

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2064daa176t-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dim	Pin Number		r	Dia	Duffer	
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Ріп Туре	Туре	Description
					PC	DRTG
RG0	N2	96	V9	I/O	ST	PORTG is a bidirectional I/O port
RG1	M2	95	T8	I/O	ST	
RG6	E5	30	A9	I/O	ST	
RG7	D5	31	D9	I/O	ST	
RG8	B5	32	C9	I/O	ST	
RG9	C5	33	B9	I/O	ST	
RG12	E3	56	G4	I/O	ST	
RG13	E2	64	H4	I/O	ST	
RG14	E1	65	J4	I/O	ST	
RG15	A5	34	A8	I/O	ST	
					PC	DRTH
RH0	M8	110	V13	I/O	ST	PORTH is a bidirectional I/O port
RH1	M7	109	T12	I/O	ST	
RH2	H12	141	N16	I/O	ST	
RH3	J13	140	P18	I/O	ST	
RH4	D4	35	B8	I/O	ST	
RH5	M4	100	U10	I/O	ST	
RH6	N4	101	T10	I/O	ST	
RH7	J12	139	N15	I/O	ST	
RH8	N7	108	U12	I/O	ST	
RH9	N6	107	V12	I/O	ST	
RH10	M6	106	T11	I/O	ST	
RH11	K13	138	P17	I/O	ST	
RH12	N5	105	U11	I/O	ST	
RH13	M5	104	V11	I/O	ST	
RH14	C3	42	A6	I/O	ST	
RH15	L2	92	V8	I/O	ST	
					P	DRTJ
RJ0	L10	118	V15	I/O	ST	PORTJ is a bidirectional I/O port
RJ1	K10	114	U14	I/O	ST	
RJ2	F10	152	K16	I/O	ST	
RJ3	E8	151	K17	I/O	ST	
RJ4	F13	150	K18	I/O	ST	
RJ5	F12	149	L18	I/O	ST	
RJ6	G11	148	L17	I/O	ST	
RJ7	G13	147	L16	I/O	ST	
RJ8	N9	113	V14	I/O	ST	
RJ9	M9	112	T13	I/O	ST	
RJ10	F8	146	M18	I/O	ST	
RJ11	N8	111	U13	I/O	ST	
RJ12	F9	145	M17	I/O	ST	
RJ13	G12	144	M16	I/O	ST	
RJ14	G10	143	N18	I/O	ST	
RJ15	H13	142	N17	I/O	ST	
Legend:	CMOS =	CMOS-co	mpatible in	put or outp	out	Analog = Analog input P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input O = Output PPS = Peripheral Pin Select

Pin Name		Pin Numbe	r	Pin	Buffer	Description
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	
VSS1V8	G4, H4, J4, K4, L4, L5	See Note 1	D3, F6, F7, F8, G6, G7, G8, G9, H9, J9, K9, L9, M6, M7, M8, M9, N6, N7, N8, N9, R4	Ρ	_	Ground reference for DDR2 SDRAM memory.
				Vol	tage Refere	ence
DDRVREF	F4 (Note 3)	66 (Note 3)	J11	Р	_	1.8V Voltage Reference to DDR2 SDRAM memory.
VREF+	C10	2	C15	I	Analog	Analog Voltage Reference (High) Input
VREF-	B11	1	A17	I	Analog	Analog Voltage Reference (Low) Input
Legend:	CMOS = CI ST = Schmi TTL = Trans	MOS-compa itt Trigger in sistor-transis	atible input o put with CM stor Logic in	r output OS levels put buffer	Anal O = PPS	og = Analog input P = Power Output I = Input = Peripheral Pin Select

TABLE 1-23: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: The metal plane at the bottom of the device is internally tied to VSS1V8 and must be connected to 1.8V ground externally.

2: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

3: This pin is a No Connect in devices without DDR.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

	XC32 Vector Name		Martan		Interrupt Bit Location						
Interrupt Source ^(*)			Vector #	Flag	Enable	Priority	Sub-priority	Interrupt			
ADC Digital Filter 1	_ADC_DF1_VECTOR	52	OFF052<17:1>	IFS1<20>	IEC1<20>	IPC13<4:2>	IPC13<1:0>	Yes			
ADC Digital Filter 2	_ADC_DF2_VECTOR	53	OFF053<17:1>	IFS1<21>	IEC1<21>	IPC13<12:10>	IPC13<9:8>	Yes			
ADC Digital Filter 3	_ADC_DF3_VECTOR	54	OFF054<17:1>	IFS1<22>	IEC1<22>	IPC13<20:18>	IPC13<17:16>	Yes			
ADC Digital Filter 4	_ADC_DF4_VECTOR	55	OFF055<17:1>	IFS1<23>	IEC1<23>	IPC13<28:26>	IPC13<25:24>	Yes			
ADC Digital Filter 5	_ADC_DF5_VECTOR	56	OFF056<17:1>	IFS1<24>	IEC1<24>	IPC14<4:2>	IPC14<1:0>	Yes			
ADC Digital Filter 6	_ADC_DF6_VECTOR	57	OFF057<17:1>	IFS1<25>	IEC1<25>	IPC14<12:10>	IPC14<9:8>	Yes			
ADC Fault	_ADC_FAULT_VECTOR	58	OFF058<17:1>	IFS1<26>	IEC1<26>	IPC14<20:18>	IPC14<17:16>	Yes			
ADC Data 0	_ADC_DATA0_VECTOR	59	OFF059<17:1>	IFS1<27>	IEC1<27>	IPC14<28:26>	IPC14<25:24>	Yes			
ADC Data 1	_ADC_DATA1_VECTOR	60	OFF060<17:1>	IFS1<28>	IEC1<28>	IPC15<4:2>	IPC15<1:0>	Yes			
ADC Data 2	_ADC_DATA2_VECTOR	61	OFF061<17:1>	IFS1<29>	IEC1<29>	IPC15<12:10>	IPC15<9:8>	Yes			
ADC Data 3	_ADC_DATA3_VECTOR	62	OFF062<17:1>	IFS1<30>	IEC1<30>	IPC15<20:18>	IPC15<17:16>	Yes			
ADC Data 4	_ADC_DATA4_VECTOR	63	OFF063<17:1>	IFS1<31>	IEC1<31>	IPC15<28:26>	IPC15<25:24>	Yes			
ADC Data 5	_ADC_DATA5_VECTOR	64	OFF064<17:1>	IFS2<0>	IEC2<0>	IPC16<4:2>	IPC16<1:0>	Yes			
ADC Data 6	_ADC_DATA6_VECTOR	65	OFF065<17:1>	IFS2<1>	IEC2<1>	IPC16<12:10>	IPC16<9:8>	Yes			
ADC Data 7	_ADC_DATA7_VECTOR	66	OFF066<17:1>	IFS2<2>	IEC2<2>	IPC16<20:18>	IPC16<17:16>	Yes			
ADC Data 8	_ADC_DATA8_VECTOR	67	OFF067<17:1>	IFS2<3>	IEC2<3>	IPC16<28:26>	IPC16<25:24>	Yes			
ADC Data 9	_ADC_DATA9_VECTOR	68	OFF068<17:1>	IFS2<4>	IEC2<4>	IPC17<4:2>	IPC17<1:0>	Yes			
ADC Data 10	_ADC_DATA10_VECTOR	69	OFF069<17:1>	IFS2<5>	IEC2<5>	IPC17<12:10>	IPC17<9:8>	Yes			
ADC Data 11	_ADC_DATA11_VECTOR	70	OFF070<17:1>	IFS2<6>	IEC2<6>	IPC17<20:18>	IPC17<17:16>	Yes			
ADC Data 12	_ADC_DATA12_VECTOR	71	OFF071<17:1>	IFS2<7>	IEC2<7>	IPC17<28:26>	IPC17<25:24>	Yes			
ADC Data 13	_ADC_DATA13_VECTOR	72	OFF072<17:1>	IFS2<8>	IEC2<8>	IPC18<4:2>	IPC18<1:0>	Yes			
ADC Data 14	_ADC_DATA14_VECTOR	73	OFF073<17:1>	IFS2<9>	IEC2<9>	IPC18<12:10>	IPC18<9:8>	Yes			
ADC Data 15	_ADC_DATA15_VECTOR	74	OFF074<17:1>	IFS2<10>	IEC2<10>	IPC18<20:18>	IPC18<17:16>	Yes			
ADC Data 16	_ADC_DATA16_VECTOR	75	OFF075<17:1>	IFS2<11>	IEC2<11>	IPC18<28:26>	IPC18<25:24>	Yes			
ADC Data 17	ADC_DATA17_VECTOR	76	OFF076<17:1>	IFS2<12>	IEC2<12>	IPC19<4:2>	IPC19<1:0>	Yes			
ADC Data 18	_ADC_DATA18_VECTOR	77	OFF077<17:1>	IFS2<13>	IEC2<13>	IPC19<12:10>	IPC19<9:8>	Yes			
ADC Data 19	_ADC_DATA19_VECTOR	78	OFF078<17:1>	IFS2<14>	IEC2<14>	IPC19<20:18>	IPC19<17:16>	Yes			
ADC Data 20	_ADC_DATA20_VECTOR	79	OFF079<17:1>	IFS2<15>	IEC2<15>	IPC19<28:26>	IPC19<25:24>	Yes			
ADC Data 21	_ADC_DATA21_VECTOR	80	OFF080<17:1>	IFS2<16>	IEC2<16>	IPC20<4:2>	IPC20<1:0>	Yes			

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED)

```
bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits<sup>(1)</sup>
          1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 3 uses Shadow Set 7
          0110 = Interrupt with a priority level of 3 uses Shadow Set 6
          0001 = Interrupt with a priority level of 3 uses Shadow Set 1
          0000 = Interrupt with a priority level of 3 uses Shadow Set 0
bit 11-8 PRI2SS<3:0>: Interrupt with Priority Level 2 Shadow Set bits<sup>(1)</sup>
          1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 2 uses Shadow Set 7
          0110 = Interrupt with a priority level of 2 uses Shadow Set 6
          0001 = Interrupt with a priority level of 2 uses Shadow Set 1
          0000 = Interrupt with a priority level of 2 uses Shadow Set 0
          PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits<sup>(1)</sup>
bit 7-4
          1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 1 uses Shadow Set 7
          0110 = Interrupt with a priority level of 1 uses Shadow Set 6
          0001 = Interrupt with a priority level of 1 uses Shadow Set 1
          0000 = Interrupt with a priority level of 1 uses Shadow Set 0
bit 3-1
          Unimplemented: Read as '0'
bit 0
          SS0: Single Vector Shadow Register Set bit
          1 = Single vector is presented with a shadow set
          0 = Single vector is not presented with a shadow set
```

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.

Following are some of the key features of the DMA Controller module:

- Eight identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- · Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent error address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)

bit 18 **OVERRUN:** Data Overrun Status bit (*Device mode*)

- 1 = An OUT packet cannot be loaded into the RX FIFO.
- 0 = Written by software to clear this bit

This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

ERROR: No Data Packet Received Status bit (Host mode)

- 1 = Three attempts have been made to receive a packet and no data packet has been received. An interrupt is generated.
- 0 = Written by the software to clear this bit.

This bit is only valid when the RX endpoint is operating in Bulk or Interrupt mode. In ISO mode, it always returns zero.

- bit 17 FIFOFULL: FIFO Full Status bit
 - 1 = No more packets can be loaded into the RX FIFO
 - 0 = The RX FIFO has at least one free space
- bit 16 RXPKTRDY: Data Packet Reception Status bit
 - 1 = A data packet has been received. An interrupt is generated.
 - 0 = Written by software to clear this bit when the packet has been unloaded from the RX FIFO.
- bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 RXMAXP<10:0>: Maximum RX Payload Per Transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

RXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
31.24	—	_	—	—	—	—	NRSTX	NRST				
22:16	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-0	R/W-1	R/W-0				
23.10	LSEOF<7:0>											
15.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-1	R/W-1	R/W-1				
15.0				FSEO	F<7:0>							
7:0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R.W-0	R/W-0	R/W-0				
7:0				HSEO	F<7:0>							

REGISTER 11-17: USBEOFRST: USB END-OF-FRAME/SOFT RESET CONTROL REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- bit 25 NRSTX: Reset of XCLK Domain bit
 - 1 =Reset the XCLK domain, which is clock recovered from the received data by the PHY
 - 0 = Normal operation
- bit 24 NRST: Reset of CLK Domain bit
 - 1 = Reset the CLK domain, which is clock recovered from the peripheral bus
 - 0 = Normal operation
- bit 23-16 LSEOF<7:0>: Low-Speed EOF bits These bits set the Low-Speed transaction in units of 1.067 μs (default setting is 121.6 μs) prior to the EOF to stop new transactions from beginning.
- bit 15-8 **FSEOF<7:0>:** Full-Speed EOF bits These bits set the Full-Speed transaction in units of 533.3 μs (default setting is 63.46 μs) prior to the EOF to stop new transactions from beginning.
- bit 7-0 **HSEOF<7:0>:** Hi-Speed EOF bits These bits set the Hi-Speed transaction in units of 133.3 µs (default setting is 17.07µs) prior to the EOF to stop new transactions from beginning.

TABLE 12-14: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1538	RPA14R	31:16 15:0	_	—				—	—	—					_	— RPA14	— R<3:0>	—	0000
		31:16	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_		0000
153C	RPA15R	15:0	_	_	_	_	_		_	_	_	_		_		RPA15	R<3:0>		0000
4540	DDDAD	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_		_		0000
1540	RPBOR	15:0	_	—	—	_	_	—	—	—	_	_	_	—		RPB0	R<3:0>		0000
4544	00040	31:16	_	—	—	_	_	—	—	—	_	_	_	_	_	_	—	_	0000
1544	RPB1R	15:0	_	_	—			_	_	_		_	—	_		RPB1	R<3:0>		0000
1540	ספססס	31:16	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1548	RPB2R	15:0	—	-	—	—	—	—	—	—	—	—	—	—		RPB2	R<3:0>		0000
1540	DDD3D	31:16	_		—				_	-		_		—	_			_	0000
1540	REDOR	15:0	—	_	—			_	_	_		—	—	—		RPB3	R<3:0>		0000
1554		31:16	—	_	_			_	_	_		_	_	_	_	_	_	_	0000
1554	REDOR	15:0	—	_	—			_	_	_		_	_	—		RPB5	R<3:0>		0000
1558	DDB6D	31:16	_	_	—	_	—	_	—	_	—	—	—	—	—	—	—	_	0000
1556	REBOR	15:0	—	—	—	-	-	—	—	_	-	—	—	—		RPB6	R<3:0>		0000
155C	RPB7R	31:16	—	—	—	—	—		—	—	—	—	—	—	—	—	—	—	0000
1000	IN BIIN	15:0	—	—	—	—	—		—	—	—	—	—	—		RPB7	R<3:0>		0000
1560	RPB8R	31:16	_		—	_	_				_	—	_	—	—	—	—	_	0000
1000	IN BOIN	15:0	_	_	—	_	_	_	_	_	_	—	—	—		RPB8	R<3:0>		0000
1564	RPB9R	31:16	_	_	—	_	_	_	_	_	_	—	—	—	—	—	—	_	0000
		15:0	—	—	—	_	_	—	—	_	_	—	—			RPB9	२<3:0>		0000
1568	RPB10R	31:16	—	—		—	—	—	—	—	—	—	—		—	—	—	—	0000
		15:0	—	—		—	—	—	—	—	—	—	—			RPB10	R<3:0>		0000
157C	RPB15R	31:16	_	—		_	_	—	—	—	_	—	—		_	_		_	0000
		15:0	_			_	_	_	_	_	_	-	_			RPB15	R<3:0>		0000
1584	RPC1R	31:16	_	_			_	_	_	_	_	_	_		-	-	—		0000
		15:0										_	_			RPC1	~<3:0>		0000
1588	RPC2R	31:16	_				_			—	_	_			_		—	—	0000
		15:0	_				_			—	_	_				RPC2I	~<3:0>		0000
158C	RPC3R	31:16	_	_		_	_		_	_	_	_			_		-	_	0000
		15:0	_			_	_		_		_	_	_			RPC3	<<3:0>		0000
15B4	RPC13R	31:16	_			_	_		_		_	_	_		—		— D < 2:0>		0000
		10.0	_	_			_	_	_	_	_	_		_		RPC13	n.~3.0>		0000
15B8	RPC14R	31.10 1E-0	_	_			_	_	_	_	_	_		_	_				0000
		31.16															-n-5.02		0000
15C0	RPD0R	15.0															2<3:0>		0000
Legen	<u> </u>	10.0				ted read a	s '0' Rese		shown in	hevadecim						INF DUI	1-0.0-		0000

16.1 Output Compare Control Registers

TABLE 16-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	OC1CON	31:16		—	—	—			—	—		—	—	—	_	_	_		0000
		15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4010	OC1R	31:16 15:0		OC1R<31:0>												XXXX			
		31:16													xxxx				
4020	OC1RS	15:0								OC1RS	<31:0>								xxxx
4000	00000	31:16	—	_	—	—	_	_	_	_	_	—	_	_		_		_	0000
4200	UC2CON	15:0	ON	—	SIDL	_			_	_		_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
1210	OC2R	31:16								OC 2 P	<31.0>								xxxx
4210	002K	15:0								0021	<01.02								xxxx
4220	OC2RS	31:16								OC2RS	<31.0>								xxxx
1220	002110	15:0								002110									xxxx
4400	OC3CON	31:16	_	_				_					-	—	—	_	_	—	0000
		15:0	ON	—	SIDL	—	—	—	—	—	—		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4410	OC3R	31:16								OC3R	<31:0>								XXXX
		15:0																	XXXX
4420	OC3RS	31:16								OC3RS	<31:0>								XXXX
		31.16	_				_	_			_		_	_	_	_		_	0000
4600	OC4CON	15.0	ON		SIDI								0032	OCELT	OCTSEL		OCM<2.0>		0000
		31:16	0.1		0.52								0002	00.2.	00.011		20011 210		XXXX
4610	OC4R	15:0								OC4R	<31:0>								xxxx
4000	00400	31:16								00400									xxxx
4620	OC4RS	15:0								OC4RS	<31:0>								xxxx
4900		31:16	-	—	_	—	_	—	—	—	_	_	—	—	_	—	—	_	0000
4000	OCOCON	15:0	ON	_	SIDL	_	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4810	OC5R	31:16								OC5R	<31.0>								xxxx
-010	0001	15:0								0001	-01.05								xxxx
4820	OC5RS	31:16								OC5RS	<31:0>								xxxx
	200.10	15:0								0.00110									xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

27.0 CRYPTO ENGINE

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number (RNG)" Generator (DS60001246), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced, and actions such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/ gather data fetching). An intelligent state machine schedules the crypto engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.

Key features of the Crypto Engine are:

- · Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
 - Buffer descriptor-based
 - Secure association per buffer descriptor
- Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- · AES:
 - 128-bit, 192-bit, and 256-bit key sizes
 - CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
 - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- · HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on a number of factors, including:

- · Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 27-1 provides typical performance for various engines. Figure 27-1 illustrates the Crypto Engine block diagram.

TABLE 27-1: CRYPTO ENGINE PERFORMANCE

Engine/ Algorithm	Performance Factor (Mbps/MHz)	Maximum Mbps (PBCLK5 = 100 MHz)
DES	14.4	1440
TDES	6.6	660
AES-128	9.0	900
AES-192	7.9	790
AES-256	7.2	720
MD5	15.6	1560
SHA-1	13.2	1320
SHA-256	9.3	930

AES INB Packet FIFO RD System Bus TDES Bus DMA Crypto Controller FSM _ocal SHA-1 SFR SHA-256 System Bus OUTB Packet FIFO WR MD5 PBCLK5

CRYPTO ENGINE BLOCK DIAGRAM

FIGURE 27-1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	DATA<31:24>											
00.40	R-0	R-0	R-0 R-0		R-0	R-0	R-0	R-0				
23:10	DATA<23:16>											
15:0	R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0											
10.0	DATA<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				DATA	<7:0>							

REGISTER 29-25: ADCDATAX: ADC OUTPUT DATA REGISTER 'x' ('x' = 0 THROUGH 43)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **DATA<31:0>:** ADC Converted Data Output bits.

Note 1: When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.

2: Reading the ADCDATAx register value after changing the FRACT bit converts the data into the format specified by FRACT bit.

REGISTER 30-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6 (CONTINUED)

bit 15	FLTEN25: Filter 25 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL25<1:0>: Filter 25 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	<pre>FSEL25<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN24: Filter 24 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL24<1:0>: Filter 24 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	<pre>FSEL24<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
	

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 31-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	-	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	-	—	—	—	—	—	
15:8	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	
	—	—	CWINDOW<5:0>						
7:0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	
		_		— — RETX<3:0>					

Legend:

zogenai			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 **CWINDOW<5:0>:** Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RETX<3:0>: Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 38-1: DDR SDRAM CONTROLLER REGISTER SUMMARY (CONTINUED)

bring brind bring bring <th< th=""><th></th><th>10</th></th<>		1 0
BOR CMD110 31:16 MDALCMD VIEN CMD2 CASCMD2 RASCMD2 CSCMD2<7:3> 80A8 DDR CMD111 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD2<7:3> 80AC DDR CMD111 31:16 MDALCMD WEN CMD2 CASCMD1 RASCMD1 CSCMD2 CSC	7/1 16/0	All Resets
80A8 CMD110 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD2 CASCMD1 RASCMD1 CSCMD1<7:0> 80AC DDR CMD111 31:16 MDALCMD<7:0> CASCMD1 RASCMD1 CASCMD2 RASCMD2 CSCMD2<7:3> 80AC DDR CMD112 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD2 CSCMD2 <t< td=""><td></td><td>0000</td></t<>		0000
BOR CMD111 31:16 MDALCMD<7:0> WEN CMD2 CASCMD2 RASCMD2 CSCMD2<7:3> 80B0 DR CMD112 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD2 CSCMD2<7:3> 80B0 DR CMD112 31:16 MDALCMD<7:0> WEN CMD1 CASCMD1 RASCMD2 CSCMD2<7:3> 80B0 DR CMD112 31:16 MDALCMD<7:0> WEN CMD1 CASCMD1 RASCMD2 CSCMD2 CSCMD2 <td>CLKEN CMD1</td> <td>1 0000</td>	CLKEN CMD1	1 0000
B0AC CMD111 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1<7:0> 8080 DDR CMD112 31:16 MDALCMD<7:0> CASCMD1 RASCMD1 CASCMD2 RASCMD2 CSCMD2<7:3> 8080 DDR CMD112 31:16 MDALCMD<7:0> CASCMD1 RASCMD1 CASCMD2 RASCMD2 CSCMD2<7:3> 8084 DDR CMD113 31:16 MDALCMD<7:0> VEN CMD1 CASCMD1 RASCMD1 CASCMD2 RASCMD2 CSCMD2<7:3> 8084 DDR CMD113 31:16 MDALCMD<7:0> VEN CMD1 CASCMD1 RASCMD1 CSCMD1 CSCMD2	I	0000
BOBR CMD112 31:16 MDALCMD<7:0> WEN CMD2 CASCMD2 RASCMD2 CSCMD2<7:3> 8080 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1<7:0> CSCMD2<7:3> 8084 DDR CMD113 31:16 MDALCMD<7:0> WEN CMD2 CASCMD1 RASCMD1 CSCMD2	CLKEN CMD1	• 0000
80B0 CMD112 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1<7:0> 80B4 DR CMD113 31:16 MDALCMD<7:0> VWEN CMD2 CASCMD2 RASCMD2 CSCMD2<7:3> 80B4 DR CMD113 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD2<7:3> 80B8 DR CMD114 31:16 MDALCMD<7:0> VWEN CMD1 CASCMD1 RASCMD1 CSCMD2	I	0000
BOBR CMD113 31:16 MDALCMD<7:0> WEN CMD2 CASCMD2 RASCMD2 CSCMD2<7:3> 80B4 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD2 CSCMD2<7:3> 80B8 DR CMD114 31:16 MDALCMD<7:0> VMEN CMD1 CASCMD2 RASCMD2 CSCMD4 <	CLKEN CMD1	1 0000
OUB4 CMD113 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1<7:0> 80B8 DDR CMD114 31:16 MDALCMD<7:0> VWEN CMD1 CASCMD2 RASCMD2 CSCMD2<27:3> 80B8 DDR CMD114 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1 CSCMD2		0000
BOBR CMD 114 31:16 MDALCMD<7:0> WEN CMD2 CASCMD2 RASCMD2 CSCMD<27:3> 80B8 DDR CMD 114 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD2 CSCMD<27:3> 80BC DDR CMD 115 31:16 MDALCMD<7:0> VEN CMD1 CASCMD1 RASCMD2 CSCMD1 CSCMD2	CLKEN CMD1	1 0000
OUBB CMD114 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1<7:0> 80BC DDR CMD115 31:16		0000
BOBC DDR CMD 115 31:16 MDALCMD<7:0> WEN CMD2 CASCMD2 RASCMD2 CSCMD2<7:3> 80BC DDR CMD20 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD2 CSCMD2<7:3> 80C0 DDR CMD20 31:16 - - - - - - - WAIT<4:0> WAIT<4:0> WAIT<4:0> MDADDRHCMD<7:0> MDADDRHCMD<7:0>	CLKEN CMD1	1 0000
BUBC CMD115 15:0 CSCMD2<2:0> CLKEN CMD2 WEN CMD1 CASCMD1 RASCMD1 CSCMD1<7:0> 80C0 DDR CMD20 31:16 — — — — — — — — WAIT<<8:5> 80C0 DDR CMD20 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
BOC0 DDR CMD20 31:16 - - - - - - - WAIT<8:5> 80C0 T5:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0> MDADDRHCMD<7:0>	CLKEN CMD1	1 0000
CMD20 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
		0000
80C4 DDR 31:16 WAIT<8:5>		0000
CMD21 15:0 WAII<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
		0000
		0000
		0000
		0000
8000 CMD24 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
	,	0000
8004 CMD25 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
		0000
80D8 CMD26 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
DDR 31:16 WAIT<8:5>		0000
BUDC CMD27 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
DDR 31:16 WAIT<8:5>		0000
OUEv CMD28 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000
DDR 31:16 WAIT<8:5>		0000
OVE4 CMD29 15:0 WAIT<4:0> BNKADDRCMD<2:0> MDADDRHCMD<7:0>		0000

DS60001361F-page 616

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	_	_	_	_	_	INITDN	STINIT

REGISTER 38-5: DDRMEMCON: DDR MEMORY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

bit 1 **INITDN:** Memory Initialize Done bit

Set by software after memory initialization is completed to enable controller for regular operation.

- 1 = All commands have been issued; the controller is enabled for regular operation
- 0 = Controller not enabled for regular operation
- bit 0 STINIT: Memory Initialize Start bit

Set by software after the memory initialization commands are loaded into the DDRCMD registers to start memory initialization.

1 = Start memory initialization

0 = Do not start memory initialization

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	BCOUNT<15:8> ⁽¹⁾									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	BCOUNT<7:0> ⁽¹⁾									
15:8	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	—	—	—	—	—	—	BSIZE<9:8>(2)			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	BSIZE<7:0> ⁽²⁾									

REGISTER 39-1: SDHCBLKCON: SDHC BLOCK CONTROL REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 BCOUNT<31:0>: Blocks Count for Current Transfer bits⁽¹⁾

These bits represent the number of blocks. The software sets this value between 1 and 65,535 blocks and the SDHC decrements the count after each block transfer and stops when the count reaches zero. 0xFFFF = 65,535 blocks 0x0002 = 2 blocks 0x0001 = 1 block 0x0000 = Stop count Blocks Count for Current Transfer bits

- bit 15-10 **Unimplemented:** Read as '0'
- bit 9-0 BSIZE<9:0>: Transfer Block Size bits⁽²⁾

These bits specify the block size of the data transfer for CMD17, CMD18, CMD24, CMD25, and CMD53. 0x200 = 512 bytes 0x1FF = 511 bytes • •

0x002 = 2 bytes 0x001 = 1 byte 0x000 = No data transfer

- Note 1: These bits are only used when the BCEN bit (SDHCMODE<1>) is set to '1' and is valid only for multiple block transfers. The BCOUNT<15:0> bits need not be set if the BSIZE bit (SDHCMODE<5>) is set to '0'.
 - 2: These bits can only be accessed when no transactions are in progress. Read operations during transfers will return an invalid value and write operations to these bits will be ignored.

REGISTER 41-3: DEVCFG0/ADEVCFG0: DEVICE/ALTERNATE DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 10 **FSLEEP:** Flash Sleep Mode bit
 - 1 = Flash is powered down when the device is in Sleep mode
 - 0 = Flash power down is controlled by the VREGS bit (PWRCON<0>)
- bit 9-8 FECCCON<1:0>: Dynamic Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
 - **Note:** Upon a device POR, the value of these bits are copied by hardware into CFGCON<5:4> bits, (i.e. ECCCON<1:0>.
- bit 7 Reserved: Write as '1'
- bit 6 BOOTISA: Boot ISA Selection bit
 - 1 = Boot code and Exception code is MIPS32
 - (ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register) 0 = Boot code and Exception code is microMIPS
 - (ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)
- bit 5 TRCEN: Trace Enable bit
 - 1 = Trace features in the CPU are enabled
 - 0 = Trace features in the CPU are disabled
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = PGEC3/PGED3 pair is used
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit
 - 1 = JTAG is enabled
 - 0 = JTAG is disabled
 - Note 1: On Reset, this Configuration bit is copied into JTAGEN (CFGCON<3>). If JTAGEN (DEVCFG0<2>) = 0, the JTAGEN bit cannot be set to '1' by the user application at run-time, as JTAG is always disabled. However, if JTAGEN (DEVCFG0<2>) = 1, the user application may enable/disable JTAG at run-time by simply writing JTAGEN (CFGCON<3> as required.
 - 2: This bit sets the value of the JTAGEN bit in the CFGCON register.
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = 4-wire JTAG Enabled PGECx/PGEDx Disabled ICD module Disabled
 - 10 = 4-wire JTAG Enabled PGECx/PGEDx Disabled ICD module Enabled
 - 01 = PGECx/PGEDx Enabled 4-wire JTAG I/F Disabled ICD module Disabled
 - 00 = PGECx/PGEDx Enabled 4-wire JTAG I/F Disabled ICD module Enabled
 - **Note:** When the FJTAGEN or JTAGEN bits are equal to '0', this prevents 4-wire JTAG debugging, but not PGECx/PGEDx debugging.

DC CHA	ARACTERIS	TICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
Operati	ng Voltage							
DC10	Vddio	I/O Supply Voltage (Note 1)	2.2	_	3.6	V	—	
DC11	VDDCORE	Core Supply Voltage (Note 1)	1.7	1.8	1.9	V	—	
DC12	SVDDIO/ SVDDCORE	VDDIO/VDDCORE Rise Rate to Ensure Internal Power-on Reset Signal (Note 2)	0.000011	_	1.1	V/µs	300 ms to 3 µs @ 3.3v	
DC13	VBAT	Battery Supply Voltage	2.2	_	3.6	V	—	
DC14	VDDR1V8	DDR Memory Supply Voltage	1.7	1.8	1.9	V	—	
DC15	DDRVREF	DDR Reference Voltage	0.49 x VDDR1V8	0.50 x Vddr1v8	0.51 x Vddr1v8	V	—	

TABLE 44-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages. Refer to Table 44-5 for Reset values.

2: Voltage on VDDIO must always be greater than or equal to VDDCORE during power-up.

TABLE 44-5: ELECTRICAL CHARACTERISTICS: RESETS

DC CHARACTERISTICS (Note 1)			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
RST10	Vporio	VDDIO POR Voltage (Note 2)	Vss + 0.3		1.75	V	_	
RST11	VPORCORE /VBATSW	VDDCORE POR Voltage (Note 2) VDDCORE to VBAT Switch Voltage (Note 3)	Vss + 0.3	_	1.7	V	_	
RST12	VBORIO	BOR Event on VDDIO transition high-to-low (Note 4)	1.92	_	2.2	V	_	
RST13	VPORBAT	POR Event on VBAT (Note 4)	1.35	_	2.2	V	—	
RST14	Vhvd1v8	High Voltage Detect on VDDR1v8 pins	2.16	_	2.24	V	_	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

- 2: This is the limit to which VDDIO/VDDCORE must be lowered to ensure Power-on Reset.
- 3: Device enters VBAT mode upon VDDCORE Power-on Reset.
- 4: Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages.

FIGURE 44-21: PARALLEL SLAVE PORT TIMING

TABLE 44-49: PARALLEL SLAVE PORT REQUIREMENTS

АС СН		ISTICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Co				Conditions	
PS1	TdtV2wrH	Data In Valid before PMWR or PMCSx Inactive (setup time)	20			ns		
PS2	TwrH2dtl	PMWR or PMCSx Inactive to Data-in Invalid (hold time)	40			ns	_	
PS3	TrdL2dtV	PMRD and PMCSx Active to Data-out Valid	_		60	ns		
PS4	TrdH2dtl	PMRD Active or PMCSx Inactive to Data-out Invalid	0		10	ns		
PS5	Tcs	PMCSx Active Time	TPBCLK2 + 40	_	_	ns	_	
PS6	Twr	PMWR Active Time	TPBCLK2 + 25	_	_	ns	_	
PS7	Trd	PMRD Active Time	TPBCLK2 + 25	_	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

NOTES: