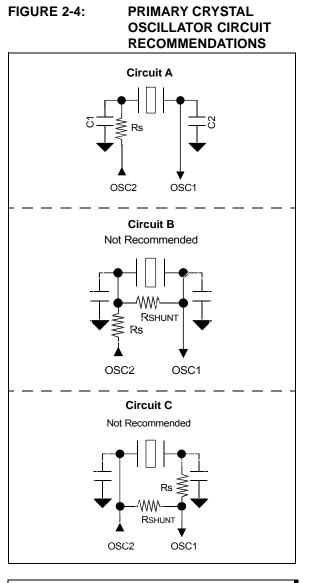


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

ENKEL

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2025dah176-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note:	For recommended resistor values versus
	crystal/frequency, Refer to the "PIC32MK
	GP/MC Family Silicon Errata and Data
	Sheet Clarification" (DS80000737), which
	is available for download from the Micro-
	chip web site (www.microchip.com).

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

REGISTER 4-12: SBTxRDy: SYSTEM BUS TARGET 'x' REGION 'y' READ PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

		,	x = • •••,	, = • •,				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_		-	_	_	_		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_		_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0					GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

bit 3 Group3: Group3 Read Permissions bits 1 = Privilege Group 3 has read permission 0 = Privilege Group 3 does not have read permission bit 2 Group2: Group2 Read Permissions bits 1 = Privilege Group 2 has read permission 0 = Privilege Group 2 does not have read permission Group1: Group1 Read Permissions bits bit 1 1 = Privilege Group 1 has read permission 0 = Privilege Group 1 does not have read permission bit 0 Group0: Group0 Read Permissions bits 1 = Privilege Group 0 has read permission 0 = Privilege Group 0 does not have read permission Note 1: Refer to Table 4-8 for the list of available targets and their descriptions.

Refer to rable 4-5 for the list of available targets and their descriptions.
 For some target regions, certain bits in this register are read-only with preset values. See Table 4-8 for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	31:24 CHPIGN<7:0							
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	_	—	_	_	—
45.0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
15:8	CHBUSY	_	CHIPGNEN	—	CHPATLEN	_	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

Logonan			
R = Readable bit	Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit
 - 1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled
 0 = Disable this feature
- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
 - 1 = 2 byte length
 - 0 = 1 byte length
- bit 10-9 **Unimplemented:** Read as '0'

bit 8 **CHCHNS:** Chain Channel Selection bit⁽¹⁾

- 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
- 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
- CHEN: Channel Enable bit⁽²⁾
- 1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
 - 1 = Allow channel to be chained
 - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	—	-	_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_	_	-	—	_	-	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	15:8 CHPDAT<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDAT	[<7:0>			

REGISTER 10-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **CHPDAT<15:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

REGISTER 11-7: USBIE0CSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 0)

			,					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-x	R-x	R-0	R-x	R-x	R-x	R-1	R-0
31.24	MPRXEN	MPTXEN	BIGEND	HBRXEN	HBTXEN	DYNFIFOS	SOFTCONE	UTMIDWID
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	-	-		—	—	—	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0					_	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	_	_	_	_	_	_	—	_

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	MPRXEN: Automatic Amalgamation Option bit
--------	---

- 1 = Automatic amalgamation of bulk packets is done
- 0 = No automatic amalgamation
- bit 30 MPTXEN: Automatic Splitting Option bit
 - 1 = Automatic splitting of bulk packets is done
 - 0 = No automatic splitting
- bit 29 BIGEND: Byte Ordering Option bit
 - 1 = Big Endian ordering
 - 0 = Little Endian ordering
- bit 28 HBRXEN: High-bandwidth RX ISO Option bit
 1 = High-bandwidth RX ISO endpoint support is selected
 0 = No High-bandwidth RX ISO support
- bit 27 **HBTXEN:** High-bandwidth TX ISO Option bit 1 = High-bandwidth TX ISO endpoint support is selected 0 = No High-bandwidth TX ISO support
- bit 26 **DYNFIFOS:** Dynamic FIFO Sizing Option bit
 - 1 = Dynamic FIFO sizing is supported
 - 0 = No Dynamic FIFO sizing
- bit 25 SOFTCONE: Soft Connect/Disconnect Option bit
 - 1 = Soft Connect/Disconnect is supported
 - 0 = Soft Connect/Disconnect is not supported
- bit 24 UTMIDWID: UTMI+ Data Width Option bit Always '0', indicating 8-bit UTMI+ data width
- bit 23-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	_	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	_	—	_	—
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	—	—	—	DMABRS	STM<1:0>	DMAERR
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		DMAE	P<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN

REGISTER 11-21: USBDMAxC: USB DMA CHANNEL 'x' CONTROL REGISTER ('x' = 1-8)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-11 Unimplemented: Read as '0'

- bit 10-9 DMABRSTM<1:0>: DMA Burst Mode Selection bit
 - 11 = Burst Mode 3: INCR16, INCR8, INCR4 or unspecified length
 - 10 = Burst Mode 2: INCR8, INCR4 or unspecified length
 - 01 = Burst Mode 1: INCR4 or unspecified length
 - 00 = Burst Mode 0: Bursts of unspecified length

bit 8 DMAERR: Bus Error bit

- 1 = A bus error has been observed on the input
- 0 = The software writes this to clear the error
- bit 7-4 DMAEP<3:0>: DMA Endpoint Assignment bits

These bits hold the endpoint that the DMA channel is assigned to. Valid values are 0-7.

bit 3 DMAIE: DMA Interrupt Enable bit

- 1 = Interrupt is enabled for this channel
- 0 = Interrupt is disabled for this channel
- bit 2 DMAMODE: DMA Transfer Mode bit
 - 1 = DMA Mode1 Transfers
 - 0 = DMA Mode0 Transfers
- bit 1 DMADIR: DMA Transfer Direction bit
 - 1 = DMA Read (TX endpoint)
 - 0 = DMA Write (RX endpoint)

bit 0 DMAEN: DMA Enable bit

- 1 = Enable the DMA transfer and start the transfer
- 0 = Disable the DMA transfer

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_		—	—	-	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_		—	—	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		_		—	—	-	—	—
7.0	R-0, HC	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R-0
7:0	BAD1	BAD2	DMTEVENT					WINOPN

REGISTER 17-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Cleared by Hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit
-n = Bit Value at POR: ('0', '1', x = unkno	own)	P = Programmable bit r = Reserved bit

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected 0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer event was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		_	_	—	—	_	_	—	
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16	MONTH10<3:0>				MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8	DAY10<1:0>				DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	_	_			WDAY01<3:0>				

REGISTER 20-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_	SDRCMD	DDRDATA	DDRDUMMY	DDRMODE	DDRADDR	DDRCMD ⁽¹⁾
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	DUMMYBYTES<2:0>			A	DDRBYTES<2:	READOPCODE<7:6>		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	READOPCODE<5:0>					TYPEDATA<1:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	TYPEDUN	/IMY<1:0>	TYPEMO	DE<1:0>	TYPEAD	DR<1:0>	TYPEC	MD<1:0>

REGISTER 22-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29	SDRCMD: SQI Command in SDR Mode bit
	 1 = SQI command is in SDR mode and SQI data is in DDR mode 0 = SQI command is in DDR mode and SQI data is in DDR mode
bit 28	DDRDATA: SQI Data DDR Mode bit
	1 = SQI data bytes are transferred in DDR mode0 = SQI data bytes are transferred in SDR mode
bit 27	DDRDUMMY: SQI Dummy DDR Mode bit
	1 = SQI dummy bytes are transferred in DDR mode0 = SQI dummy bytes are transferred in SDR mode
bit 26	DDRMODE: SQI DDR Mode bit
	1 = SQI mode bytes are transferred in DDR mode0 = SQI mode bytes are transferred in SDR mode
bit 25	DDRADDR: SQI Address Mode bit
	1 = SQI address bytes are transferred in DDR mode0 = SQI address bytes are transferred in SDR mode
bit 24	DDRCMD: SQI DDR Command Mode bit ⁽¹⁾
	 1 = SQI command bytes are transferred in DDR mode 0 = SQI command bytes are transferred in SDR mode
bit 23-21	DUMMYBYTES<2:0>: Transmit Dummy Bytes bits
	111 = Transmit seven dummy bytes after the address bytes
	•
	•
	 011 = Transmit three dummy bytes after the address bytes 010 = Transmit two dummy bytes after the address bytes 001 = Transmit one dummy bytes after the address bytes 000 = Transmit zero dummy bytes after the address bytes

Note 1: When DDRCMD is set to '0', the SQI module will ignore the value in the SDRCMD bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	CSADDR<15:8>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	CSADDR<7:0>									
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	_	_	_	_	_	_	_	_		
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	—	—					_			

REGISTER 26-1: EBICSX: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER ('x' = 0-3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 CSADDR<15:0>: Base Address for Device bits

Address in physical memory, which will select the external device.

bit 15-0 Unimplemented: Read as '0'

Table 27-12 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24			VERIFY		NO_RX	OR_EN	ICVONLY	IRFLAG		
23-16	LNC	LOADIV	FB	FLAGS	_		_	ALGO<6>		
15-8			ALGO	<5:0>			ENC	KEY SIZE<1>		
7-0	KEY SIZE<0>	ML	ILTITASK<2:	0>		CRYPTOALGO<3:0>				
bit 31-30	Reserved:	Do not use								
bit 29	1 = NIST pr	ERIFY: NIST Procedure Verification Setting = NIST procedures are to be used = Do not use NIST procedures								
bit 28	Reserved:	Do not use								
bit 27		ceive DMA C lculate ICV fo processing	-	-	ons					
bit 26		R Register Bits register bits w processing		-	ne CSR regis	ster				
bit 25	This affects 1 = Only thr	ICVONLY: Incomplete Check Value Only Flag This affects the SHA-1 algorithm only. It has no effect on the AES algorithm. 1 = Only three words of the HMAC result are available 0 = All results from the HMAC result are available								
bit 24	This bit is se 1 = Save the	nmediate Res et when the in e immediate r save the imme	nmediate res esult for has	ult for hashir	ng is request	ed.				
bit 23	1 = Load a	New Keys Se new set of key oad new keys	ys for encryp	tion and auth	nentication					
bit 22	LOADIV: Lo	oad IV Setting e IV from this		ociation						
bit 21	This bit indic 1 = Indicate	 B: First Block Setting This bit indicates that this is the first block of data to feed the IV value. Indicates this is the first block of data Indicates this is not the first block of data 								
bit 20	1 = Security	coming/Outgo Association i Association i	is associated	with an outg						
hit 10 17	Reserved:	Do not use								

FIGURE 27-12: FORMAT OF SA_CTRL

REGISTER 31-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

bit 7	RXDONE: Receive Done Interrupt bit ⁽²⁾
	 1 = RX packet was successfully received 0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 6	PKTPEND: Packet Pending Interrupt bit ⁽²⁾
	 1 = RX packet pending in memory 0 = RX packet is not pending in memory
	This bit is set when the BUFCNT counter has a value other than '0'. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 5	RXACT: Receive Activity Interrupt bit ⁽²⁾
	 1 = RX packet data was successfully received 0 = No interrupt pending
	This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 4	Unimplemented: Read as '0'
bit 3	TXDONE: Transmit Done Interrupt bit ⁽²⁾
	1 = TX packet was successfully sent 0 = No interrupt pending
	This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 2	TXABORT: Transmit Abort Condition Interrupt bit ⁽²⁾
	 1 = TX abort condition occurred on the last TX packet 0 = No interrupt pending
	This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:
	Jumbo TX packet abort
	Underrun abort
	Excessive defer abort
	Late collision abort
	Excessive collisions abort
	This bit is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 1	RXBUFNA: Receive Buffer Not Available Interrupt bit ⁽²⁾
	 1 = RX Buffer Descriptor Not Available condition has occurred 0 = No interrupt pending
	This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a '1' to the CLR register.
bit 0	RXOVFLW: Receive FIFO Over Flow Error bit ⁽²⁾
	 1 = RX FIFO Overflow Error condition has occurred 0 = No interrupt pending
	RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
Note 1:	This bit is only used for TX operations.
2:	This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	IRQCON	_	_	_	—	_	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	—	-	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	_	_	_	_	—	_	HSYNCINT	VSYNCINT

REGISTER 36-15: GLCDINT: GRAPHICS LCD CONTROLLER INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 **IRQCON:** IRQ Triggering Control bit 1 = Edge triggering is enabled 0 = Level triggering is enabled
- bit 30-2 Unimplemented: Read as '0'
- bit 1 **HYSNNCINT:** HSYNC Interrupt Enable bit 1 = HSYNC interrupt is enabled
 - 0 = HSYNC interrupt is not enabled
- bit 0 VSYNCINT: VSYNC Interrupt Enable bit 1 = VSYNC interrupt is enabled
 - 0 = VSYNC interrupt is not enabled

REGISTER 36-17: GLCDCLUTx: GRAPHICS LCD CONTROLLER GLOBAL COLOR LOOKUP TABLE REGISTER x ('x'=0-255)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24		_	_	_	_	-	—	_				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	RED<7:0>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	GREEN<7:0>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	BLUE<7:0>											

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	l		

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **RED<7:0>:** Global Color Lookup Table Red Component bits

bit 15-8 GREEN<7:0>: Global Color Lookup Table Green Component bits

bit 7-0 BLUE<7:0>: Global Color Lookup Table Blue Component bits

TABLE 38-1: DDR SDRAM CONTROLLER REGISTER SUMMARY (CONTINUED)

	SLE 38-1:	Bits									1								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8048	DDR CMDISSUE	31:16		—	—	-	—	—	—			—	—	-		—	—		0000
	DDR	15:0 31:16	_								—	_		VALID	_	NUMHOS I	CMDS<3:0>	ODTWEN	0000
804C	ODTENCFG	15:0							_									ODTWEN	0000
	DDR	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
8050	MEMWIDTH	15:0	—	-	—	—	-	-	—	—	-	—	—	—	HALF RATE	—	-	—	0000
	DDR	31:16		•		MDALC	MD<7:0>				WEN CMD2	CASCMD2	RASCMD2		. (CSCMD2<7:	3>	•	0000
8080	DDR CMD10	15:0	(CSCMD2<2:	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1				CSCME)1<7:0>				CLKEN CMD1	0000
	DDR	31:16				MDALC	MD<7:0>				WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	}>		0000
8084	DDR CMD11	15:0	C	CSCMD2<2:	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1		CSCMD1<7:0>				CLKEN CMD1				
	DDR	31:16				MDALC	MD<7:0>				WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	}>		0000
8088	DDR CMD12	15:0							CLKEN CMD1	0000									
	DDR	31:16				MDALC	MD<7:0>		1		WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	3>	-	0000
808C	DDR CMD13	15:0	CSCMD2<2:0> CLKEN WEN CASCMD1					RASCMD1								CLKEN CMD1	0000		
	DDR	31:16				MDALC	MD<7:0>				WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	3>		0000
8090	DDR CMD14	15:0	C	CSCMD2<2:	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1		CSCMD1<7:0> CLKE CME					CLKEN CMD1	0000		
	DDR	31:16					MD<7:0>	I			WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	}>		0000
8094	DDR CMD15	15:0	C	CSCMD2<2:	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1				CSCME)1<7:0>				CLKEN CMD1	0000
	DDR	31:16				MDALC	MD<7:0>				WEN CMD2	CASCMD2	RASCMD2		(CSCMD<27:	}>		0000
8098	DDR CMD16	15:0	C	CSCMD2<2:	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1				CSCME)1<7:0>				CLKEN CMD1	0000
	DDR	31:16				MDALC	MD<7:0>				WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	}>		0000
809C	DDR CMD17	15:0	(CSCMD2<2:0	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1		1		CSCME)1<7:0>				CLKEN CMD1	0000
00.4.0	DDR	31:16				MDALC	MD<7:0>	1	11		WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	3>		0000
80A0	DDR CMD18	15:0	C	CSCMD2<2:0	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1				CSCME	01<7:0>				CLKEN CMD1	0000
	DDR	31:16				MDALC	MD<7:0>	1	11		WEN CMD2	CASCMD2	RASCMD2		(CSCMD2<7:	3>		0000
80A4	DDR CMD19	15:0	C	CSCMD2<2:0	0>	CLKEN CMD2	WEN CMD1	CASCMD1	RASCMD1				CSCME	01<7:0>				CLKEN CMD1	0000

© 2015-2018 Microchip Technology Inc.

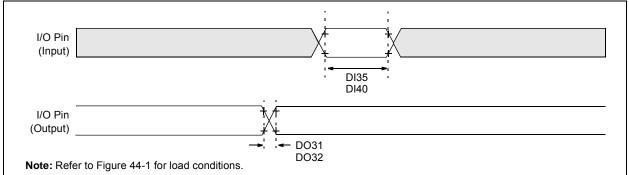
DS60001361F-page 615

REGISTER 41-3: DEVCFG0/ADEVCFG0: DEVICE/ALTERNATE DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 10 **FSLEEP:** Flash Sleep Mode bit
 - 1 = Flash is powered down when the device is in Sleep mode
 - 0 = Flash power down is controlled by the VREGS bit (PWRCON<0>)
- bit 9-8 FECCCON<1:0>: Dynamic Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
 - **Note:** Upon a device POR, the value of these bits are copied by hardware into CFGCON<5:4> bits, (i.e. ECCCON<1:0>.
- bit 7 Reserved: Write as '1'
- bit 6 BOOTISA: Boot ISA Selection bit
 - 1 = Boot code and Exception code is MIPS32
 - (ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register) 0 = Boot code and Exception code is microMIPS
 - (ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)
- bit 5 TRCEN: Trace Enable bit
 - 1 = Trace features in the CPU are enabled
 - 0 = Trace features in the CPU are disabled
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = PGEC3/PGED3 pair is used
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit
 - 1 = JTAG is enabled
 - 0 = JTAG is disabled
 - Note 1: On Reset, this Configuration bit is copied into JTAGEN (CFGCON<3>). If JTAGEN (DEVCFG0<2>) = 0, the JTAGEN bit cannot be set to '1' by the user application at run-time, as JTAG is always disabled. However, if JTAGEN (DEVCFG0<2>) = 1, the user application may enable/disable JTAG at run-time by simply writing JTAGEN (CFGCON<3> as required.
 - 2: This bit sets the value of the JTAGEN bit in the CFGCON register.
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = 4-wire JTAG Enabled PGECx/PGEDx Disabled ICD module Disabled
 - 10 = 4-wire JTAG Enabled PGECx/PGEDx Disabled ICD module Enabled
 - 01 = PGECx/PGEDx Enabled 4-wire JTAG I/F Disabled ICD module Disabled
 - 00 = PGECx/PGEDx Enabled 4-wire JTAG I/F Disabled ICD module Enabled
 - **Note:** When the FJTAGEN or JTAGEN bits are equal to '0', this prevents 4-wire JTAG debugging, but not PGECx/PGEDx debugging.

DC CHAR	RACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No. (Note 1)	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions			
DDRM12	Iddo	Operating Current, One Bank Active Precharge			90	mA	Note 2			
DDRM13	IDD1	Operating Current, One Back Active-Read Precharge			100	mA	Note 2			
DDRM14	IDD2	Precharge Power-Down Current			8	mA	Note 3			
DDRM15	Idd3	Precharge Stand-by Current			45	mA	Note 2			
DDRM16	IDD4	Precharge Quiet Stand-by Current			35	mA	Note 4			
DDRM17	Idd5	Active Power-Down Current			12	mA	Note 3			
DDRM18	IDD6	Active Stand-by Current			65	mA	Note 2			
DDRM19	Idd7	Operating Burst Read Current			140	mA	Note 2			
DDRM20	IDD8	Operating Burst Write Current	_	_	165	mA	Note 2			
DDRM21	IDD9	Burst Refresh Current	_	_	95	mA	Note 2			
DDRM22	IDD10	Self-Refresh Current	_	_	6	mA	Note 5			
DDRM23	IDD11	Operating Bank Interleave Read Current			200	mA	Note 6			

TABLE 44-17: DC CHARACTERISTICS: DDR2 SDRAM MEMORY


Note 1: These parameters are characterized, but not tested in manufacturing. The specifications are only valid after the memory is initialized.

2: DDRCKE is high, DDRCS0 is high between valid commands. Address, control, and data bus inputs are switching.

- 3: DDRCKE is low. Other control and address inputs are stable. Data bus inputs are floating.
- 4: DDRCKE is high and DDRCS0 is high. Other control and address inputs are stable. Data bus inputs are floating.
- 5: DDRCKE is low and DDRCK/DDRCK are low. Other control and address inputs are floating. Data bus inputs are floating.

6: DDRCKE is high and DDRCS0 is high between valid commands. Address bus inputs are stable. Data bus inputs are switching.

TABLE 44-30: I/O TIMING REQUIREMENTS

AC CHAI	RACTERIS	STICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param. No.	Symbol	Characteris	Characteristics ⁽²⁾			Max.	Units	Conditions		
DO31	TIOR	Port Output Rise T I/O Pins: 4x Source Driver Pir RA3, RA9, RA10, R RB0-7, RB11, RB13 RC12-RC15 RD0 RD6-RD7 RD	ns - A14, RA15	_	_	9.5	ns	Cload = 50 pF		
		RD0, RD6-RD7, RD11 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RJ0-RJ2, RJ8, RJ9, R	6, RH8-RH13	_	_	6	ns	Cload = 20 pF		
		Port Output Rise T I/O Pins: 8x Source Driver Pir RA0-RA2, RA4, RA4 RB8-RB10, RB12, F RC1-RC4 RD1-RD5, RD9, RD	ns - 5 RB14, RB15	_	_	8	ns	Cload = 50 pF		
	RD13, RD5, RD6, RD RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF1 RG0, RG1, RG6-RG RH2, RH3, RH7, RH RJ3-RJ7, RJ10, RJ1 RK0-RK7 Port Output Rise Ti I/O Pins: 12x Source Driver Pi RA6, RA7		9 114, RH15	_		6	ns	Cload = 20 pF		
				_	_	3.5	ns	CLOAD = 50 pF		
		RE0-RE3 RF1 RG12-RG14		_	_	2	ns	CLOAD = 20 pF		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

ADCYTIME (Dedicated ADCy Timing Dedictor $w'(w' = 0$
ADCxTIME (Dedicated ADCx Timing Register 'x' ('x' = 0 through 4))483
ALRMDATE (Alarm Date Value)
ALRMDATE (Alam Date Value)
ALRMDATESET (ALRMDATE Set)
ALRMTIME (Alarm Time Value)
ALRMTIMECLR (ALRMTIME Clear)
ALRMTIMEINV (ALRMTIME Invert)
ALRMTIMESET (ALRMTIME Set)
CFGCON (Configuration Control Register)
CFGCON2 (Configuration Control Register 2)
CFGMPLL (Memory PLL Configuration)
CHECON (Cache Control)
CM1CON (Comparator 1 Control)575
CMSTAT (Comparator Control Register)576
CNCONx (Change Notice Control for PORTx)
CONFIG (CP0 Register 16, Select 0)57
CONFIG1 (CONFIG1 Register58
CONFIG2
(CONFIG2 Register60
CONFIG2 (CONFIG2 Register
CONFIG3 (CONFIG3 Register
CTMUCON (CTMU Control)
CVRCON (Comparator Voltage Reference Control). 579
DCHxCON (DMA Channel x Control)
DCHxCPTR (DMA Channel x Cell Pointer)
DCHxCSIZ (DMA Channel x Cell-Size)
DCHxDAT (DMA Channel x Pattern Data)
DCHxDP IR (Channel x Destination Pointer)
Start Address)
DCHxDSIZ (DMA Channel x Destination Size)
DCHxECON (DMA Channel x Event Control)
DCHxINT (DMA Channel x Interrupt Control)
DCHxSPTR (DMA Channel x Source Pointer)
DCHxSSA (DMA Channel x Source Start Address) . 201
DCHxSSIZ (DMA Channel x Source Size)
DCRCCON (DMA CRC Control)
DCRCDATA (DMA CRC Data) 195
DCRCXOR (DMA CRCXOR Enable) 195
Description
DEVCFG0 (Device Configuration Word 0701
DEVCFG1 (Device Configuration Word 1704
DEVCFG2 (Device Configuration Word 2707
DEVCFG3 (Device Configuration Word 3710, 711
DEVID (Device and Revision ID)
DMAADDR (DMA Address)
DMAADDR (DMR Address)
DMACON (DMA Controller Control)
DMASTAT (DMA Status)
DMTCLR (Deadman Timer Clear)
DMTCNT (Deadman Timer Count)
DMTCON (Deadman Timer Control)
DMTPRECLR (Deadman Timer Preclear)
EBICSx (External Bus Interface Chip Select) 399, 402,
715, 716
EBIMSKx (External Bus Interface Address Mask)400
EBISMCON (External Bus Interface Static Memory Con-
trol)
EBISMTx (External Bus Interface Static Memory Timing)
401 EMAC1CFG1 (Ethernet Controller MAC Configuration 1)
556
EMAC1CFG2 (Ethernet Controller MAC Configuration 2)

557
EMAC1CLRT (Ethernet Controller MAC Collision Win-
dow/Retry Limit)
EMAC1IPGR (Ethernet Controller MAC Non-Back-to-
Back Interpacket Gap) 560
EMAC1IPGT (Ethernet Controller MAC Back-to-Back In-
terpacket Gap) 559
EMAC1MADR (Ethernet Controller MAC MII Manage-
ment Address) 567
EMAC1MAXF (Ethernet Controller MAC Maximum
Frame Length) 562
EMAC1MCFG (Ethernet Controller MAC MII Manage-
ment Configuration) 565
EMAC1MCMD (Ethernet Controller MAC MII Manage-
ment Command) 566
EMAC1MIND (Ethernet Controller MAC MII Manage-
ment Indicators) 569
EMAC1MRDD (Ethernet Controller MAC MII Manage-
ment Read Data)
EMAC1MWTD (Ethernet Controller MAC MII Manage-
ment Write Data) 568 EMAC1SA0 (Ethernet Controller MAC Station Address
0)
1)
EMAC1SA2 (Ethernet Controller MAC Station Address
2)
EMAC1SUPP (Ethernet Controller MAC PHY Support).
563
EMAC1TEST (Ethernet Controller MAC Test) 564
ETHALGNERR (Ethernet Controller Alignment Errors
Statistics)
ETHCON1 (Ethernet Controller Control 1) 534
ETHCON2 (Ethernet Controller Control 2) 536
ETHFCSERR (Ethernet Controller Frame Check Se-
quence Error Statistics) 554
ETHFRMRXOK (Ethernet Controller Frames Received
OK Statistics)
ETHFRMTXOK (Ethernet Controller Frames Transmit-
ted OK Statistics)
ETHHT0 (Ethernet Controller Hash Table 0)
ETHHT1 (Ethernet Controller Hash Table 1)
ETHIEN (Ethernet Controller Interrupt Enable)
ETHIRQ (Ethernet Controller Interrupt Request) 545
ETHMCOLFRM (Ethernet Controller Multiple Collision Frames Statistics)
ETHPM0 (Ethernet Controller Pattern Match Offset) 540
ETHPMCS (Ethernet Controller Pattern Match Check-
sum)
ETHRXFC (Ethernet Controller Receive Filter Configura-
tion) 541
ETHRXOVFLOW (Ethernet Controller Receive Overflow
Statistics)
ETHRXST (Ethernet Controller RX Packet Descriptor
Start Address)
ETHRXWM (Ethernet Controller Receive Watermarks).
543
ETHSCOLFRM (Ethernet Controller Single Collision
Frames Statistics) 551
ETHSTAT (Ethernet Controller Status) 547
ETHTXST (Ethernet Controller TX Packet Descriptor
Start Address) 537
GLCDBGCOLOR (Graphics LCD Controller Background
Color)
GLCDBLANKING (Graphics LCD Controller Blanking)