

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

シメテリ

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	288-LFBGA
Supplier Device Package	288-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2025dab288-i-4j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 6-1: RCON: RESET CONTROL REGISTER

bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit 1 = Device was in Sleep mode 0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾ 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾ 1 = Power-on Reset has occurred 0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24								-
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_						_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	_	_	—	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
7:0	_	_	_	_		_	_	VREGS

REGISTER 6-4: PWRCON: POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-1 Unimplemented: Read as '0'

bit 0 VREGS: Voltage Regulator Stand-by Enable bit

1 = Voltage regulator will remain active during Sleep

0 = Voltage regulator will go to Stand-by mode during Sleep

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

SS										Bits	5								
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH4SSA	31:16 15:0								CHSSA<	31:0>								XXX XXX
13A0	DCH4DSA	31:16 15:0								CHDSA<	:31:0>								XXX XXX
13B0	DCH4SSIZ	31:16 15:0	—	_	—	—	—	_	—	— CHSSIZ<	— :15 [.] 0>	—	_	—	—	—	—	_	000
13C0	DCH4DSIZ	31:16 15:0	_																
13D0	DCH4SPTR	31:16 15:0	_	_	_	_	_	_	—	CHSPTR		_	_	_	_	—	_	—	000
13E0	DCH4DPTR	31:16 15:0	_	_	—	_	_	_	—	CHDPTR	_	_	_	_	_	_	—	—	000
3F0	DCH4CSIZ	31:16 15:0	_	_	_	_	_	_	_	CHCSIZ		_	_	_	_	_	_	_	000
1400	DCH4CPTR	31:16 15:0	_	_	—	—	—	—	—	CHCPTR		_	_	_	_	—	—	_	000
1410	DCH4DAT	31:16 15:0	_	_	_	_	_	_	_	CHPDAT	_	_	_	_	_	—	_	_	000
1420	DCH5CON	31:16				CHPIG				-	_	_	_	_	_	_	_	_	77(
	DCH5ECON	15:0 31:16	CHBUSY —	_	CHPIGNEN —		CHPATLEN —			CHCHNS —	CHEN	CHAED	CHCHN	CHAEN CHAIR	— Q<7:0>	CHEDET	CHPR	<1:0>	000 001
		15:0 31:16	_	_	_	CHSIR	Q<7:0>	_	_	_	CFORCE CHSDIE	CABORT CHSHIE	PATEN CHDDIE	SIRQEN CHDHIE	AIRQEN CHBCIE		— CHTAIE	— CHERIE	FF0
1440	DCH5INT	15:0 31:16	-	_	—	_	-	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	
1450	DCH5SSA	15:0 31:16								CHSSA<	:31:0>								xxx
1460	DCH5DSA	15:0								CHDSA<	:31:0>								xxx
1470	DCH5SSIZ	31:16 15:0	—	_	—	—	—	_	—	CHSSIZ		_	_	—	_	_	—	_	000 xxx
1480	DCH5DSIZ	31:16 15:0	_	_		_	—			— CHDSIZ∢		—	_	_	_	_		_	000 xxx
1490	DCH5SPTR	31:16 15:0	_	_	_	_	—	—	_		— <15:0>	—	_	—	_	—	—	—	000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

Virtual Address (BF80_#) Bits Bit Range Resets Register Name 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 ₹ 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ IC4R 1444 15:0 _ _ _ _ _ _ _ _ _ ____ _ _ IC4R<3:0> 0000 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1448 IC5R 15:0 IC5R<3:0> 0000 ____ — _ — _ — — — _ — — _ 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 144C IC6R 15:0 _ ____ _ _ _ _ _ _ _ IC6R<3:0> 0000 — _ _ 31:16 _ _ _ 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ 1450 IC7R 15:0 _ ____ IC7R<3:0> 0000 — — _ — — — — — — — 31:16 0000 — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1454 IC8R 15:0 _ IC8R<3:0> 0000 _ _ ____ _ — — — — — — — 31:16 _ _ _ ____ _ _ _ _ _ _ _ _ _ _ 0000 1458 IC9R 15:0 _ _ _ _ _ _ _ _ _ _ _ _ IC9R<3:0> 0000 31:16 _ _ _ 0000 _ _ ____ — _ _ _ _ _ — — 1460 OCFAR 15:0 _ _ _ _ _ _ _ _ _ _ _ _ OCFAR<3:0> 0000 31:16 — _ _ _ _ _ _ _ _ ____ _ _ _ 0000 ____ ____ 1468 U1RXR 15:0 _ _ _ _ _ _ _ _ _ _ _ _ U1RXR<3:0> 0000 31:16 _ _ _ _ _ _ _ _ _ _ 0000 _ ____ _ ____ **U1CTSR** 146C 15:0 _ _ U1CTSR<3:0> 0000 _ _ _ _ _ _ _ _ _ _ 31:16 0000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1470 U2RXR 15:0 _ _ _ U2RXR<3:0> 0000 _ _ _ _ _ _ _ _ _ 31:16 _ _ _ ____ _ _ _ _ _ _ _ _ _ ____ _ 0000 1474 **U2CTSR** 15:0 _ _ _ ____ _ _ _ _ _ _ _ _ U2CTSR<3:0> 0000 31:16 _ _ _ 0000 _ _ _ _ _ _ _ _ _ _ — 1478 **U3RXR** 15:0 U3RXR<3:0> _ _ 0000 _ ____ _ _ _ _ ____ _ _ _ 31:16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0000 147C **U3CTSR** 15:0 U3CTSR<3:0> 0000 _ _ _ _ _ _ _ _ _ _ _ _ 31:16 _ 0000 _ _ ____ _ _ _ ____ _ _ _ _ _ _ 1480 U4RXR 15:0 U4RXR<3:0> 0000 _ _ ____ _ ____ _ _ _ _ ____ _ ____ 31:16 _ _ _ _ _ 0000 ____ ____ — _ _ ____ — — _ 1484 U4CTSR 15:0 U4CTSR<3:0> 0000 _ _ _ _ _ _ _

PIC32MZ

Graphics

(DA) Family

TABLE 12-13: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

0

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 12-14: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS										E	Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1654	RPF5R	31:16		—	_			_	_		_	_	_			—	_	—	0000
1		15:0	—	_	_	-	-	_		-	_	_	-	_		RPF5	R<3:0>		0000
1000	DDEAD	31:16	_	_	_	—	-	—	_	-	_	_	—	_	_	-	—	—	0000
1660 RPF8R		15:0	_		_	_	_	_		_	_	_	_	_		RPF8	R<3:0>		0000
4070	005400	31:16	_		_	_	_	_		_	_	_	_	_	_	—	—	_	0000
1670	RPF12R	15:0	_		_	_	—	_		—	_	_	_	_		RPG12	2R<3:0>		0000
4000	DDOOD	31:16	_		_	_	—	_		—	_	_	_	_	_	—	—	_	0000
1680	RPG0R	15:0	_		_	_	—	_		—	_	_	_	_		RPG1	R<3:0>		0000
4004	00040	31:16	_		_	_	—	_		—	_	_	_	_	_	—	—	_	0000
1684	RPG1R	15:0	_		_	-	_	_		_	_	_	_	_		RPG1	R<3:0>		0000
4000	00070	31:16	_		_	_	—	_		—	_	_	_	_	_	—	—	_	0000
169C	RPG7R	15:0	—	_	_		_	—	_	_	_	_	_	_		RPG7	R<3:0>		0000
40.40	DDOOD	31:16	_		_	-	_	_		_	_	_	_	_	_	—	_	_	0000
16A0	RPG8R	15:0	_	_	_		_	_	_	_	_	_	_	_		RPG8	R<3:0>		0000
10.1.1	DDOOD	31:16	_	—	_	_	_	_	—	_	_	—	_	—	_	—	—	—	0000
16A4	RPG9R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPG9	R<3:0>		0000

PIC32MZ Graphics (DA) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

									(/									
ess										Bi	its								
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	TMR7	31:16	—		_		—	_	_	—	—		_			_		_	0000
0010		15:0								TMR3	<15:0>								0000
0C20	PR7	31:16																	
0020		R7 15:0 PR3<15:0> FFFF																	
0500	T8CON	31:16	—	_	_	-	_		_	_	_	-		-	-	-	-	-	0000
		15:0	ON	_	SIDL	_	_	_	—	—	TGATE		CKPS<2:0	>	T32	_	TCS	_	0000
0E10	TMR8	31:16	_	_	_				_	_	-								0000
	TIVINO	15:0								TMR4	<15:0>								0000
0E20	PR8	31:16	—	—	_				_	-	-								0000
0220	110	15:0								PR4<	15:0>								FFFF
1000	T9CON	31:16	_	_	—	_	—	-	—	—	—	-	_	_	_	_	_	_	0000
1000	13001	15:0	ON	_	SIDL	_	—	-	—	—	TGATE		CKPS<2:0	>	_	_	TCS	_	0000
1010	TMR9	31:16	_	_	—	_	—	-	—	—	—	-	_	_	_	_	_	_	0000
1010	110113	15:0								TMR5	<15:0>								0000
1020	PR9	31:16	—	—	_				_	-	-								0000
1020	113	15:0								PR5<	15:0>								FFFF

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MZ Graphics (DA) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	—	—	_	_	—
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16		MONT	H10<3:0>			MONTH	01<3:0>	
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		DAY	10<1:0>			DAY01	<3:0>	
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
7:0	_	_	_			WDAY0	1<3:0>	

REGISTER 20-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	—	—	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾				-10.05		
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾			ADDR	<13:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				ADDR<	7:0>			

REGISTER 25-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **CS2:** Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 ADDR<15>: Target Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

FIGURE 27-6: FORMAT OF BD_DSTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31-24		BD_DSTADDR<31:24>										
23-16		BD_DSTADDR<23:16>										
15-8		BD_DSTADDR<15:8>										
7-0		BD_DSTADDR<7:0>										

bit 31-0 **BD_DSTADDR:** Buffer Destination Address The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 27-7: FORMAT OF BD_NXTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_NXTAD	DR<31:24>			
23-16		BD_NXTADDR<23:16>						
15-8		BD_NXTADDR<15:8>						
7-0				BD_NXTAI	DDR<7:0>			

bit 31-0 **BD_NXTADDR:** Next BD Pointer Address Has Next Buffer Descriptor The next buffer can be a next segment of the previous buffer or a new packet.

FIGURE 27-8: FORMAT OF BD_UPDPTR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_UPDAD	DR<31:24>			
23-16		BD_UPDADDR<23:16>						
15-8				BD_UPDAD	DR<15:8>			
7-0				BD_UPDA	DDR<7:0>			

bit 31-0 BD_UPDADDR: UPD Address Location

The update address has the location where the CRDMA results are posted. The updated results are the ICV values, key output values as needed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	—	_	—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	—	_	—	_	—	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	—	_	LOAD	TRNGMODE ⁽¹⁾	CONT	PRNGEN	TRNGEN
7.0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
7:0				PLE	N<7:0>			

REGISTER 28-2: RNGCON: RANDOM NUMBER GENERATOR CONTROL REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13	Unimplemented: Read as '0'
bit 12	LOAD: Device Select bit
	This bit is self-clearing and is used to load the seed from the TRNG (i.e., the random value) as a seed to the PRNG.
bit 11	TRNGMODE: True Random Number Generator Mode bit ⁽¹⁾
	1 = Enhanced TRNG mode is selected0 = Normal TRNG mode is selected
bit 10	CONT: PRNG Number Shift Enable bit
	 1 = The PRNG random number is shifted every cycle 0 = The PRNG random number is shifted when the previous value is removed
bit 9	PRNGEN: PRNG Operation Enable bit
	1 = PRNG operation is enabled0 = PRNG operation is not enabled
bit 8	TRNGEN: TRNG Operation Enable bit
	1 = TRNG operation is enabled
	0 = TRNG operation is not enabled
bit 7-0	PLEN<7:0>: PRNG Polynomial Length bits
	These bits contain the length of the polynomial used for the PRNG.

Note 1: This bit is effective only when the TRNGEN bit is set to '1'.

1

REGISTER 31-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED)

- bit 7 AUTOFC: Automatic Flow Control bit
 - 1 = Automatic Flow Control is enabled
 - 0 = Automatic Flow Control is disabled

Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 6-5 Unimplemented: Read as '0'

bit 4 MANFC: Manual Flow Control bit

- 1 = Manual Flow Control is enabled
- 0 = Manual Flow Control is disabled

Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared.

Note: For 10 Mbps operation, TX clock runs at 2.5 MHz. For 100 Mbps operation, TX clock runs at 25 MHz.

When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a 0x0000 PAUSE timer value to disable Flow Control.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 3-1 Unimplemented: Read as '0'

bit 0 BUFCDEC: Descriptor Buffer Count Decrement bit

The BUFCDEC bit is a write-1 bit that reads as '0'. When written with a '1', the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a '0' will have no effect.

This bit is only used for RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

NOTES:

REGISTER 36-18: GLCDCURDATAX: GRAPHICS LCD CONTROLLER CURSOR DATA 'n' REGISTER ('n' = 0-127)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		PIXELxy	<3:0> ⁽¹⁾			PIXELxy	/<3:0> ⁽¹⁾	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16		PIXELxy	<3:0>(1)		PIXELxy<3:0> ⁽¹⁾			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		PIXELxy	<3:0> ⁽¹⁾			PIXELxy	/<3:0> ⁽¹⁾	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		PIXELxy	<3:0> ⁽¹⁾			PIXELxy	/<3:0> (1)	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-28 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾

bit 27-24 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

bit 23-20 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

bit 19-16 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

bit 15-12 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

bit 11-8 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

bit 7-4 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

bit 3-0 **PIXELxy<3:0>:** Pixel 'xy' Color Lookup bits⁽¹⁾

Note 1: For the PIXELxy bits, x = 0-31 and y = 0-31 (i.e., GLCDCURDATA0 contains PIXEL00 through PIXEL07 with PIXEL00 in the most significant nibble).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	—	—	—	—	—	—
7:0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0				MINCM	D<7:0>			

REGISTER 38-4: DDRMINCMD: DDR MINIMUM COMMAND REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 MINCMD<7:0>: Minimum Command bits

These bits in conjunction with the RQPER<7:0> bits (DDRRQPER<7:0>) determine the percentage of total bandwidth that is allocated to the target. If the number of DDR bursts specified by MINCMD<7:0> are not serviced for the target when it has been requesting access for (RQPER<7:0> * 4) number of clocks, then the target's requests are treated with high priority until this condition becomes satisfied.

Note: The TSEL<7:0> bits (DDRTSEL<7:0>) must be programmed with the target number multiplied by the size of the MINLIMIT field (5) before this register is used to program the minimum burst limit for that target.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HC	R/W-0, HC
31:24	—	_	—	_	_	_	ADEISE	ACEISE
00.40	R/W-0, HC	R/W-0, HC	R/W-0, HC					
23:16	CLEISE	DEBEISE	DCRCEISE	DTOEISE	CIDXEISE	CEBEISE	CCRCEISE	CTOEISE
45.0	R-0, HC	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HC
15:8	FTZEISE	_	—	_	_		—	CARDISE
7:0	R/W-1, HC	R/W-1, HC	R/W-1, HC					
	CARDRISE	CARDIISE	BRRDYISE	BWRDYISE	DMAISE	BGISE	TXEISE	CEISE

REGISTER 39-11: SDHCINTSEN: SDHC INTERRUPT SIGNAL ENABLE REGISTER

Legend:		HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	own

bit 31-26 Unimplemented: Read as '0'

bit 25	ADEISE: ADMA Error Interrupt Signal Enable bit 1 = ADMA error signal is enabled
	0 = ADMA error signal is masked
bit 24	ACEISE: Auto CMD12 Error Interrupt Signal Enable bit
	1 = Auto CMD12 error signal is enabled
	0 = Auto CMD12 error signal is masked
bit 23	CLEISE: Current-Limit Error Interrupt Signal Enable bit
	 1 = Current-limit error signal is enabled 0 = Current-limit error signal is masked
bit 22	DEBEISE: Data End Bit Error Interrupt Signal Enable bit
	1 = Data end bit error signal is enabled
	0 = Data end bit error signal is masked
bit 21	DCRCEISE: Data CRC Error Interrupt Signal Enable bit
	1 = Data CRC error signal is enabled
1.11.00	0 = Data CRC error signal is masked
bit 20	DTOEISE: Data Time-out Error Interrupt Signal Enable bit
	 1 = Data time-out error signal is enabled 0 = Data time-out error signal is masked
bit 19	CIDXEISE: Command Index Error Interrupt Signal Enable bit
	1 = Command index error signal is enabled
	0 = Command index error signal is masked
bit 18	CEBEISE: Command End Bit Error Interrupt Signal Enable bit
	1 = Command End bit error signal is enabled
	0 = Command End bit error signal is masked
bit 17	CCRCEISE: Command CRC Error Interrupt Signal Enable bit
	1 = Command CRC error signal is enabled
1:1.40	0 = Command CRC error signal is masked
bit 16	CTOEISE: Command Time-out Error Interrupt Signal Enable bit
	 1 = Command time-out error signal is enabled 0 = Command time-out error signal is masked
bit 15	FTZEISE: Fixed to Zero Error Interrupt Signal Enable bit
	This bit is set if any or all bits, 0 through 9, in this register are set.
	1 = Error was detected
	0 = No error was detected

TABLE 40-3: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral	PMDx Bit Name	Register Name and Bit Location			
ADC	ADCMD	PMD1<0>			
CTMU	CTMUMD	PMD1<8>			
Comparator Voltage Reference	CVRMD	PMD1<12>			
High/Low-Voltage Detect	HLVDMD	PMD1<20>			
Comparator 1	CMP1MD	PMD2<0>			
Comparator 2	CMP2MD	PMD2<1>			
Input Capture 1	IC1MD	PMD3<0>			
Input Capture 2	IC2MD	PMD3<1>			
Input Capture 3	IC3MD	PMD3<2>			
Input Capture 4	IC4MD	PMD3<3>			
Input Capture 5	IC5MD	PMD3<4>			
Input Capture 6	IC6MD	PMD3<5>			
Input Capture 7	IC7MD	PMD3<6>			
Input Capture 8	IC8MD	PMD3<7>			
Input Capture 9	IC9MD	PMD3<8>			
Output Compare 1	OC1MD	PMD3<16>			
Output Compare 2	OC2MD	PMD3<17>			
Output Compare 3	OC3MD	PMD3<18>			
Output Compare 4	OC4MD	PMD3<19>			
Output Compare 5	OC5MD	PMD3<20>			
Output Compare 6	OC6MD	PMD3<21>			
Output Compare 7	OC7MD	PMD3<22>			
Output Compare 8	OC8MD	PMD3<23>			
Output Compare 9	OC9MD	PMD3<24>			
Timer1	T1MD	PMD4<0>			
Timer2	T2MD	PMD4<1>			
Timer3	T3MD	PMD4<2>			
Timer4	T4MD	PMD4<3>			
Timer5	T5MD	PMD4<4>			
Timer6	T6MD	PMD4<5>			
Timer7	T7MD	PMD4<6>			
Timer8	T8MD	PMD4<7>			
Timer9	T9MD	PMD4<8>			
UART1	U1MD	PMD5<0>			
UART2	U2MD	PMD5<1>			
UART3	U3MD	PMD5<2>			
UART4	U4MD	PMD5<3>			
UART5	U5MD	PMD5<4>			
UART6	U6MD	PMD5<5>			
SPI1	SPI1MD	PMD5<8>			
SPI2	SPI2MD	PMD5<9>			

Note 1: The USB module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

2: This peripheral is not available on all devices. Refer to the pin feature tables (Table 2 through Table 4) to determine availability.

DC CHA	ARACTERIS	TICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
Operati	ng Voltage							
DC10	Vddio	I/O Supply Voltage (Note 1)	2.2	_	3.6	V	—	
DC11	VDDCORE	Core Supply Voltage (Note 1)	1.7	1.8	1.9	V	—	
DC12	SVDDIO/ SVDDCORE	VDDIO/VDDCORE Rise Rate to Ensure Internal Power-on Reset Signal (Note 2)	0.000011	_	1.1	V/µs	300 ms to 3 µs @ 3.3v	
DC13	VBAT	Battery Supply Voltage	2.2		3.6	V	—	
DC14	VDDR1V8	DDR Memory Supply Voltage	1.7	1.8	1.9	V	—	
DC15	DDRVREF	DDR Reference Voltage	0.49 x VDDR1V8	0.50 x Vddr1v8	0.51 x Vddr1v8	V	—	

TABLE 44-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

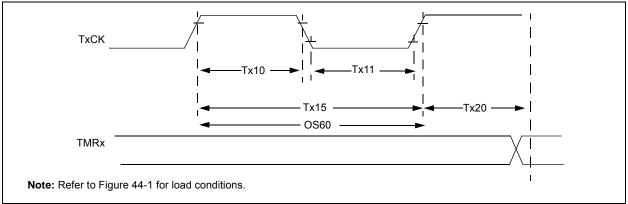
Note 1: Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages. Refer to Table 44-5 for Reset values.

2: Voltage on VDDIO must always be greater than or equal to VDDCORE during power-up.

TABLE 44-5: ELECTRICAL CHARACTERISTICS: RESETS

DC CHARACTERISTICS (Note 1)			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Min. Typ. Ma		Max.	Units	Conditions		
RST10	Vporio	VDDIO POR Voltage (Note 2)	Vss + 0.3	_	1.75	V	—	
RST11	VPORCORE /VBATSW	VDDCORE POR Voltage (Note 2) VDDCORE to VBAT Switch Voltage (Note 3)	Vss + 0.3	_	1.7	V	_	
RST12	VBORIO	BOR Event on VDDIO transition high-to-low (Note 4)	1.92	—	2.2	V	—	
RST13	VPORBAT	POR Event on VBAT (Note 4)	1.35	_	2.2	V	_	
RST14	Vhvd1v8	High Voltage Detect on VDDR1V8 pins	2.16	—	2.24	V	_	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.


- 2: This is the limit to which VDDIO/VDDCORE must be lowered to ensure Power-on Reset.
- 3: Device enters VBAT mode upon VDDCORE Power-on Reset.
- 4: Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages.

DC CHARACTERISTICS				Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param.	Sym.	Characteristic	Min. Typ. Max.		Units	Conditions ⁽¹⁾			
		Output High Voltage I/O Pins 4x Sink Driver Pins -	1.5			V	$IOH \ge -14 \text{ mA}, \text{ VDDIO} = 3.3 \text{ V}$		
			2.0			V	IOH \geq -12 mA, VDDIO = 3.3V		
DO20a	Vон1	RA0-RA3, RA9, RA10, RA14, RA15 RB0, RB4, RB6, RB7, RB10, RB11, RB12, RB14 RC12-RC15 RD6, RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8, RF12 RG15 RH0, RH1, RH4-RH14 RJ0-RJ2, RJ8, RJ9, RJ11			_	v	Іон ≥ -7 mA, Vddio = 3.3V		
		Output High Voltage I/O Pins: 8x Sink Driver Pins - 70H1 RA4, RA5 RB2, RB3, RB5, RB8, RB9, RB10, RB13, RB14, RB15 RC1-RC4 RD0-RD3, RD9, RD10, RD12, RD13 RE0-RE7 RF0, RF1, RF4, RF5, RF13 RG0, RG1, RG6, RG7, RG8, RG9 RH2, RH3, RH7, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	1.5			V	$IOH \ge -22 \text{ mA}, \text{ VDDIO} = 3.3 \text{ V}$		
			2.0	—	_	V	IOH \geq -18 mA, VDDIO = 3.3V		
			3.0			V	ІОН ≥ -10 mA, VDDIO = 3.3V		
		Output High Voltage I/O Pins: 12x Source Driver Pins -	1.5	—	—	V	$\text{IOH} \geq -32 \text{ mA}, \text{ VDDIO} = 3.3 \text{V}$		
			2.0			V	$IOH \geq -25 \text{ mA}, \text{ VDDIO} = 3.3 \text{ V}$		
		RA6, RA7 RD4, RD5 RG12-RG14		_	_	V	Іон ≥ -14 mA, Vddio = 3.3V		

TABLE 44-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

FIGURE 44-6: TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 44-32: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS					Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Тур.	Max.	Units	Conditions		
TA10	TA10 TTXH TXCK High Time		Synchronous, with prescaler		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns		_	ns	Must also meet parameter TA15 (Note 3)		
			Asynchronous, with prescaler		10	_	_	ns	—		
TA11	ΤτxL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	—	—	ns	Must also meet parameter TA15 (Note 3)		
			Asynchronous, with prescaler		10	—	_	ns	—		
TA15	ΤτχΡ	TxP TxCK Input Period	Synchronous, with prescaler		[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	—	_	ns	VDDIO > 2.7V (Note 3)		
					[(Greater of 20 ns or 2 TPBCLK3)/N] + 50 ns	—	_	ns	VDDIO < 2.7V (Note 3)		
			Asynchron		20	_	_	ns	VDDIO > 2.7V		
			with prescaler		50	_	_	ns	VDDIO < 2.7V		
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by sett TCS bit (T1CON<1>))			32	_	50	kHz	—		
TA20	TCKEXTMRL	Delay from External TxCl Clock Edge to Timer Increment		ĸ	_		1	Трвськз	—		

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).