

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2064daa169-i-hf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

288-F	PIN LEBGA (BOTTOM VIEW)	•		,
2001	A1			\/1
	AI			V I
P P P P P	IC32MZ1025DAA288 F6 IC32MZ1025DAB288 F6 IC32MZ1064DAA288 F13 IC32MZ2025DAA288 F13 IC32MZ20264DAA288 F13 IC32MZ2064DAA288 F13	i		N6 N13 V18
	Polarity Indicator			
Ball/Pin Number	Full Pin Name		Ball/Pin Number	Full Pin Name
D15	VDDIO		G8	VSS1V8
D16	VDDIO	1	G9	VSS1V8
D17	PGED2/C1INA/AN46/RPB7/RB7		G10	Vss
D18	PGED1/AN0/RPB0/CTED2/RB0		G11	VDDIO
E1	DDRLDQS		G12	AVss
E2	DDRLDQS	1	G13	AVDD
E3	DDRDQ12	1	G15	VDDIO
E4	TRCLK/SDCK/SQICLK/RA6		G16	No Connect
E15	VDDIO		G17	OSC1/CLKI/RC12
E16	EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9		G18	OSC2/CLKO/RC15
E17	AN45/RPB5/RB5		H1	DDRDQ2
E18	CVREFOUT/AN5/RPB10/RB10		H2	DDRDQ5
F1	DDRDQ0		H3	DDRDQ6
F2	DDRDQ7		H4	TRD0/SDDATA0/SQID0/RG13
F3	DDRDQ11		H6	VDDR1V8 ⁽⁴⁾
F4	TRD3/SDDATA3/SQID3/RA7		H7	VDDR1V8 ⁽⁴⁾
F6	VSS1V8		H8	VDDR1V8 ⁽⁴⁾
F7	VSS1V8		H9	VSS1V8
F8	VSS1V8		H10	Vss
F9	Vss		H11	VDDIO
F10	Vss		H12	VDDIO
F11	VDDIO		H13	VDDIO
F12	AVss		H15	VDDIO
F13	AVDD		H16	
F15	VDDIO		H17	SOSCI/RPC13 ⁽⁶⁾ /RC13 ⁽⁶⁾
F16	VBAT		H18	SOSCO/RPC14 ⁽⁰⁾ /T1CK/RC14 ⁽⁶⁾
F17	No Connect		J1	DDRVRef ⁽⁹⁾
F18	No Connect	l	J2	No Connect
G1	DDRDQ3		J3	DDRDQ1
G2	DDRDQ4		J4	TRD2/SDDATA2/SQID2/RG14
G3	DDRDM0		J6	VDDR1V8 ⁽⁴⁾
G4	TRD1/SDDATA1/SQID1/RG12	l	J7	VDDR1V8 ⁽⁴⁾
G6	VSS1V8	l	J8	VDDR1V8 ⁽⁴⁾
G7	VSS1V8	l	J9	VSS1V8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.

5: This pin is a No Connect when DDR is not connected in the system.

6: These pins are restricted to input functions only.

		Pin Numbe	•	Dim	Duffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description
				G	LCD Contro	oller
GCLK	G11	148	L17	0	—	Graphics Display Pixel Clock
HSYNC	F12	149	L18	0	—	Graphics Display Horizontal Sync Pulse
VSYNC	F13	150	K18	0	—	Graphics Display Vertical Sync Pulse
GEN	G13	147	L16	0	—	Graphics Display Enable Output
GD0	G12	144	M16	0	—	Graphics Controller Data Output
GD1	L11	127	V17	0	—	
GD2	H1	76	U6	0	—	
GD3	N2	96	V9	0	—	
GD4	M2	95	Т8	0	—	
GD5	K3	90	U7	0	—	
GD6	L1	91	V7	0	—	
GD7	J1	80	U5	0	—	
GD8	G10	143	N18	0	—	
GD9	F9	145	M17	0	—	
GD10	G2	74	R6	0	—	
GD11	G3	75	T6	0	—	
GD12	L13	134	R16	0	—	
GD13	H10	133	P15	0	—	
GD14	J10	132	R15	0	—	
GD15	M13	131	T18	0	—	
GD16	K2	89	T7	0	—	
GD17	L3	97	U9	0	—	
GD18	F8	146	M18	0	—	
GD19	M12	130	T17	0	—	
GD20	E8	151	K17	0	—	
GD21	L2	92	V8	0	—	
GD22	J2	81	N4	0	—	
GD23	K12	137	P16	0	—	
Legend:	CMOS = C	MOS-comp	atible input o	or output	Ana	log = Analog input P = Power

TABLE 1-21: GRAPHICS LCD (GLCD) CONTROLLER PINOUT I/O DESCRIPTIONS

: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power

Pin Name	l	Pin Numbe	r	Pin	Buffer	Description
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	
					JTAG	
TCK	E11	160	H16	Ι	ST	JTAG Test Clock Input Pin
TDI	A6	28	A10	I	ST	JTAG Test Data Input Pin
TDO	C6	27	A11	0	_	JTAG Test Data Output Pin
TMS	D2	53	D4	I	ST	JTAG Test Mode Select Pin
					Trace	
TRCLK	E4	54	E4	0	_	Trace Clock
TRD0	E2	64	H4	0	_	Trace Data bits 0-3
TRD1	E3	56	G4	0	_	
TRD2	E1	65	J4	0	_	
TRD3	D1	55	F4	0	_	
				Progra	amming/De	bugging
PGED1	C12	169	D18	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	B9	11	A14	I	ST	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	D12	170	D17	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2
PGEC2	D7	13	B14	I	ST	Clock input pin for Programming/Debugging Communication Channel 2
MCLR	K1	85	R5	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Legend:	CMOS = C	MOS-comp	atible input o	or output	Ana	log = Analog input P = Power

TABLE 1-24: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

end: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select P = Power I = Input

i = inpl

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C
31:24	MULTI	—	—	—		CODE	<3:0>	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15.0				INITIE	0<7:0>			
7.0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	R-0
7.0		REGIO	N<3:0>		—		CMD<2:0>	

REGISTER 4-6: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1 ('x' = 0-13)

Legend:	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

 bit 31 MULTI: Multiple Permission Violations Status bit This bit is cleared by writing a '1'.
 1 = Multiple errors have been detected
 0 = No multiple errors have been detected

- bit 30-28 Unimplemented: Read as '0'
- bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

- 1111 = Reserved 1101 = Reserved . . 0011 = Permission violation 0010 = Reserved 0001 = Reserved 0000 = No error
- bit 23-16 Unimplemented: Read as '0'

Note: Refer to Table 4-8 for the list of available targets and their descriptions.

REGISTER 4-13: SBTxWRy: SYSTEM BUS TARGET 'x' REGION 'y' WRITE PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	-	—	-	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

- bit 3 Group3: Group 3 Write Permissions bits
 - 1 = Privilege Group 3 has write permission
 - 0 = Privilege Group 3 does not have write permission
- bit 2 Group2: Group 2 Write Permissions bits
 - 1 = Privilege Group 2 has write permission
 - 0 = Privilege Group 2 does not have write permission
- bit 1 Group1: Group 1 Write Permissions bits
 - 1 = Privilege Group 1 has write permission
 - 0 = Privilege Group 1 does not have write permission
- bit 0 **Group0:** Group 0 Write Permissions bits
 - 1 = Privilege Group 0 has write permission
 - 0 = Privilege Group 0 does not have write permission

Note 1: Refer to Table 4-8 for the list of available targets and their descriptions.

2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-8 for more information.

5.1 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ese										Bi	ts								ú
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0600		31:16	—	_	_	—	-	—	_	—	—	—	_	—	—	—	_		0000
0000		15:0	WR	WREN	WRERR	LVDERR		_		_	PFSWAP	BFSWAP	_	_		NVMO	P<3:0>		0000
0610		31:16		NUM/EV-21.0									0000						
0010		15:0		NVMIKE1<51.0/															
0620		31:16)P<31.0>								0000
0020	NUMADDIN	15:0		NVWADDR<51.0>															
0630	ΝΙΛΜΟΔΤΑΟ	31:16									۵0<31·0>								0000
0000	NUMBAIAO	15:0		NVNDALA0-51.0- 0000															
0640	NVMDATA1	31:16									A1<31·0>								0000
0040		15:0									11401.05								0000
0650	NVMDATA2	31:16									A2<31.0>								0000
0000		15:0									12 10 1.0								0000
0660	NVMDATA3	31:16									A3<31.0>								0000
		15:0																	0000
0670	NVMSRC	31:16							N	VMSRCA	DDR<31:0>								0000
	ADDR	15:0																	0000
0680	NVMPWP(1)	31:16	PWPULOCK	—	—	_	—	_	—					PWP<23:	16>				8000
		15:0	:0 PWP<15:0> 00								0000								
0690	NVMBWP(1)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0	LBWPULOCK	—	—	LBWP4	LBWP3	LBWP2	LBWP1	LBWP0	UBWPULOCK	—	—	UBWP4	UBWP3	UBWP2	UBWP1	UBWP0	9FDF
0640		31:16	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	00xx
0070		15:0	—	—	-	—	—	—	_	_	SWAPLOC	CK<1:0>	_	—	—	—	—	—	0000

PIC32MZ Graphics

DA DA

Family

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

		IRQ			Interru	upt Bit Location		Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Analog Circuit Ready	_ADC_ARDY_VECTOR	197	OFF197<17:1>	IFS6<5>	IEC6<5>	IPC49<12:10>	IPC49<9:8>	Yes
ADC Update Ready	_ADC_URDY_VECTOR	198	OFF198<17:1>	IFS6<6>	IE6<6>	IPC49<20:18>	IPC49<17:16>	Yes
ADC0 Early Interrupt	_ADC0_EARLY_VECTOR	199	OFF199<17:1>	IFS6<7>	IEC6<7>	IPC49<28:26>	IPC49<25:24>	Yes
ADC1 Early Interrupt	_ADC1_EARLY_VECTOR	200	OFF200<17:1>	IFS6<8>	IEC6<8>	IPC50<4:2>	IPC50<1:0>	Yes
ADC2 Early Interrupt	_ADC2_EARLY_VECTOR	201	OFF201<17:1>	IFS6<9>	IEC6<9>	IPC50<12:10>	IPC50<9:8>	Yes
ADC3 Early Interrupt	_ADC3_EARLY_VECTOR	202	OFF202<17:1>	IFS6<10>	IEC6<10>	IPC50<20:18>	IPC50<17:16>	Yes
ADC4 Early Interrupt	_ADC4_EARLY_VECTOR	203	OFF203<17:1>	IFS6<11>	IEC6<11>	IPC50<28:26>	IPC50<25:24>	Yes
Reserved	—		—	_	_	—	—	—
ADC Group Early Interrupt Request	_ADC_EARLY_VECTOR	205	OFF205<17:1>	IFS6<13>	IEC6<13>	IPC51<12:10>	IPC51<9:8>	Yes
ADC7 Early Interrupt	_ADC7_EARLY_VECTOR	206	OFF206<17:1>	IFS6<14>	IEC6<14>	IPC51<20:18>	IPC51<17:16>	Yes
ADC0 Warm Interrupt	_ADC0_WARM_VECTOR	207	OFF207<17:1>	IFS6<15>	IEC6<15>	IPC51<28:26>	IPC51<25:24>	Yes
ADC1 Warm Interrupt	_ADC1_WARM_VECTOR	208	OFF208<17:1>	IFS6<16>	IEC6<16>	IPC52<4:2>	IPC52<1:0>	Yes
ADC2 Warm Interrupt	_ADC2_WARM_VECTOR	209	OFF209<17:1>	IFS6<17>	IEC6<17>	IPC52<12:10>	IPC52<9:8>	Yes
ADC3 Warm Interrupt	_ADC3_WARM_VECTOR	210	OFF210<17:1>	IFS6<18>	IEC6<18>	IPC52<20:18>	IPC52<17:16>	Yes
ADC4 Warm Interrupt	_ADC4_WARM_VECTOR	211	OFF211<17:1>	IFS6<19>	IEC6<19>	IPC52<28:26>	IPC52<25:24>	Yes
Reserved	—	—	—	_	_	—	—	_
Reserved	—	_	—	—	—	—	—	_
ADC7 Warm Interrupt	_ADC7_WARM_VECTOR	214	OFF214<17:1>	IFS6<22>	IEC6<22>	IPC53<20:18>	IPC53<17:16>	Yes
MPLL Fault Interrupt	_MPLL_FAULT_VECTOR	215	OFF215<17:1>	IFS6<23>	IEC6<23>	IPC53<28:26>	IPC53<25:24>	Yes
	Lowes	t Natura	al Order Priority					

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0) (CONTINUED)

- bit 21 SENDSTALL: Send Stall Control bit (Device mode)
 - 1 = Terminate the current transaction and transmit a STALL handshake. This bit is automatically cleared.
 - 0 =Do not send STALL handshake.

REQPKT: IN transaction Request Control bit (*Host mode*)

- 1 = Request an IN transaction. This bit is cleared when the RXPKTRDY bit is set.
- 0 = Do not request an IN transaction
- bit 20 SETUPEND: Early Control Transaction End Status bit (Device mode)
 - 1 = A control transaction ended before the DATAEND bit has been set. An interrupt will be generated and the FIFO flushed at this time.
 - 0 = Normal operation

This bit is cleared by writing a '1' to the SVCSETEND bit in this register.

ERROR: No Response Error Status bit (Host mode)

- 1 = Three attempts have been made to perform a transaction with no response from the peripheral. An interrupt is generated.
- 0 = Clear this flag. Software must write a '0' to this bit to clear it.
- DATAEND: End of Data Control bit (Device mode)
- The software sets this bit when:

bit 19

- · Setting TXPKTRDY for the last data packet
- · Clearing RXPKTRDY after unloading the last data packet
- Setting TXPKTRDY for a zero length data packet

Hardware clears this bit.

SETUPPKT: Send a SETUP token Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY bit is set, the module sends a SETUP token instead of an OUT token for the transaction
- 0 = Normal OUT token operation

Setting this bit also clears the Data Toggle.

- bit 18 SENTSTALL: STALL sent status bit (Device mode)
 - 1 = STALL handshake has been transmitted
 - 0 = Software clear of bit

RXSTALL: STALL handshake received Status bit (Host mode)

- 1 = STALL handshake was received
- 0 = Software clear of bit
- bit 17 **TXPKTRDY:** TX Packet Ready Control bit
 - 1 = Data packet has been loaded into the FIFO. It is cleared automatically.
 - 0 = No data packet is ready for transmit
- bit 16 **RXPKTRDY:** RX Packet Ready Status bit
 - 1 = Data packet has been received. Interrupt is generated (when enabled) when this bit is set.
 - 0 = No data packet has been received

This bit is cleared by setting the SVCRPR bit.

bit 15-0 Unimplemented: Read as '0'

TABLE 12-12: PORTK REGISTER MAP

ess		0		Bits															
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0900	ANSELK	31:16		—	—	_	—		—	_	—	—	_	—	—	—	—	—	0000
	/	15:0	—	—	—	_	—	—	_	_	—	_	_	_	—	ANSK2	ANSK1		0006
0910	TRISK	31:16	—	—	—		—		—	—	—	—	—	—	—	—	—		0000
	_	15:0	—	—	—	—	—	—		_	TRISK7	TRISK6	TRISK5	TRISK4	TRISK3	TRISK2	TRISK1	TRISK0	00E9
0920	PORTK	31:16	—	_	-		_		—	_	—	—	—	—	—	—	—	—	0000
		15:0			—					—	RK7	RK6	RK5	RK4	RK3	RK2	RK1	RK0	XXXX
0930	LATK	31:16	_	_	_	_		_		_									0000
		15.0									LAIK/	LAIKO	LAIKS	LAIK4	LAIKS	LAIKZ	LAIKI	LAIKU	XXXX
0940	ODCK	15.0																	0000
		31.16			_														0000
0950	CNPUK	15.0							_	_	CNPUK7	CNPUK6	CNPUK5	CNPUK4	CNPUK3	CNPUK2	CNPUK1	CNPUK0	0000
		31:16		_		_					_	_	_	_	_	_	_	_	0000
0960	CNPDK	15:0		_	_	_	_	_	_	_	CNPDK7	CNPDK6	CNPDK5	CNPDK4	CNPDK3	CNPDK2	CNPDK1	CNPDK0	0000
		31:16	_		_	_		_		_	_	_	_			_	_	_	0000
0970	CNCONK	15:0	ON	—	_	-	EDGE DETECT		_	_	—	—		_	_	_	_	_	0000
0000		31:16	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
0960	CINEINK	15:0		_		_	—		_		CNIEK7	CNIEK6	CNIEK5	CNIEK4	CNIEK3	CNIEK2	CNIEK1	CNIEK0	0000
		31:16		-	—		_		_	—	-	_		_	_	—	—	_	0000
0990	CNSTATK	15:0	—	—	-	—	-	—	—	—	CN STATK7	CN STATK6	CN STATK5	CN STATK4	CN STATK3	CN STATK2	CN STATK1	CN STATK0	0000
0040		31:16	_	_	_		—	-	—	—	—	—	-	_	_	—	—	—	0000
0940	CININER	15:0		_	—		—		_	—	CNNEK7	CNNEK6	CNNEK5	CNNEK4	CNNEK3	CNNEK2	CNNEK1	CNNEK0	0000
09B0	CNEK	31:16	_	_	—	_	—	_	—	_						—	—	—	0000
0000		15:0	_	—	—	_	_	_	—	_	CNFK7	CNFK6	CNFK5	CNFK4	CNFK3	CNFK2	CNFK1	CNFK0	0000
09C0	SRCON0K	31:16	_	—	—		—		—	_	—	—	_	_	_	—	—		0000
		15:0		_	—	_	_		—	—	SR1K7	SR1K6	SR1K5	SR1K4	SR1K3	SR1K2	SR1K1	SR1K0	0000
09D0	SRCON1K	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	_	—	_	0000
		15:0	—	—	—	—	—	—	—	_	SR0K7	SR0K6	SR0K5	SR0K4	SR0K3	SR0K2	SR0K1	SR0K0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—	—	—				
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:10	—	—	—	—	—	—	—	—				
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
15:8	ON	—	SIDL	—	—	—	FEDGE	C32				
7:0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0				
7:0	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>					
Legend:	Legend:											
D - Doodabl	- hit		M = M/ritobl	o hit	II – Unimpl	omontod hit						

REGISTER 15-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

R = Readable bit W = Writable bit U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** Input Capture Module Enable bit 1 = Module enabled 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Control bit 1 = Halt in CPU Idle mode 0 = Continue to operate in CPU Idle mode bit 12-10 Unimplemented: Read as '0' FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110) bit 9 1 = Capture rising edge first 0 = Capture falling edge first bit 8 C32: 32-bit Capture Select bit 1 = 32-bit timer resource capture 0 = 16-bit timer resource capture bit 7 **ICTMR:** Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')⁽¹⁾ 0 = Timery is the counter source for capture 1 = Timerx is the counter source for capture bit 6-5 ICI<1:0>: Interrupt Control bits 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event bit 4 **ICOV:** Input Capture Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred 0 = No input capture overflow occurred bit 3 **ICBNE:** Input Capture Buffer Not Empty Status bit (read-only) 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty bit 2-0 ICM<2:0>: Input Capture Mode Select bits 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode) 110 = Simple Capture Event mode – every edge, specified edge first and every edge thereafter 101 = Prescaled Capture Event mode – every sixteenth rising edge 100 = Prescaled Capture Event mode – every fourth rising edge 011 = Simple Capture Event mode – every rising edge 010 = Simple Capture Event mode – every falling edge 001 = Edge Detect mode – every edge (rising and falling) 000 = Input Capture module is disabled **Note 1:** Refer to Table 15-1 for Timerx and Timery selections.

NOTES:

		-						- ()			(,					
ess		۵									Bits							
Virtual Addr (BF8E_#	VIITUAI AGO (BF8E_# Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
2044	SQI1BD	31:16	—	—	—	_	—	—	—	_	—	—		BDSTA	TE<3:0>		DMA START	DMAACTV
	SIAI	15:0		BDCON<15:0>														
2048	SQI1BD	31:16	_	—	—	—	—	_	—		—	_	—	—	—		—	—
2040	POLLCON	15:0		POLLCON<15:0>														
2040	204C SQI1BD TXDSTAT		—	—	_		TXSTA	TE<3:0>		—	— — TXBUFCNT<5:0>							
2040			—	—	_	—	—		—		TXCURBUFLEN<8:0>							
2050	SQI1BD		—	—	_		RXSTATE<3:0>			_	_				RXBUFC	NT<5:0>		
2050	RXDSTAT	15:0	—	—	_	—	—		—		RXCURBUFLEN<8:0>							
2054		31:16	—	—	_	—	—	_	—	_	_			_	—	—		—
2054	SQITTIRK	15:0	—	—	—	—	—	—	—	_	—	—		—		THRE	S<3:0>	
	SOLUNT	31:16	—	—	—	—	—	—	—	_	—	—		—	—	—		—
2058	SIGEN	15:0	—	_	_	_	DMAEIS E	PKT DONEISE	BD DONEISE	CON THRISE	CON EMPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE
2050	SQI1	31:16	_	_		•	DDRCLKI	NDLY<5:0>	>			SDRDATI	NDLY<3:0>			DDRDATI	NDLY<3:0>	•
2050	TAPCON	15:0	_	_			SDRCLKI	NDLY<5:0>	,			DATAOUT	DLY<3:0>			CLKOUT	DLY<3:0>	
2060	SQI1	31:16	_	_	—	—	—		_	_	_	_	—	STATPOS	TYPEST	AT<1:0>	STATBY	TES<1:0>
2060	MEMSTAT	15:0		•	•		•		•	S	TATCMD<15:	0>	•		•		•	
2064	2064 SQI1	31:16	—	—	_	INIT1 SCHECK	INIT1CO	UNT<1:0>	INIT1TY	PE<1:0>				INIT1CM	1D3<7:0>			

INIT2TYPE<1:0>

TABLE 22-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP (CONTINUED)

INIT1CMD2<7:0>

INIT2CMD2<7:0>

INIT2COUNT<1:0>

INIT2 SCHECK

_

All Resets

0000 0000

0000

0000

0000 0000 0000

0000 0000 0000

0000

0000

0000

INIT1CMD1<7:0>

INIT2CMD3<7:0>

INIT2CMD1<7:0>

DMAACTV 0000

15:0

31:16

15:0

SQI1 XCON4

2068

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	—	_	—	—	—	_
7:0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	SWAPOEN	SWRST	SWAPEN	_	_	BDPCHST	BDPPLEN	DMAEN

REGISTER 27-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Legend:		HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 SWAPOEN: Swap Output Data Enable bit
 - 1 = Output data is byte swapped when written by dedicated DMA
 - 0 = Output data is not byte swapped when written by dedicated DMA
- bit 6 SWRST: Software Reset bit
 - 1 = Initiate a software reset of the Crypto Engine
 - 0 = Normal operation

bit 5 SWAPEN: I/O Swap Enable bit

- 1 = TFDMA inputs and RFDMA outputs are swapped
- 0 = TFDMA inputs and RFDMA outputs are not swapped

bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = BDP descriptor fetch is enabled
- 0 = BDP descriptor fetch is disabled

bit 1 BDPPLEN: Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = Poll for descriptor until valid bit is set
- 0 = Do not poll

bit 0 DMAEN: DMA Enable bit

- 1 = Crypto Engine DMA is enabled
- 0 = Crypto Engine DMA is disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
01.04	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	BGVRRDY	REFFLT	EOSRDY	0	CVDCPL<2:0> SAMC<9:8>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	SAMC<7:0>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
10.0	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	—	ADCEIS<2:0>				
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_			AD	CDIV<6:0>					

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2

Legend:	HC = Hardware Set	HS = Hardware Cleared r	= Reserved
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	κ = Bit is unknown

 bit 31
 BGVRRDY: Band Gap Voltage/ADC Reference Voltage Status bit

 1 = Both band gap voltage and ADC reference voltages (VREF) are ready

 0 = Either or both band gap voltage and ADC reference voltages (VREF) are not ready

 Data processing is valid only after BGVRRDY is set by hardware, so the application code must check that the BGVRRDY bit is set to ensure data validity. This bit set to '0' when ON (ADCCON1<15>) = 0.

 bit 30
 REFFLT: Band Gap/VREF/AVDD BOR Fault Status bit

 1 = Fault in band gap or the VREF voltage while the ON bit (ADCCON1<15>) was set. Most likely a band

- gap or VREF fault will be caused by a BOR of the analog VDDIO supply.
 - 0 = Band gap and VREF voltage are working properly

This bit is cleared when the ON bit (ADCCON1<15>) = 0 and the BGVRRDY bit = 1.

- bit 29 **EOSRDY:** End of Scan Interrupt Status bit
 - 1 = All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the ADCCSS1 and ADCCSS2 registers) have completed scanning
 - 0 = Scanning has not completed

This bit is cleared when ADCCON2<31:24> are read in software.

bit 28-26 CVDCPL<2:0>: Capacitor Voltage Divider (CVD) Setting bit

111 = 7 * 2.5 pF = 17.5 pF 110 = 6 * 2.5 pF = 15 pF 101 = 5 * 2.5 pF = 12.5 pF 100 = 4 * 2.5 pF = 10 pF 011 = 3 * 2.5 pF = 7.5 pF 010 = 2 * 2.5 pF = 5 pF

001 = 1 * 2.5 pF = 2.5 pF 000 = 0 * 2.5 pF = 0 pF

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2 (CONTINUED)

The ADCDIV<6:0> bits divide the ADC control clock (TQ) to generate the clock for the Shared ADC, ADC7 (TAD7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	DIFF43	SIGN43	DIFF42	SIGN42	DIFF41	SIGN41	DIFF40	SIGN40
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	DIFF39	SIGN39	DIFF38	SIGN38	DIFF37	SIGN37	DIFF36	SIGN36
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DIFF35	SIGN35	DIFF34	SIGN34	DIFF33	SIGN33	DIFF32	SIGN32

REGISTER 29-7: ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	DIFF43: AN43 Mode bit
	1 = AN43 is using Differential mode
	0 = AN43 is using Single-ended mode
bit 22	SIGN43: AN43 Signed Data Mode bit
	1 = AN43 is using Signed Data mode
	0 = AN43 is using Unsigned Data mode
bit 21	DIFF42: AN42 Mode bit
	1 = AN42 is using Differential mode
	0 = AN42 is using Single-ended mode
bit 20	SIGN42: AN42 Signed Data Mode bit
	1 = AN42 is using Signed Data mode
	0 = AN42 is using Unsigned Data mode
bit 19	DIFF41: AN41 Mode bit
	1 = AN41 is using Differential mode
	0 = AN41 is using Single-ended mode
bit 18	SIGN41: AN41 Signed Data Mode bit
	1 = AN41 is using Signed Data mode
	0 = AN41 is using Unsigned Data mode
bit 17	DIFF40: AN40 Mode bit
	1 = AN40 is using Differential mode
	0 = AN40 is using Single-ended mode
bit 16	SIGN40: AN40 Signed Data Mode bit
	1 = AN40 is using Signed Data mode
	0 = AN40 is using Unsigned Data mode
bit 15	DIFF39: AN39 Mode bit
	1 = AN39 is using Differential mode
	0 = AN39 is using Single-ended mode
bit 14	SIGN39: AN39 Signed Data Mode bit
	1 = AN39 is using Signed Data mode
	0 = AN39 is using Unsigned Data mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC		
31:24	AFEN	DATA16EN	DFMODE	C	VRSAM<2:0	AFGIEN	AFRDY			
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	—	—	—	CHNLID<4:0>						
45.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
15:8	FLTRDATA<15:8>									
7:0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
				FLTRDAT	A<7:0>					

REGISTER 29-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

Legend: HS = Hardware Set		HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31 **AFEN:** Digital Filter '*x*' Enable bit
 - 1 = Digital filter is enabled
 - 0 = Digital filter is disabled and the AFRDY status bit is cleared
- bit 30 DATA16EN: Filter Significant Data Length bit
 - 1 = All 16 bits of the filter output data are significant
 - 0 = Only the first 12 bits are significant, followed by four zeros
 - **Note:** This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1<23>) = 1 (Fractional Output Mode).

bit **DFMODE:** ADC Filter Mode bit

- 1 = Filter 'x' works in Averaging mode
- 0 = Filter 'x' works in Oversampling Filter mode (default)

bit 28-26 OVRSAM<2:0>: Oversampling Filter Ratio bits

If DFMODE is '0':

- 111 = 128 samples (shift sum 3 bits to right, output data is in 15.1 format)
- 110 = 32 samples (shift sum 2 bits to right, output data is in 14.1 format)
- 101 = 8 samples (shift sum 1 bit to right, output data is in 13.1 format)
- 100 = 2 samples (shift sum 0 bits to right, output data is in 12.1 format)
- 011 = 256 samples (shift sum 4 bits to right, output data is 16 bits)
- 010 = 64 samples (shift sum 3 bits to right, output data is 15 bits)
- 001 = 16 samples (shift sum 2 bits to right, output data is 14 bits)
- 000 = 4 samples (shift sum 1 bit to right, output data is 13 bits)

If DFMODE is '1':

- 111 = 256 samples (256 samples to be averaged)
- 110 = 128 samples (128 samples to be averaged)
- 101 = 64 samples (64 samples to be averaged)
- 100 = 32 samples (32 samples to be averaged)
- 011 = 16 samples (16 samples to be averaged)
- 010 = 8 samples (8 samples to be averaged)
- 001 = 4 samples (4 samples to be averaged)
- 000 = 2 samples (2 samples to be averaged)
- bit 25 **AFGIEN:** Digital Filter '*x*' Interrupt Enable bit
 - 1 = Digital filter interrupt is enabled and is generated by the AFRDY status bit
 - 0 = Digital filter is disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	—	—	—	TRGSRC11<4:0>						
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	—	TRGSRC10<4:0>						
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	_	—	—		TRGSRC9<4:0>					
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			_		TRGSRC8<4:0>					

REGISTER 29-19: ADCTRG3: ADC TRIGGER SOURCE 3 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC11<4:0>: Trigger Source for Conversion of Analog Input AN11 Select bits

	11111 = Reserved 11110 = Reserved 11101 = CTMU Event 11100 = Reserved
	•
	01110 = Reserved 01101 = CTMU Event 01100 = Comparator 2 (C2OUT) ⁽¹⁾ 01011 = Comparator 1 (C1OUT) ⁽¹⁾ 01010 = OCMP5 ⁽¹⁾ 01001 = OCMP3 ⁽¹⁾ 01000 = OCMP1 ⁽¹⁾ 00111 = TMR5 match 00110 = TMR3 match 00101 = TMR1 match 00101 = TMR1 match 00101 = STRIG 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge trigger (GSWTRG) 00000 = No Trigger
	For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS <i>x</i> registers.
bit 23-21	Unimplemented: Read as '0'
bit 20-16	TRGSRC10<4:0>: Trigger Source for Conversion of Analog Input AN10 Select bits See bits 28-24 for bit value definitions.
bit 15-13	Unimplemented: Read as '0'
bit 12-8	TRGSRC9<4:0>: Trigger Source for Conversion of Analog Input AN9 Select bits See bits 28-24 for bit value definitions.
bit 7-5	Unimplemented: Read as '0'
bit 4-0	TRGSRC8<4:0>: Trigger Source for Conversion of Analog Input AN8 Select bits See bits 28-24 for bit value definitions.
Note 1:	The rising edge of the module output signal triggers an ADC conversion. See Figure 16-1 in 16.0 "Output

Compare" and Figure 32-1 in 32.0 "Comparator" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	MDALCMD<7:0>							
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WENCMD2	CASCMD2	RASCMD2	CSCMD2<7:3>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CSCMD2<2:0>			CLKENCMD2	WENCMD1	CASCMD1	RASCMD1	CSCMD1<7>
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CSCMD1<6:0>							

REGISTER 38-22: DDRCMD1x: DDR HOST COMMAND 1 REGISTER 'x' ('x' = 0 THROUGH 15)

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 MDALCMD<7:0>: Mode Address Low Command bits

- These bits specify the value to be driven on the SDRAM address bits 7 through 0 when issuing the command. bit 23 **WENCMD2:** Write Enable Command 2 bit
 - This bit specifies the value to be driven on WE_N on the second and subsequent cycles of issuing the command
- bit 22 CASCMD2: Column Address Strobe Command 2 bit This bit specifies the value to be driven on CAS_N on the second and subsequent cycles of issuing the command
- bit 21 RASCMD2: Row Address Strobe Command 2 bit This bit specifies the value to be driven on RAS_N on the second and subsequent cycles of issuing the command
- bit 20-13 CSCMD2<7:0>: Chip Select Command 2 bits These bits specify the value to be driven on the CS_N signals (maximum of 8) on the second and subsequent cycles of issuing the command.
- bit 12 **CLKENCMD2:** Clock Enable Command 2 bit This bit specifies the value to be driven on CKE on the second and subsequent cycles of issuing the command.
- bit 11 **WENCMD1:** Write Enable Command 1 bit This bit specifies the value to be driven on the WE_N on the first cycle of issuing the command.
- bit 10
 CASCMD1: Column Address Strobe Command 1 bit

 This bit specifies the value to be driven on the CAS_N on the first cycle of issuing the command.

 bit 9
 RASCMD1: Row Address Strobe Command 1 bit

 This bit specifies the value to be driven on the RAS_N on the first cycle of issuing the command.

bit 8-1 **CSCMD1<7:0>:** Chip Select Command 1 bit

These bits specify the value to be driven on the CS_N signals (maximum of 8) on the first cycle of issuing the command.

bit 0 **CLKENCMD1:** Clock Enable Command 1 bit This bit specifies the value to be driven on CKE on the first cycle of issuing the command.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Brand — Architecture — Flash Memory Size RAM Size — Family — Key Feature Set — Pin Count — Tape and Reel Flag (Temperature Range Package Pattern —	PIC32 MZ XX XX DA A XXX T-1/BG - XXX
Flash Memory Far	
Architecture	Z = MIPS32 [®] microAptiv™ MPU Core
Flash Memory Size) = 1024 KB) = 2048 KB
RAM Size	5 = 256 KB = 640 KB
Family	A = Graphics MCU Family
Key Feature	 = PIC32 DA Family Features, no Crypto, no DDR memory = PIC32 DA Family Features, with Crypto, no DDR memory = PIC32 DA Family Features, no Crypto, with DDR memory = PIC32 DA Family Features, with Crypto, with DDR memory
Pin Count	9 = 169-pin 6 = 176-pin 8 = 288-pin
Temperature Range	= -40°C to +85°C (Industrial)
Package	 = 169-Lead (11x11x1.4 mm) LFBGA (Low Profile Fine Pitch Ball Grid Array) = 169-Lead (11x11x1.56 mm) LFBGA (Low Profile Fine Pitch Ball Grid Array) = 176-Lead (22x22x1.4 mm) LQFP (Low Profile Quad Flat Pack) = 288-Lead (15x15x1.4 mm) LFBGA (Low Profile Fine Pitch Ball Grid Array)
Pattern	aree-digit QTP, SQTP, Code or Special Requirements (blank otherwise) S = Engineering Sample