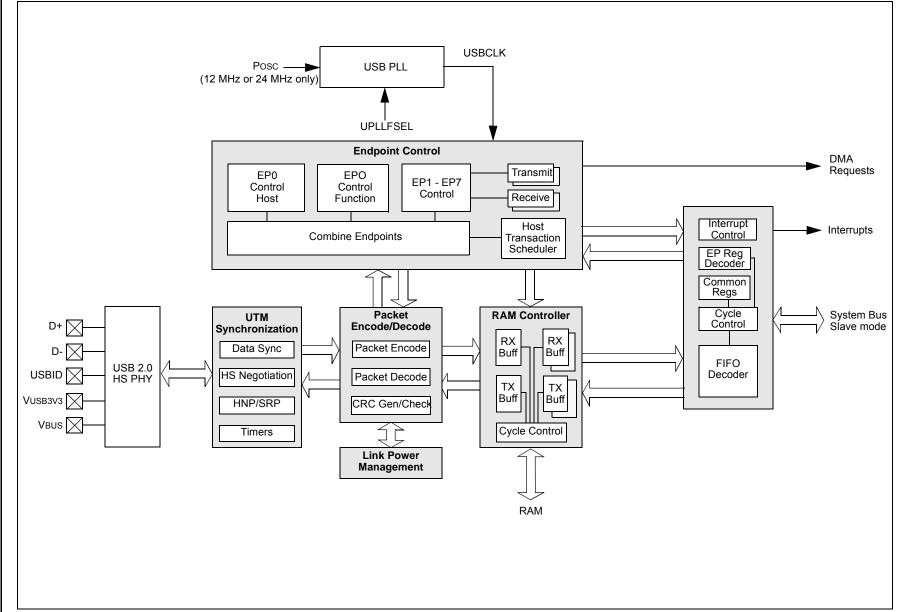
TABLE 1-12:	PMP PINOUT I/O DESCRIPTIONS
-------------	-----------------------------

		Pin Numbe	r	D !	Duffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
				Pa	arallel Mast	er Port
PMA0	H13	142	N17	I/O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA1	J11	136	R18	I/O	TTL/ST	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)
PMA2	C5	33	B9	0	—	Parallel Master Port Address (Demultiplexed Master modes)
PMA3	H11	135	R17	0	—	
PMA4	J12	139	N15	0	—	
PMA5	A11	174	B18	0	—	
PMA6	F3	69	K3	0	_	
PMA7	B12	173	E16	0		
PMA8	N2	96	V9	0	—	
PMA9	M2	95	Т8	0	_	
PMA10	K3	90	U7	0	_	
PMA11	L1	91	V7	0	_	
PMA12	J1	80	U5	0	_	
PMA13	J2	81	N4	0	_	
PMA14	G2	74	R6	0	_	
PMA15	G3	75	T6	0	_	
PMCS1	G2	74	R6	0	_	Parallel Master Port Chip Select 1 Strobe
PMCS2	G3	75	T6	0	_	Parallel Master Port Chip Select 2 Strobe
PMD0	C4	40	B7	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	A4	36	D8	I/O	TTL/ST	Address/Data (Multiplexed Master modes)
PMD2	N3	99	V10	I/O	TTL/ST	
PMD3	M3	98	T9	I/O	TTL/ST	
PMD4	B3	43	B6	I/O	TTL/ST	
PMD5	B7	17	A12	I/O	TTL/ST	
PMD6	F6	23	C11	I/O	TTL/ST	
PMD7	C7	24	B11	I/O	TTL/ST	
PMD8	K2	89	T7	I/O	TTL/ST	
PMD9	L3	97	U9	I/O	TTL/ST	
PMD10	A9	10	A15	I/O	TTL/ST	
PMD11	G10	143	N18	I/O	TTL/ST	1
PMD12	A8	14	C13	I/O	TTL/ST	
PMD13	G12	144	M16	I/O	TTL/ST	1
PMD14	L11	127	V17	I/O	TTL/ST	1
PMD15	H1	76	U6	I/O	TTL/ST	
PMALL	H13	142	N17	0	<u> </u>	Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)
PMALH	J11	136	R18	0	_	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)
PMRD	B8	16	A13	0	<u> </u>	Parallel Master Port Read Strobe
PMWR	A7	15	B13	0	<u> </u>	Parallel Master Port Write Strobe
Legend:		-	atible input	-	An	alog = Analog input P = Power

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output I = Input PPS = Peripheral Pin Select

TABLE 1-23: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS


Pin Name		Pin Numbe	r	Pin	Buffer	Description			
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре				
				Po	wer and Gr	pund			
AVdd	D9	3, 4	F13, G13	P	P	Positive supply for analog modules. This pin must be			
	20	0, 1	1 10, 010			connected at all times.			
AVss	C8, D8	5, 6	F12, G12	Р	Р	Ground reference for analog modules. This pin must be connected at all times.			
VDDIO	B6, G9, H9, J9, K9, L6, L7, L9	19, 38, 86, 102, 117, 124, 155, 156, 165	F11, F15, G11, G15, H11, H12, H13, H15, J10, J15, K10, L11, L12, M12, M13, M15, N12, N13, R9, R10, R12, R13,	Ρ	_	Positive supply for peripheral logic and I/O pins. This pin must be connected at all times.			
VDDCORE	B4, C9, L8, N1	18, 39, 84, 116	R14 D7, D14, R11, V4	Р		1.8V positive supply for peripheral logic. This pin must be connected at all times.			
Vss	C2, F5, G5, G6, G7, G8, H7, H8, J7, J8, K7, K8	21, 22, 29, 37, 48, 49, 83, 87, 94, 103, 115, 122, 123, 153, 154	A5, B5, C7, D10, D11, D12, D13, F9, F10, G10, H10, J11, J12, J13, K11, K12, K13, K15, L10, L13, L15, M10, M11, N10, N11, R7, R8	Ρ		Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.			
HLVDIN	B12	173	E16	Р	_	Low-voltage detect pin.			
Vbat	D10	166	F16	Р	—	Positive supply for the battery backed section. It is recommended to connect this pin to VDDIO if VBAT mode is not used (i.e., not connected to the battery).			
VDDR1V8	H5, H6, J5, J6, K5, K6 (Note 2)	57, 58, 59, 60, 61, 62, 63, 67, 68, 72, 78 (Note 2)	H6, H7, H8, J6, J7, J8, K6, K7, K8, L6, L7, L8 (Note 2)	Ρ		Positive supply for the DDR2 SDRAM memory.			
Legend:	CMOS = C	MOS-compa	atible input or	output	Ana	log = Analog input P = Power			
	ST = Schm	itt Trigger in	put with CMC stor Logic inp	OS levels	O =	Output I = Input = Peripheral Pin Select			

Note 1: The metal plane at the bottom of the device is internally tied to VSS1V8 and must be connected to 1.8V ground externally.

2: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

3: This pin is a No Connect in devices without DDR.

FIGURE 11-1: PIC32MZ DA FAMILY USB INTERFACE DIAGRAM

PIC32MZ Graphics (DA) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0						
31:24	VPLEN<7:0>													
22:16	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0						
23:16		WTCO	N<3:0>		WTID<3:0>									
15:0	R-1	R-0	R-0	R-0	R-1	R-1	R-0	R-0						
15:8		DMACHA	NS<3:0>		RAMBITS<3:0>									
7.0	R-0	R-1	R-1	R-1	R-0	R-1	R-1	R-1						
7:0		RXENDF	PTS<3:0>		TXENDPTS<3:0>									

REGISTER 11-16: USBINFO: USB INFORMATION REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 VPLEN<7:0>: VBUS pulsing charge length bits Sets the duration of the VBUS pulsing charge in units of 546.1 µs. (The default setting corresponds to 32.77 ms.)

- bit 23-20 WTCON<3:0>: Connect/Disconnect filter control bits Sets the wait to be applied to allow for the connect/disconnect filter in units of 533.3 ns. The default setting corresponds to 2.667 µs.
- bit 19-6 WTID<3:0>: ID delay valid control bits Sets the delay to be applied from IDPULLUP being asserted to IDDIG being considered valid in units of 4.369ms. The default setting corresponds to 52.43ms.
- bit 15-12 DMACHANS<3:0>: DMA Channels bits These read-only bits provide the number of DMA channels in the USB module. For the PIC32MZ DA family, this number is 8.

bit 11-8 RAMBITS<3:0>: RAM address bus width bits These read-only bits provide the width of the RAM address bus. For the PIC32MZ DA family, this number is 12.

bit 7-4 RXENDPTS<3:0>: Included RX Endpoints bits

> This read-only register gives the number of RX endpoints in the design. For the PIC32MZ DA family, this number is 7.

bit 3-0 TXENDPTS<3:0>: Included TX Endpoints bits

These read-only bits provide the number of TX endpoints in the design. For the PIC32MZ DA family, this number is 7.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	-	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_	_	—	_		-	_		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
10.0	_	_	-	—	_		—	_		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_	—	[pin name]R<3:0>					

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit Bit 27/19/11/3 26/18/10/2		Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	_	_	_		-	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	_	_	-	_	_	-	—		
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	_	—	_	_	_	—	_	—		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_		_	RPnR<3:0>					

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

14.2 Timer2-Timer9 Control Registers

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP

ess			Bits																
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	T2CON	31:16	_	—	—	—	—	—	—	-	—		_	_	-	—	—	—	000
0200	12001	15:0	ON		SIDL	—	—	—		_	TGATE	-	CKPS<2:0	>	T32		TCS	—	000
0210	TMR2	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	00
0210		15:0								TMR2	<15:0>								00
0220	PR2	31:16	—		—	—	—	—		—	—	—	—	—	—		—	—	000
0220	1142	15:0								PR2<	:15:0>								FFI
0400	T3CON	31:16	—		—	—	—	—		_	—	—	—	—	_	—	—	—	000
0400	10001	15:0	ON		SIDL	—	—	—		_	TGATE	-	TCKPS<2:0	>	_		TCS	—	000
0410	TMR3	31:16	—		—	—	—	—		—	—	—	—	—	—		—	—	000
0110	111110	15:0								TMR3	<15:0>								000
0420	PR3	31:16	_		—	—	—	—		_	—	_	—	_	—	—	—	—	000
0420	110	15:0		-					-	PR3<	:15:0>					-			FF
0600	T4CON	31:16	_		—	—	—	—		_	—	_	—	_	_			—	00
0000	14001	15:0	ON		SIDL	—	—			_	TGATE	-	FCKPS<2:0	>	T32	_	TCS	—	000
0610	TMR4												—	000					
0010	11011.44	15:0		-					-	TMR4	<15:0>					-			000
0620	PR4	31:16	_	_	—	—	—	—	_	-	—	-	—	_	-	—	—	—	000
0020	1114	15:0		-					-	PR4<	:15:0>					-			FFI
0800	T5CON	31:16	_	_	—	—	—	—	_	-	—	-	—	_	-	—	—	—	000
0000	13001	15:0	ON	_	SIDL	—	—	—	_	_	TGATE	-	FCKPS<2:0	>	_	_	TCS	—	000
0810	TMR5	31:16	_		—	—	—	—		_	—	_	—	_	—	—	—	—	000
0010	TIMIXO	15:0		-					-	TMR5	<15:0>					-			000
0820	PR5	31:16	_		—	—	—	—		_	—	_	—	_	—	—	—	—	000
0020	110	15:0		-					-	PR5<	:15:0>					-			FFI
000	T6CON	31:16	_	_	—	—	—	—	_	-	—	-	—	_	-	—	—	—	000
0A00	TOCON	15:0	ON	_	SIDL	—	_	—	_		TGATE	-	FCKPS<2:0	>	T32	_	TCS	—	000
0 \ 1 0	TMR6	31:16	_	_	_	_	_	_	_		_		_	_		_	_	_	000
UAIU	TIVIRO	15:0								TMR2	<15:0>								000
0A20	PR6	31:16	_		_	_	_	_	_	_	—		_	_	_		_	_	000
UA2U	PRO	15:0								PR2<	:15:0>								FFI
0000	TTOON	31:16	_	_	_	_	_	—	_	—	_	_	_	—	_	_	_	_	000
0000	T7CON	15:0	ON		SIDL	_	_	_			TGATE	-	CKPS<2:0	>	_		TCS	_	000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Note 1:

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1 TCS: Timer Clock Source Select bit⁽¹⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	—	_	_	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TY	PE<1:0>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	INIT2CMD3<7:0>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	INIT2CMD2<7:0>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		INIT2CMD1<7:0>									

REGISTER 22-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit
 - 1 = Check the status after executing the INIT2 commands
 - 0 = Do not check the status
- bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits
 - 11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent
 - 10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending
 - 01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits
 - 11 = Reserved
 - 10 = INIT2 commands are sent in Quad Lane mode
 - 01 = INIT2 commands are sent in Dual Lane mode
 - 00 = INIT2 commands are sent in Single Lane mode
- bit 24-16 **INIT2CMD3<7:0>:** Flash Initialization Command 3 bits Third command of the Flash initialization.
- bit 15-8 **INIT2CMD2<7:0>:** Flash Initialization Command 2 bits Second command of the Flash initialization.
- bit 7-0 **INIT2CMD1<7:0>:** Flash Initialization Command 1 bits First command of the Flash initialization.

Note: Some Flash devices require write enable and sector unprotect commands before write/read operations and this register is useful in working with those Flash types (XIP mode only)

ess (۵								В	its								s
Virtual Address (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2600	U4MODE ⁽¹⁾	31:16	_	—	—	_	—		—	_	SLPEN	ACTIVE	—	_	_	CLKSE	L<1:0>	RUNOVF	000
2000	OHNODE	15:0	ON	—	SIDL	IREN	RTSMD		UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	000
2610	U4STA ⁽¹⁾	31:16				MASK	<7:0>							ADDR	<7:0>				000
2010	0431A	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	011
2620	U4TXREG	31:16	-	—	—	—	—	—	—	—	_	_	—	—	—	_	—	—	000
2020 0417/1120		15:0	_	—	_	-	—	_	_	TX8				Transmit	Register				000
2630	U4RXREG	31:16		—	-	-	_	-	—	-	—	—	-	-	-	—	—	—	0000
2030	04NANEG	15:0	-	—	—	—	—	—	—	RX8				Receive	Register				0000
2640	U4BRG ⁽¹⁾	31:16	-	—	—	—	—	—	—	—	_	_	—	—	—	_	—	—	0000
2040	15:0 Baud Rate Generator Prescaler						0000												
2800 U5MODE ⁽¹⁾		31:16	_	_	—	—	—	_	_	_	SLPEN	ACTIVE	_	_	_	CLKSE	L<1:0>	RUNOVF	0000
		15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0040	U5STA ⁽¹⁾	ADDR<7:0>							0000										
2810	055TA.	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0000	U5TXREG	31:16	_	_	—	-	—	-	_	-	_	_	—	-	-	_	—	—	0000
2820	USIAREG	15:0	—	—	—	_	—	_	—	TX8				Transmit	Register				0000
2020	U5RXREG	31:16	_	_	—	_	—	_	_	_	_	_	—	—	_	_	—	_	0000
2830	USKAREG	15:0	—	—	—	_	—	_	—	RX8				Receive	Register				0000
2840	U5BRG ⁽¹⁾	31:16	-	—	—	—	—	—	—	—	_	_	—	—	—	_	—	—	0000
2040	USBRG /	15:0							Bau	d Rate Gen	erator Pres	caler							0000
24.00	U6MODE ⁽¹⁾	31:16	-	_	_	_	_	_	_	_	SLPEN	ACTIVE	_	_	_	CLKSE	L<1:0>	RUNOVF	0000
2A00	UDE	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0440	U6STA ⁽¹⁾	31:16				MASK	<7:0>							ADDR	<7:0>				0000
2A10	0651A.	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
		31:16	_	—	_	_	—	_	—	_	_	—	_	_	_	_	_	_	0000
2A20 U6TXREG 15:0 TX8 Transmit Register			0000																
0400		31:16	_	—	_	_	—	_	—	-	—	—	—	—	—	—	—	—	0000
2A30	U6RXREG	15:0	_	_	_	_	_	_	_	RX8				Receive	Register				0000
24.40	U6BRG ⁽¹⁾	31:16	_	_	_	_	_	_	_	—	—	—	—	_	_	—	—	_	0000
2A40	UOBRG"	15:0							Bau	d Rate Gen	erator Pres	caler							0000

TABLE 24-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED)

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more informa-Note 1: tion.

REGISTER 24-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit
	1 = IrDA is enabled
	0 = IrDA is disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	1 = UxRTS pin is in Simplex mode
1:1.40	0 = UxRTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Module Enable bits ⁽¹⁾
	11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
	10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
	01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits
	in the PORTx register
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
bit 7	WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
	1 = Wake-up enabled
h it C	0 = Wake-up disabled
bit 6	LPBACK: UARTx Loopback Mode Select bit 1 = Loopback mode is enabled
	0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55);
	cleared by hardware upon completion
L:1 4	0 = Baud rate measurement disabled or completed
bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0'
	0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode – 4x baud clock enabled
	0 = Standard Speed mode – 16x baud clock enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity10 = 8-bit data, odd parity
	01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit
	1 = 2 Stop bits
	0 = 1 Stop bit

Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_	_	_	_	_	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		_	_	-	-	_	_	—	
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	=<1:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	WAITB<1:0> ⁽¹⁾			WAITM	<3:0> ⁽¹⁾		WAITE<1:0> ⁽¹⁾		

REGISTER 25-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy
- bit 14-13 **IRQM<1:0>:** Interrupt Request Mode bits
 - 11 = Reserved, do not use
 - 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
 - 01 = Interrupt generated at the end of the read/write cycle
 - 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address

bit 10 MODE16: 8/16-bit Mode bit

- 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 **MODE<1:0>:** Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	-	—	_	_	—		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	-	-	_	-	—	-	-	—		
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	_	_	_			TRPD	<11:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	TRPD<7:0>									

REGISTER 26-4: EBIFTRPD: EXTERNAL BUS INTERFACE FLASH TIMING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-0 TRPD<11:0>: Flash Timing bits

These bits define the number of clock cycles to hold the external Flash memory in reset.

Step 4: The user sets the ON bit to '1', which enables the ADC control clock. The following ADCx activation sequence is to be followed at all times:

Step 5: The user waits for the interrupt/polls the BGVR-RDY bit (ADCCON2<31>) and the WKRDYx bit (ADCANCON<15,13:8>) = 1, which signals that the device analog environment (band gap and VREF) is ready.

Step 6: Set the DIGENx bit (ADCCON3<15,13:8>) to '1', which enables the digital circuitry to immediately begin processing incoming triggers to perform data conversions.

Standard non-interleaved dedicated Class_1 ADCx throughput rate formula is shown in Equation 29-1.

EQUATION 29-1: THROUGHPUT RATE

```
ADC Throughput Rate = 1/((Sample time + Conversion time)(TAD))
= 1 / ((SAMC+# bit resolution+1)(TAD))
```

Example:

SAMC = 3 TAD, 12-bit mode, TAD = 20 ns = 50 MHz: Throughput rate: = 1 / ((3+13)(20 ns))

= 1/(16 * 20 ns)

= 3.125 msps

TABLE 29-1: PIC32MZXXDAXX INTERLEAVED ADC THROUGHPUT RATES

#No.of Interleaved	ADC TAD(min) = 20ns (50Mhz max)							
ADC Possible	12-bit (max.) msps	10-bit (max.) msps	8-bit (max.) msps	6-bit (max.) msps				
1	3.125 msps	3.571 msps	4.167 msps	5.0 msps				
2	6.250 msps	7.143 msps	8.333 msps	10.00 msps				
3	8.330 msps	10.00 msps	12.50 msps	12.50 msps				
4	12.50 msps	12.50 msps	16.667 msps	16.667 msps				

Note: Interleaved ADCs in this context means connecting the same analog source signal to multiple dedicated Class_1 ADCs (i.e., ADC0-ADC5), and using independent staggered trigger sources accordingly for each interleaved ADC.

- Note 1: Prior to enabling the ADC module, the user application must copy the ADC calibration data (DEVADC0-DEVADC4, DEVADC7; see Register 41-8) from the Configuration memory into the ADC Configuration registers (ADC0CFG-ADC4CFG, ADC7CFG).
 - 2: If VDDIO is greater than 2.5V, set the AICPMPEN bit (ADCCON1<12>) and the IOANCPEN bit (CFGCON<7>) to '0'. If VDDIO is less than 2.5V, set both bits to '1'.

	GAP REGISTER								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	_	_		_	—	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	-	_	_	-	—	_	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	-	_	_	-	—	_	
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	
7:0	_			B2	BIPKTGP<6:0)>			

REGISTER 31-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

36.0 GRAPHICS LCD (GLCD) CONTROLLER

Note 1: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 54. "Graphics LCD Controller" (DS60001379), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Graphics LCD (GLCD) Controller is designed to directly interface with display panels with up to 24-bit color depth.

The GLCD Controller transfers display data from a memory device and formats it for a display device. The memory may be internal RAM or DDR2.

The parallel interface at the pins will operate at standard 3.3V output, requires 28 pins for 24-bit color, and is shared by general purpose I/O functions. Key features of the GLCD Controller include:

- Supports a 50 MHz Pixel Clock (dependent on DDR2 bandwidth)
- Up to 800x480 (WVGA) with Overlay and smaller with three Overlay layers. High resolution is possible with smaller displays.
- Color depths: 8, 16⁽¹⁾, 18, and 24 bits
- Up to three design timing layers, each including:
 - Configurable Alpha blending
 - Configurable Stride and Pitch
- Input formats: RGBA8888, ARGB8888, RGB8888, RGB565, RGBA5551, YUYV, RGB332, LUT8, and Gray-scale
- Output formats: RGB888, RGB666, BT.656
- Dithering for 18-bit displays
- High-quality YUV conversion
- Global color palette look-up table (CLUT) supporting 256 colors
- Global gamma correction, brightness and contrast support
- Programmable cursors supporting 16 colors
- Programmable polarity on HSYNC, VSYNC, DE, and PCLK
- Integrated DMA to offload the CPU
- Programmable (level/edge) interrupt on HSYNC and VSYNC
 - Note 1: 16-bit color depth is supported through the GLCDMODE bit (CFGCON2<30>). When set, functions shared with GD0, GD1, GD2, GD8, GD9, GD16, GD17, GD18 are available for general purpose use.

A block diagram of the GLCD Controller interface is provided in Figure 36-1.

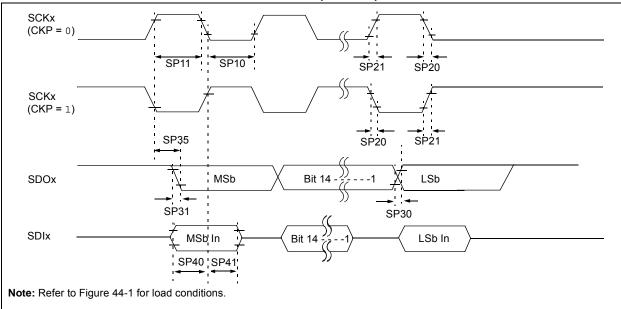
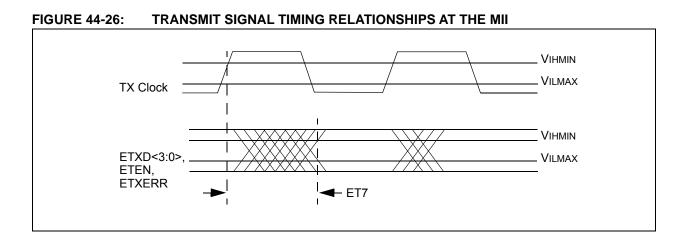

DC CHARAG	DC CHARACTERISTICS ^(1,2)			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽³⁾	Maximum	Units				
I/O Operatin	g Current (ID	DIO): Periphe	erals Enabled	d (PMDx=0, ON(PBxDIV<15>)=1)			
DC20	1.4	2.1	mA	8 MHz			
DC21	3.5	4.1	mA	100 MHz ⁽⁴⁾			
DC22	5.6	6.5	mA	200 MHz			
DC23	5.6	6.5	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			
I/O Operatin	I/O Operating Current (IDDCORE): Peripherals Enabled (PMDx=0, ON(PBxDIV<15>)=1)						
DC20a	20	34	mA	8 MHz			
DC21a	97	118	mA	100 MHz ⁽⁴⁾			
DC22a	152	180	mA	200 MHz			
DC23a	128	153	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			
I/O Operatin	ig Current (ID	DIO): Periphe	erals Disable	d (PMDx=1, ON(PBxDIV<15>)=0)			
DC24	1.4	2.1	mA	8 MHz			
DC25	3.5	4.1	mA	100 MHz ⁽⁴⁾			
DC26	5.6	6.5	mA	200 MHz			
DC27	5.6	6.5	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			
I/O Operatin	ig Current (ID	DCORE): Peri	pherals Disa	bled (PMDx=1, ON(PBxDIV<15>)=0)			
DC24a	19	33	mA	8 MHz			
DC25a	90	109	mA	100 MHz ⁽⁴⁾			
DC26a	146	177	mA	200 MHz			
DC27a	121	147	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			

TABLE 44-7: DC CHARACTERISTICS: OPERATING CURRENT (IDD = IDDIO + IDDCORE)


Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as Peripheral Bus Clock (PBCLK) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

2: The test conditions for IDD measurements are as follows:

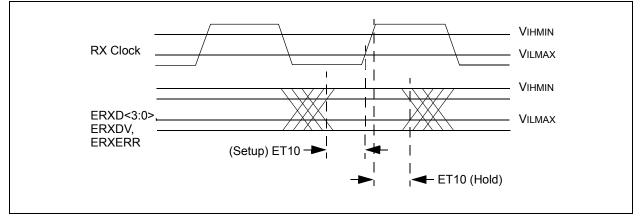

- VDDR1v8 = 1.8V
- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to two
- No peripheral modules are operating (ON bit = 0)
- L1 Cache and Prefetch modules are enabled, unless otherwise specified in conditions.
- No peripheral modules are operating, (ON bit = 0)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDDIO
- CPU executing while(1) statement from Flash
- RTCC and JTAG are disabled
- I/O Analog Charge Pump is disabled (IOANCPEN bit (CFGCON<7>) = 0)
- ADC Input Charge Pump is disabled (AICPMPEN bit (ADCCON1<12> = 0)
- All Peripheral Bus Clocks, except PBCLK7, are disabled (ON bit (PBxDIV<15>) = 0, x = 2 through 6)
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

FIGURE 44-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

Revision E (May 2017)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-4.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
32-bit Graphics Applications MCUs (up to 2 MB Live Update Flash, 640 KB SRAM, and 32 MB DDR2 SDRAM) with XLP Technology	Updated the value of pin 168 from "CVREFOUT/AN5/RPB10/RB10" to "AN5/RPB10/ RB10" (see Table 6).
25.0 "Parallel Master Port (PMP)"	The Virtual Address column heading was updated from BF80 to BF82 and the virtual addresses were updated from 70xx to E0xx (see Table 25-1).
36.0 "Graphics LCD (GLCD) Controller"	The resolutions in the key features list were updated.
39.0 "Secure Digital Host Controller (SDHC)"	The eMMC Standard: JESD84-A441 was added to the features list.
44.0 "Electrical Characteristics"	Table 44-7, Table 44-8, Table 44-9, Table 44-10, Table 44-11, Table 44-16,Table 44-18 updated various DC Characteristics parameters.
	Table 44-27, Table 44-28, Table 44-29 updated various AC Characteristics parameters.