

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ENSE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2025dab176-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN NAMES FOR 176-PIN DEVICES TABLE 6:

176-PIN LQFP (TOP VIEW)
PIC32MZ1025DAA176
PIC32MZ1025DAB176
PIC32MZ1064DAA176
PIC32MZ1064DAB176
PIC32MZ2025DAA176
PIC32MZ2025DAB176
PIC32MZ2064DAA176
PIC32MZ2064DAB176
PIC32MZ1025DAG176
PIC32MZ1025DAH176
PIC32MZ1064DAG176
PIC32MZ1064DAH176
PIC32MZ2025DAG176
PIC32MZ2025DAH176
PIC32MZ2064DAG176
PIC32MZ2064DAH176

176

1

Pin Number	Full Pin Name	Pin Number	Full Pin Name
1	Vref-/CVref-/AN27/RA9	37	Vss
2	VREF+/CVREF+/AN28/RA10	38	VDDIO
3	AVDD	39	VDDCORE
4	AVDD	40	EBID0/PMD0/RE0
5	AVss	41	RPF2/SDA3/RF2
6	AVss	42	INT0/RH14
7	AN3/C2INA/RPB15/OCFB/RB15	43	EBID4/AN18/PMD4/RE4
8	AN8/RPB3/RB3	44	No Connect
9	AN48/CTPLS/RB13	45	VBUS
10	EBID10/AN4/RPB8/PMD10/RB8	46	VUSB3V3
11	PGEC1/AN9/RPB1/CTED1/RB1	47	VUSB3V3
12	AN49/RB11	48	Vss
13	PGEC2/RPB6/RB6	49	Vss
14	EBID12/AN10/RPC2/PMD12/RC2	50	D-
15	EBIWE/AN34/RPC3/PMWR/RC3	51	D+
16	EBIOE/AN19/RPC4/PMRD/RC4	52	USBID
17	EBID5/AN12/RPC1/PMD5/RC1	53	TMS/SDCD/RA0
18	VDDCORE	54	TRCLK/SDCK/SQICLK/RA6
19	VDDIO	55	TRD3/SDDATA3/SQID3/RA7
20	No Connect	56	TRD1/SDDATA1/SQID1/RG12
21	Vss	57	VDDR1V8 ⁽⁵⁾
22	Vss	58	VDDR1V8 ⁽⁵⁾
23	EBID6/AN16/PMD6/RE6	59	VDDR1V8 ⁽⁵⁾
24	EBID7/AN15/PMD7/RE7	60	VDDR1V8 ⁽⁵⁾
25	AN25/RPE8/RE8	61	VDDR1V8 ⁽⁵⁾
26	AN26/RPE9/RE9	62	VDDR1V8 ⁽⁵⁾
27	TDO/AN31/RPF12/RF12	63	VDDR1V8 ⁽⁵⁾
28	TDI/AN17/SCK5/RF13	64	TRD0/SDDATA0/SQID0/RG13
29	Vss	65	TRD2/SDDATA2/SQID2/RG14
30	AN14/C1IND/SCK2/RG6	66	DDRVREF ⁽⁶⁾
31	AN13/C1INC/RPG7/SDA4/RG7	67	VDDR1V8 ⁽⁵⁾
32	AN30/C2IND/RPG8/SCL4/RG8	68	VDDR1V8 ⁽⁵⁾
33	EBIA2/AN23/C2INC/RPG9/PMA2/RG9	69	EBIA6/RPE5/PMA6/RE5
34	AN21/RG15	70	SDCMD/SQICS0/RPD4/RD4
35	AN20/RH4	71	SQICS1/RPD5/RD5
36	EBID1/AN39/PMD1/RE1	72	VDDR1V8 ⁽⁵⁾

The RPn pins can be used by remappable peripherals. See Table 1 and Table 3 for the available peripherals and **12.4 "Peripheral Pin Select (PPS)**" for restrictions. Note 1:

Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information. 2: 3: Shaded pins are 5V tolerant.

The metal plane at the bottom of the device is internally tied to VSS1V8 and should be connected to 1.8V ground externally. 4:

5: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

6: 7: This pin is a No Connect in devices without DDR.

These pins are restricted to input functions only.

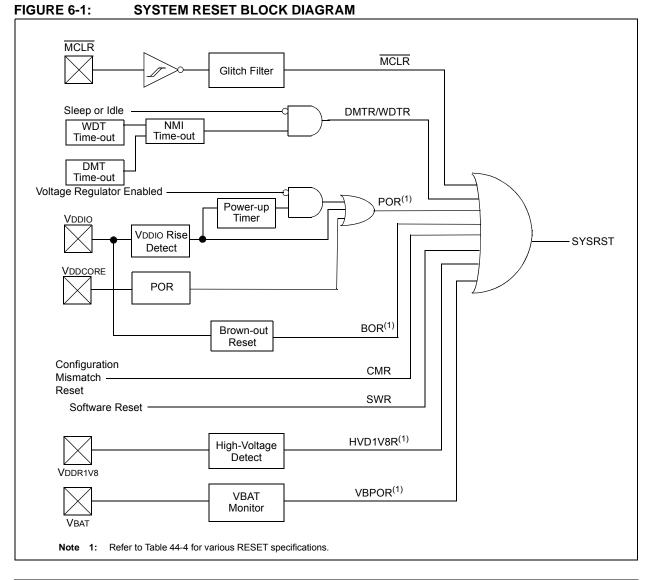
TABLE 4-23: SYSTEM BUS TARGET PROTECTION GROUP 13 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF91_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8420	SBT13ELOG1	31:16	MULTI	—	—	_		CODE	<3:0>		I	—	—			—	—	—	0000
0420	SBIISELUGI	15:0				INITIC)<7:0>					REGIO	N<3:0>		—		CMD<2:0>		0000
8424	SBT13ELOG2	31:16	_	—	—	_		_	_	_		—	_	_		_	_	_	0000
0424	SBI ISELOG2	15:0	—	—	—	—		—	_	—		—	_	—	—	—	GROU	P<1:0>	0000
8428	SBT13ECON	31:16	—	—	—	—		—	_	ERRP		—	_	—	—	—	—		0000
0420	SBITSECON	15:0	_	—	—	_		_	_	_		—	_	_		_	_	_	0000
8430	SBT13ECLRS	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	_	0000
0430	SBIISLOEKS	15:0	—	—	—	—	—	—	—	—		—	—	—	—	—	—	CLEAR	0000
8438	SBT13ECLRM	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	_	0000
0430		15:0	—	—	—	—	—	—	—	—		—	—	—	—	—	—	CLEAR	0000
8440	SBT13REG0	31:16								BASE	<21:6>								xxxx
0440	SBITSKEGU	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			—	—	_	xxxx
8450	SBT13RD0	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	_	xxxx
0430	SBITSKDU	15:0	—	—	—	—	—	—	—	—		—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8458	SBT13WR0	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	_	xxxx
0400	SBITSWRU	15:0	—	—	—	—	—	—	—	—		—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8460	SBT13REG1	31:16								BASE	<21:6>								xxxx
0400	SBITSKEGT	15:0			BASE	<5:0>			PRI	—			SIZE<4:0>			—	—	_	xxxx
8470	SBT13RD1	31:16	_	—	—	—		—	—	—		—	—	—	_	—	—	—	xxxx
0470		15:0	_	—	—	—		—	—	—		—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8478	SBT13WR1	31:16	_	—	—	—		—	—	—		—	—	—	_	—	—	_	xxxx
0470	GDTTSWRT	15:0	—	—	—	_		_	_	_		_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: Note:

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.


6.0 RESETS

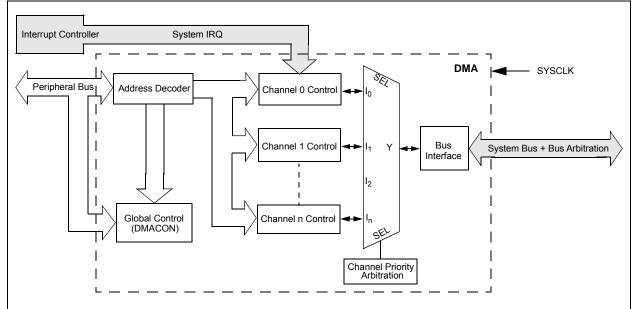
Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- VBAT Power-on Reset (VBPOR)
- High Voltage Detect Reset (HVD1V8R) on VDDR1V8
- Master Clear Reset pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

All types of device Reset will set a corresponding Status bit in the RCON register (see Register 6-1) to indicate the type of reset.

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.

Following are some of the key features of the DMA Controller module:

- Eight identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- · Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent error address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

The timer source for each Input Capture module depends on the setting of the ICACLK bit in the CFGCON register. The available configurations are shown in Table 15-1.

TABLE 15-1:	TIMER SOURCE
	CONFIGURATIONS

Input Capture Module	Timerx	Timery				
ICACLK (CFGCON<17>) = 0						
IC1	Timer2	Timer3				
•	•	•				
•	•	•				
•	•	•				
IC9	Timer 2	Timer 3				
ICACLK (CFGCC	N<17>) = 1					
IC1	Timer4	Timer5				
IC2	Timer4	Timer5				
IC3	Timer4	Timer5				
IC4	Timer2	Timer3				
IC5	Timer2	Timer3				
IC6	Timer2	Timer3				
IC7	Timer6	Timer7				
IC8	Timer6	Timer7				
IC9	Timer6	Timer7				

17.1 Deadman Timer Control Registers

TABLE 17-1: DEADMAN TIMER REGISTER MAP

ess											Bits								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0A00	DMTCON	31:16	_		—					—	—		-	_				_	0000
UAUU	DIVITCON	15:0	ON	_	_	_	_	_	_		_		_	—	_	_	_	_	0000
0410	DMTPRECLR	31:16	—	_	_	_	_	_	_		_		_	—	_	_	_	_	0000
UATU		15:0	STEP1<7:0>										—	0000					
0A20	DMTCLR	31:16	—	_	—	—	—	—	_		_		—	—	_	_		—	0000
UAZU	DIVITCLK	15:0	—	_	—	—	—	_	_					STEP	2<7:0>	-			0000
0A30	DMTSTAT	31:16	—	_	—	—	—	_	_		_		—	—	_	_		0000	
0A30	DIMITSTAT	15:0	—	_	—	—	—	—	_		BAD1	BAD2	DMTEVENT	—	_	_		WINOPN	0000
0A40	DMTCNT	31:16								COLU	NTER<31:0	2							0000
0A40	DIVITCINT	15:0								000	NIERSI.	J~							0000
0A60	DMTPSCNT	31:16								DSC	CNT<31:0>								0000
0400	DIMITESCINT	15:0								FOU	JN1~31.02								0000
0A70	DMTPSINTV	31:16								DQI	NTV<31:0>								0000
0470		15:0								FOI	1110-31.0-	-							0000
Legen	d: x = unkn	own val	ue on Res	et; — = un	implement	ed, read a	s '0'. Reset	values are	e shown in	hexadecin	nal.								

PIC32MZ Graphics (DA) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	PSINTV<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	PSINTV<23:16>										
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	PSINTV<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				PSINTV	<7:0>						

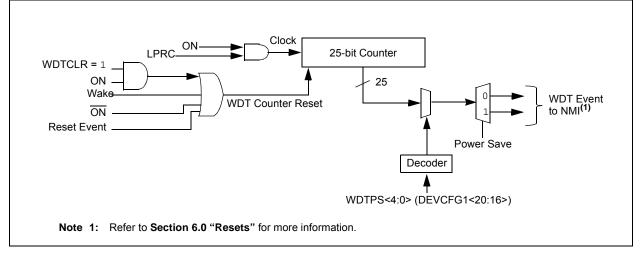
REGISTER 17-7: DMTPSINTV: POST STATUS CONFIGURE DMT INTERVAL STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	
-n = Bit Value at POR: ('0', '1', x = unkne	own)	P = Programmable bit	r = Reserved bit

bit 31-8 **PSINTV<31:0>:** DMT Window Interval Configuration Status bits

This is always the value of the DMTINTV<2:0> bits in the DEVCFG1 Configuration register.


18.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- · Can wake the device from Sleep or Idle

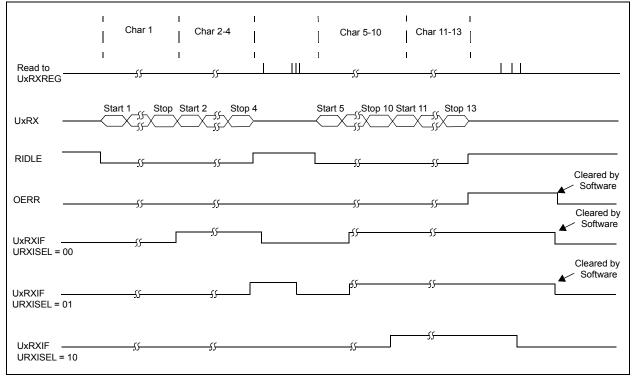
FIGURE 18-1: WATCHDOG TIMER BLOCK DIAGRAM

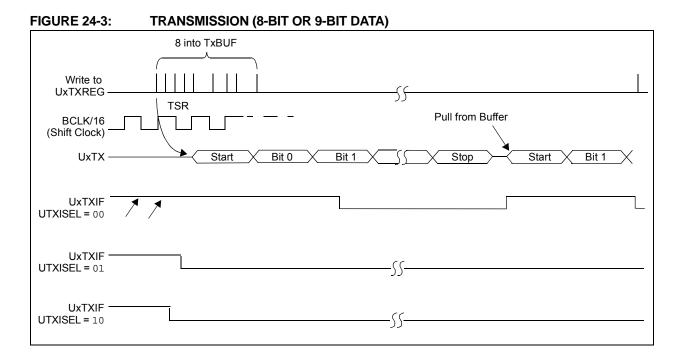
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	—	_	_	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TYPE<1:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	INIT2CMD3<7:0>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				INIT2CMD2	<7:0>		/-0 R/W-0				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				INIT2CMD1	<7:0>						

REGISTER 22-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Legend:

Legena.							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				


bit 31-29 Unimplemented: Read as '0'


- bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit
 - 1 = Check the status after executing the INIT2 commands
 - 0 = Do not check the status
- bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits
 - 11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent
 - 10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending
 - 01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits
 - 11 = Reserved
 - 10 = INIT2 commands are sent in Quad Lane mode
 - 01 = INIT2 commands are sent in Dual Lane mode
 - 00 = INIT2 commands are sent in Single Lane mode
- bit 24-16 **INIT2CMD3<7:0>:** Flash Initialization Command 3 bits Third command of the Flash initialization.
- bit 15-8 **INIT2CMD2<7:0>:** Flash Initialization Command 2 bits Second command of the Flash initialization.
- bit 7-0 **INIT2CMD1<7:0>:** Flash Initialization Command 1 bits First command of the Flash initialization.

Note: Some Flash devices require write enable and sector unprotect commands before write/read operations and this register is useful in working with those Flash types (XIP mode only)

Figure 24-2 and Figure 24-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 24-2: UART RECEPTION

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	CSADDR<15:8>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CSADDR<7:0>										
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	_	—	_	_	_	_	_	_			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	—	—					_				

REGISTER 26-1: EBICSX: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER ('x' = 0-3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 CSADDR<15:0>: Base Address for Device bits

Address in physical memory, which will select the external device.

bit 15-0 Unimplemented: Read as '0'

Table 27-12 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31-24			VERIFY		NO_RX	OR_EN	ICVONLY	IRFLAG			
23-16	LNC	LOADIV	FB	FLAGS	_		_	ALGO<6>			
15-8	ALGO<5:0> ENC S										
7-0	KEY SIZE<0>										
bit 31-30	Reserved:	Do not use									
bit 29	1 = NIST pr	ST Procedure ocedures are use NIST proc	to be used	Setting							
bit 28	Reserved:	Do not use									
bit 27		ceive DMA C lculate ICV fo processing	-	-	ons						
bit 26		R Register Bits register bits w processing		-	ne CSR regis	ster					
bit 25	This affects 1 = Only thr	ncomplete Ch the SHA-1 al ee words of th ts from the H	gorithm only. he HMAC res	It has no eff sult are avail		ES algorithm.					
bit 24	This bit is se 1 = Save the	nmediate Res et when the in e immediate r save the imme	nmediate res esult for has	ult for hashir	ng is request	ed.					
bit 23	1 = Load a	New Keys Se new set of key oad new keys	ys for encryp	tion and auth	nentication						
bit 22	LOADIV: Lo	oad IV Setting e IV from this		ociation							
bit 21	This bit indic 1 = Indicate	FB: First Block Setting This bit indicates that this is the first block of data to feed the IV value. 1 = Indicates this is the first block of data 0 = Indicates this is not the first block of data									
bit 20	1 = Security	coming/Outgo Association i Association i	is associated	with an outg							
hit 10 17	Reserved:	Do not use									

FIGURE 27-12: FORMAT OF SA_CTRL

REGISTER 28-3: RNGPOLYx: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x' ('x' = 1 OR 2)

		x = 10 K 2						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
31:24				POLY<3	31:24>			
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16				POLY<2	23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				POLY<	15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				POLY<	:7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **POLY<31:0>:** PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

	-							- /		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
31:24				RNG<3	1:24>					
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16	RNG<23:16>									
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
15:8				RNG<	5:8>					
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
7:0				RNG<	7:0>		•			

REGISTER 28-4:	RNGNUMGENX: RANDOM NUMBER GENERATOR REGISTER 'x' ('x' = 1 OR 2)
----------------	---

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
31:24				DATA<	31:24>				
00:40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
23:16	DATA<23:16>								
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8				DATA<	<15:8>				
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				DATA	<7:0>				

REGISTER 29-25: ADCDATAX: ADC OUTPUT DATA REGISTER 'x' ('x' = 0 THROUGH 43)

Legend:

Logona		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-0 **DATA<31:0>:** ADC Converted Data Output bits.

Note 1: When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.

2: Reading the ADCDATAx register value after changing the FRACT bit converts the data into the format specified by FRACT bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				SID<1	0:3>			
23:16	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
23.10		SID<2:0>		—	MIDE	—	EID<'	17:16>
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				EID<1	5:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				EID<7	7:0>			

REGISTER 30-9: CIRXMN: CAN ACCEPTANCE FILTER MASK N REGISTER (N = 0, 1, 2 OR 3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bi	t is unknown	

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Include bit, SIDx, in filter comparison
- 0 = Bit SIDx is 'don't care' in filter operation
- bit 20 Unimplemented: Read as '0'
- bit 19 MIDE: Identifier Receive Mode bit
 - 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
 - Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID))
- bit 18 Unimplemented: Read as '0'
- bit 17-0 **EID<17:0>:** Extended Identifier bits
 - 1 = Include bit, EIDx, in filter comparison
 - 0 = Bit EIDx is 'don't care' in filter operation

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 31-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)

- bit 6 **TXBUSY:** Transmit Busy bit^(2,6)
- 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

bit 5 **RXBUSY:** Receive Busy bit^(3,6)

1 = RX logic is receiving data 0 = RX logic is idle

This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.

- bit 4-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for RX operations.
 - **2:** This bit is only affected by TX operations.
 - **3:** This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1<15>) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

REGISTER 31-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	_	-	_	-	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	_	-	_	-	—	_
15:8	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
10.0	—			NB2E	BIPKTGP1<6:	0>		
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7.0				NB2E	BIPKTGP2<6:	0>		

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	nented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

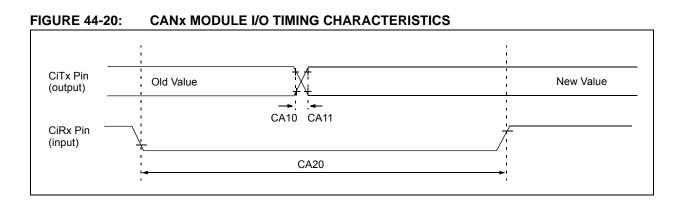
bit 31-15 Unimplemented: Read as '0'

bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits

This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1 "Deference" of the IEEE 80.23 Specification. If carrier is detected during the timing of IPGR1, the MAC defers to carrier. If, however, carrier becomes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to medium. Its range of values is 0x0 to IPGR2. Its recommend value is 0xC (12d).

bit 7 Unimplemented: Read as '0'

bit 6-0 **NB2BIPKTGP2<6:0>:** Non-Back-to-Back Interpacket Gap Part 2 bits This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is 0x12 (18d), which represents the minimum IPG of 0.96 µs (in 100 Mbps) or 9.6 µs (in 10 Mbps).


Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

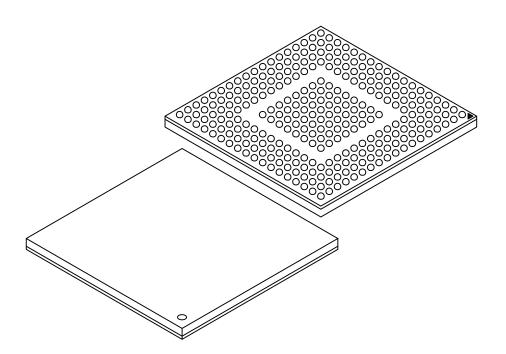
REGISTER 39-3: SDHCMODE: SDHC MODE REGISTER (CONTINUED)

- bit 4 DTXDSEL: Data Transfer Direction Select bit
 - 1 = Read (card to SDHC)
 - 0 = Write (SDHC to card)
- bit 3-2 ACEN<1:0>: Auto CMD12 Enable bits

Auto CMD12 is used to stop multiple-block read/write operations.

- 11 = Reserved
- 10 = Reserved
- 01 = Auto CMD12 is enabled
- 00 = Auto CMD 12 is disabled
- bit 1 BCEN: Block Count Enable Bit
 - 1 = Block count is enabled
 - 0 = Block count is disabled
- bit 0 DMAEN: DMA Enable bit
 - 1 = DMA (ADMA) is used to transfer data
 - 0 = CPU is used to transfer data
- **Note 1:** Refer to bits 45-40 of the command format in the "SD Host Controller Simplified Specification" (version 2.00).
 - 2: If these bits are set to '1', the SDHC will check the index field in the response to see if it has the same value as the CIDX<5:0> bits, if not, it will be reported as a command index error.
 - **3:** If these bits are set to '1', the SDHC will check the CRC field in the response and reports a command CRC error upon a CRC error detection.

TABLE 44-44: CANX MODULE I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
CA10	TioF	Port Output Fall Time	—			ns	See parameter DO32	
CA11	TioR	Port Output Rise Time	—	—	—	ns	See parameter DO31	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	700	_		ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

288 Ball Low Profile Fine Pitch Ball Grid Array (4J) - 15x15x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Number of Terminals (Balls)	Ν	288				
Pitch	е		0.80 BSC			
Overall Height	А	-	-	1.40		
Terminal (Ball) Height	A1	0.30	0.35	0.40		
Mold Cap Height	(A2)	0.70 REF				
Substrate Thickness	(A3)	0.26 REF				
Overall Length	D	15.00 BSC				
Overall Ball Pitch	D1	13.60 BSC				
Overall Width	E	15.00 BSC				
Overall Ball Pitch	E1	13.60 BSC				
Ball Diameter	b	0.40	0.45	0.50		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-366B Sheet 2 of 2