

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K × 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2064dab169t-i-hf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: PIC32MZ DA FEATURES COMMON TO ALL DEVICES

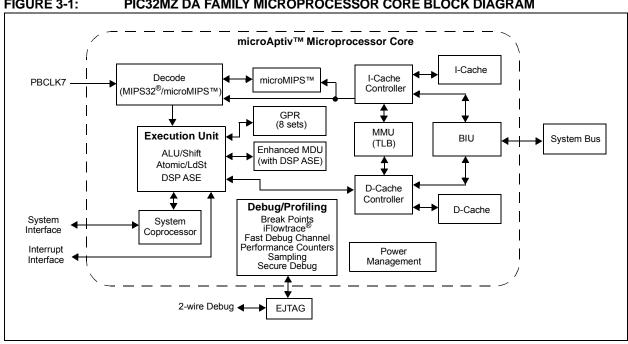
(KB)	Remappable Peripherals			s	s																	
Boot Flash Memory (Remappable Pins	Timers ⁽¹⁾ /Capture/ Compare	UART	S ² I/IdS	CAN 2.0B	External Interrupts ⁽²⁾	12-bit ADC Channel	Analog Comparator	CTMU	USB 2.0 HS OTG	l ² C	GLCD	GPU	EBI	dWd	IOS	SDHC	RTCC	Ethernet	I/O Pins	JTAG	Trace
160	47	9/9/9	6	6	2	5	45	2	Υ	Y	5	Y	Y	Y	Y	Y	Y	Y	Y	120	Y	Y

Note 1: Eight out of nine timers are remappable.

2: Four out of five external interrupts are remappable.

TABLE 2:169-PIN LFBGA PIC32MZ DA
FEATURES

Devices	Program Memory (KB)	Data Memory (KB)	DDR2 Controller Interface (Internal/External)	DDR2 SDRAM Size (MB)	Crypto/RNG	DMA Channels (Programmable/ Dedicated)									
PIC32MZ1025DAA169		256			Ν	8/24									
PIC32MZ1025DAB169	1024				Y	8/26									
PIC32MZ1064DAA169		640			Ν	8/24									
PIC32MZ1064DAB169			No		Y	8/26									
PIC32MZ2025DAA169	2048	256	NO	_	Ν	8/24									
PIC32MZ2025DAB169		2049	2049	2049	2049	2049	2040	2048	2048		200			Y	8/26
PIC32MZ2064DAA169		640			Ν	8/24									
PIC32MZ2064DAB169		040			Υ	8/26									
PIC32MZ1025DAG169		256			Ν	8/24									
PIC32MZ1025DAH169		200			Υ	8/26									
PIC32MZ1064DAG169	1024	640			Ν	8/24									
PIC32MZ1064DAH169		040	Yes		Y	8/26									
PIC32MZ2025DAG169		256	(INT)	32	Ν	8/24									
PIC32MZ2025DAH169		230			Y	8/26									
PIC32MZ2064DAG169	2048	640	0		Ν	8/24									
PIC32MZ2064DAH169					Υ	8/26									


TABLE 3: 176-PIN LQFP PIC32MZ DA FEATURES

Devices	Program Memory (KB	Data Memory (KB	DDR2 Controller Interface (Internal/External)	DDR2 SDRAM Size (MB)	Crypto/RNG	DMA Channels (Programmable/ Dedicated)							
PIC32MZ1025DAA176	_	256			Ν	8/24							
PIC32MZ1025DAB176	1024				Y	8/26							
PIC32MZ1064DAA176	1024	640			Ν	8/24							
PIC32MZ1064DAB176			No		Y	8/26							
PIC32MZ2025DAA176	2048	256	No	_	Ν	8/24							
PIC32MZ2025DAB176		2040	2049	2040	2010	2040	2010	2040	200			Y	8/26
PIC32MZ2064DAA176		640			Ν	8/24							
PIC32MZ2064DAB176		640			Y	8/26							
PIC32MZ1025DAG176		256			Ν	8/24							
PIC32MZ1025DAH176	1024	200			Y	8/26							
PIC32MZ1064DAG176	1024	640			Ν	8/24							
PIC32MZ1064DAH176		040	Yes		Y	8/26							
PIC32MZ2025DAG176		256	(INT)	32	Ν	8/24							
PIC32MZ2025DAH176		200			Y	8/26							
PIC32MZ2064DAG176	2048	640	_		Ν	8/24							
PIC32MZ2064DAH176		040			Y	8/26							

TABLE 4: 288-PIN LFBGA PIC32MZ DA FEATURES

Devices	Program Memory (KB)	Data Memory (KB)	DDR2 Controller Interface (Internal/External)	Crypto/RNG	DMA Channels (Programmable/Dedicated)
PIC32MZ1025DAA288		256		Ν	8/24
PIC32MZ1025DAB288	1024	200		Y	8/26
PIC32MZ1064DAA288	1024	640		Ν	8/24
PIC32MZ1064DAB288		040	Yes	Y	8/26
PIC32MZ2025DAA288		256	(EXT)	Ν	8/24
PIC32MZ2025DAB288	2048	200		Y	8/26
PIC32MZ2064DAA288	2040	640		Ν	8/24
PIC32MZ2064DAB288		0-40		Y	8/26

A block diagram of the PIC32MZ DA family processor core is shown in Figure 3-1.

FIGURE 3-1: PIC32MZ DA FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMDATA<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMDATA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				NVMDA	TA<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	NVMDATA<7:0>											

REGISTER 5-4: NVMDATAX: FLASH DATA REGISTER (x = 0-3)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Data bits

Word Program: Writes NVMDATA0 to the target Flash address defined in NVMADDR Quad Word Program: Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the Least Significant Instruction Word.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMSRCADDR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMSRCADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				NVMSRC/	ADDR<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	NVMSRCADDR<7:0>											

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

	XOOO Martin Martin	IRQ	Martin		Interru	pt Bit Location		Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Data 22	_ADC_DATA22_VECTOR	81	OFF081<17:1>	IFS2<17>	IEC2<17>	IPC20<12:10>	IPC20<9:8>	Yes
ADC Data 23	_ADC_DATA23_VECTOR	82	OFF082<17:1>	IFS2<18>	IEC2<18>	IPC20<20:18>	IPC20<17:16>	Yes
ADC Data 24	_ADC_DATA24_VECTOR	83	OFF083<17:1>	IFS2<19>	IEC2<19>	IPC20<28:26>	IPC20<25:24>	Yes
ADC Data 25	_ADC_DATA25_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
ADC Data 26	_ADC_DATA26_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
ADC Data 27	_ADC_DATA27_VECTOR	86	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
ADC Data 28	_ADC_DATA28_VECTOR	87	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
ADC Data 29	_ADC_DATA29_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
ADC Data 30	_ADC_DATA30_VECTOR	89	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
ADC Data 31	_ADC_DATA31_VECTOR	90	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
ADC Data 32	_ADC_DATA32_VECTOR	91	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Data 33	_ADC_DATA33_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
ADC Data 34	_ADC_DATA34_VECTOR	93	OFF093<17:1>	IFS2<29>	IEC2<29>	IPC23<12:10>	IPC23<9:8>	Yes
ADC Data 35	_ADC_DATA35_VECTOR	94	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Data 36	_ADC_DATA36_VECTOR	95	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Data 37	_ADC_DATA37_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Data 38	_ADC_DATA38_VECTOR	97	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Data 39	_ADC_DATA39_VECTOR	98	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Data 40	_ADC_DATA40_VECTOR	99	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Data 41	_ADC_DATA41_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC Data 42	_ADC_DATA42_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Data 43	_ADC_DATA43_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
USB Suspend/Resume Event	_USB1_SR_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	No
Core Performance Counter Interrupt	_CORE_PERF_COUNT_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
Core Fast Debug Channel Interrupt	_CORE_FAST_DEBUG_CHAN_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes
System Bus Protection Violation	_SYSTEM_BUS_PROTECTION_VECTOR	106	OFF106<17:1>	IFS3<10>	IEC3<10>	IPC26<20:18>	IPC26<17:16>	Yes
Crypto Engine Event	_CRYPTO_VECTOR	107	OFF107<17:1>	IFS3<11>	IEC3<11>	IPC26<28:26>	IPC26<25:24>	Yes
Reserved		108	—	—	—		—	—
SPI1 Fault	_SPI1_FAULT_VECTOR	109	OFF109<17:1>	IFS3<13>	IEC3<13>	IPC27<12:10>	IPC27<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER (CONTINUED)

bit 19-16 TXFIFOSZ<3:0>: TX Endpoint FIFO packet size bits

The maximum packet size to allowed for (before any splitting within the FIFO of Bulk/High-Bandwidth packets prior to transmission)

- 1111 = Reserved
- •
- •
- •
- 1010 = Reserved
- 1001 = 4096 bytes
- 1000 = 2048 bytes
- 0111 = 1024 bytes
- 0110 = 512 bytes
- 0101 = 256 bytes
- 0100 = **128** bytes
- 0011 = 64 bytes
- 0010 = 32 bytes
- 0001 = 16 bytes
- 0000 = 8 bytes
- bit 15-10 **Unimplemented:** Read as '0'
- bit 9 **TXEDMA:** TX Endpoint DMA Assertion Control bit
 - 1 = DMA_REQ signal for all IN endpoints will be deasserted when MAXP-8 bytes have been written to an endpoint. This is Early mode.
 - 0 = DMA_REQ signal for all IN endpoints will be deasserted when MAXP bytes have been written to an endpoint. This is Late mode.
- bit 8 RXEDMA: RX Endpoint DMA Assertion Control bit
 - 1 = DMA_REQ signal for all OUT endpoints will be deasserted when MAXP-8 bytes have been written to an endpoint. This is Early mode.
 - 0 = DMA_REQ signal for all OUT endpoints will be deasserted when MAXP bytes have been written to an endpoint. This is Late mode.

bit 7 BDEV: USB Device Type bit

- 1 = USB is operating as a 'B' device
- 0 = USB is operating as an 'A' device
- bit 6 **FSDEV:** Full-Speed/Hi-Speed device detection bit (*Host mode*)
 - 1 = A Full-Speed or Hi-Speed device has been detected being connected to the port
 - 0 = No Full-Speed or Hi-Speed device detected
- bit 5 LSDEV: Low-Speed Device Detection bit (Host mode)
 - 1 = A Low-Speed device has been detected being connected to the port
 0 = No Low-Speed device detected
- bit 4-3 VBUS<1:0>: VBUS Level Detection bits
 - 11 = Above VBUS Valid
 - 10 = Above AValid, below VBUS Valid
 - 11 = Above Session End, below AValid
 - 00 = Below Session End

bit 2 HOSTMODE: Host Mode bit

- 1 = USB module is acting as a Host
- 0 = USB module is not acting as a Host
- bit 1 **HOSTREQ:** Host Request Control bit 'B' device only:
 - 1 = USB module initiates the Host Negotiation when Suspend mode is entered. This bit is cleared when Host Negotiation is completed.
 - 0 = Host Negotiation is not taking place

NOTES:

17.1 Deadman Timer Control Registers

TABLE 17-1: DEADMAN TIMER REGISTER MAP

ess		^a									Bits								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0A00	DMTCON	31:16	_		—					—	—		-	_				_	0000
UAUU	DIVITCON	15:0	ON	_	_	_	_	_	_		_		_	—	_	_	_	_	0000
0410	DMTPRECLR	31:16	_	_	_	_	_	_	_		_		_	—	_	_	_	_	0000
UATU	DIVITERECLK	15:0				STEP'	1<7:0>				_		—	—	_	_		—	0000
0A20	DMTCLR	31:16	—	_	—	—	—	—	_		_		—	—	_	_		—	0000
UAZU	DIVITCLK	15:0	—	_	—	—	—	—	_					STEP	2<7:0>	-			0000
0A30	DMTSTAT	31:16	—	_	—	—	—	—	_		_		—	—	_	_		—	0000
0A30	DIMITSTAT	15:0	—	_	—	—	—	—	_		BAD1	BAD2	DMTEVENT	—	_	_		WINOPN	0000
0A40	DMTCNT	31:16								0	NTER<31:0	2							0000
0A40	DIVITCINT	15:0								000	NIERSI.	J~							0000
0A60	DMTPSCNT	31:16								DSC	NT-21.05								0000
0400	DIMITESCINT	15:0		PSCNT<31:0>															
0A70	DMTPSINTV	31:16		PSINTV<31:0>															
0470		15:0																	
Legen	Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																		

PIC32MZ Graphics (DA) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	r-0	R/W-0			
31:24	—	_	—	—	—	_	-	SCHECK ⁽¹⁾			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DDRMODE	DASSERT	DEVSE	L<1:0>	LANEMO	DDE<1:0>	CMDINIT<1:0>				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	TXRXCOUNT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	TXRXCOUNT<7:0>										

REGISTER 22-4: SQI1CON: SQI CONTROL REGISTER

Legend:	r = Reserved						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-26 Unimplemented: Read as '0'

- bit 25 Reserved: Must be programmed as '0'
- bit 24 **SCHECK:** Flash Status Check bit⁽¹⁾
 - 1 = Check the status of the Flash
 - 0 = Do not check the status of the Flash
- bit 23 DDRMODE: Double Data Rate Mode bit
 - 1 = Set the SQI transfers to DDR mode
 - 0 = Set the SQI transfers to SDR mode

bit 22 DASSERT: Chip Select Assert bit

- 1 = Chip Select is deasserted after transmission or reception of the specified number of bytes
- 0 = Chip Select is not deasserted after transmission or reception of the specified number of bytes

bit 21-20 DEVSEL<1:0>: SQI Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Select Device 1
- 00 = Select Device 0

bit 19-18 LANEMODE<1:0>: SQI Lane Mode Select bits

- 11 = Reserved
- 10 = Quad Lane mode
- 01 = Dual Lane mode
- 00 = Single Lane mode

bit 17-16 CMDINIT<1:0>: Command Initiation Mode Select bits

If it is Transmit, commands are initiated based on a write to the transmit register or the contents of TX buffer. If CMDINIT is Receive, commands are initiated based on reads to the read register or RX buffer availability.

- 11 = Reserved
- 10 = Receive
- 01 = Transmit
- 00 = Idle

bit 15-0 TXRXCOUNT<15:0>: Transmit/Receive Count bits

These bits specify the total number of bytes to transmit or received (based on CMDINIT).

Note 1: When this bit is set to '1', the SQI module uses the SQI1MEMSTAT register to control the status check command process.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	-	_	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	—	—	—	—
	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
15:8	—	-	-	-	DMA EIF	PKT COMPIF	BD DONEIF	CON THRIF
	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS
7:0	CON EMPTYIF	CON FULLIF	RXTHRIF ⁽¹⁾	RXFULLIF	RX EMPTYIF	TXTHRIF	TXFULLIF	TX EMPTYIF

REGISTER 22-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit

bit 31-12	Unimplemented: Read as '0'
bit 11	DMAEIF: DMA Bus Error Interrupt Flag bit
	1 = DMA bus error has occurred
	0 = DMA bus error has not occurred
bit 10	PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Interrupt Flag bit
	1 = DMA BD packet is complete
	0 = DMA BD packet is in progress
bit 9	BDDONEIF: DMA Buffer Descriptor Done Interrupt Flag bit
	1 = DMA BD process is done
	0 = DMA BD process is in progress
bit 8	CONTHRIF: Control Buffer Threshold Interrupt Flag bit
	1 = The control buffer has more than THRES words of space available
	0 = The control buffer has less than THRES words of space available
bit 7	CONEMPTYIF: Control Buffer Empty Interrupt Flag bit
	1 = Control buffer is empty
	0 = Control buffer is not empty
bit 6	CONFULLIF: Control Buffer Full Interrupt Flag bit
	1 = Control buffer is full 0 = Control buffer is not full
b:# 5	
bit 5	RXTHRIF: Receive Buffer Threshold Interrupt Flag bit ⁽¹⁾
	 1 = Receive buffer has more than RXINTTHR words of space available 0 = Receive buffer has less than RXINTTHR words of space available
bit 4	RXFULLIF: Receive Buffer Full Interrupt Flag bit
DIL 4	1 = Receive buffer is full
	0 = Receive buffer is not full
bit 3	RXEMPTYIF: Receive Buffer Empty Interrupt Flag bit
DIL U	1 = Receive buffer is empty
	0 = Receive buffer is not empty
	F.A
Note 1:	In the case of Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will
	be set to a '1', immediately after a POR until a read request on the System Bus bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	_	—	_	_	—
00.40	R/W-0	R-0, HS, HC	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	SLPEN	ACTIVE	—	_	—	CLKSE	CLKSEL<1:0>	
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	_	UEN<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 24-1: UXMODE: UARTX MODE REGISTER

Legend:	HS = Hardware set	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

- bit 23 SLPEN: Run During Sleep Enable bit
 - 1 = UARTx BRG clock runs during Sleep mode
 - 0 = UARTx BRG clock is turned off during Sleep mode
 - **Note:** SLPEN = 1 only applies if CLKSEL = FRC. All clocks, as well as the UART, are disabled in Deep Sleep mode.
- bit 22 ACTIVE: UARTx Module Running Status bit
 - 1 = UARTx module is active (UxMODE register should not be updated)
 - 0 = UARTx module is not active (UxMODE register can be updated)

bit 21-19 Unimplemented: Read as '0'

- bit 18-17 CLKSEL<1:0>: UARTx Module Clock Selection bits
 - 11 = BRG clock is PBCLK2
 - 10 = BRG clock is FRC
 - 01 = BRG clock is SYSCLK (turned off in Sleep mode)
 - 00 = BRG clock is PBCLK2 (turned off in Sleep mode)

bit 16 **RUNOVF:** Run During Overflow Condition Mode bit

- 1 = When an Overflow Error (OERR) condition is detected, the shift register continues to run to remain synchronized
- When an Overflow Error (OERR) condition is detected, the shift register stops accepting new data (Legacy mode)

bit 15 **ON:** UARTx Enable bit

- 1 = UARTx module is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
- UARTx module is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx, and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	—	—	_	_	—	—
22:16	R/W-0, HC	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
23:16	RDSTART	—	—	—	—	—	DUALBUF	—
15:0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾		SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> (2)	ALP ⁽²⁾	CS2P ⁽²⁾	CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 25-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

- bit 23 **RDSTART:** Start Read on PMP Bus bit
 - This bit is cleared by hardware at the end of the read cycle.
 - 1 = Start a read cycle on the PMP bus
 - 0 = No effect
- bit 22-18 Unimplemented: Read as '0'
- bit 17 **DUALBUF:** Parallel Master Port Dual Read/Write Buffer Enable bit This bit is only valid in Master mode.
 - 1 = PMP uses separate registers for reads and writes Reads: PMRADDR and PMRDIN Writes: PMRWADDR and PMDOUT
 - 0 = PMP uses legacy registers for reads and writes Reads/Writes: PMADDR and PMRDIN
- bit 16 Unimplemented: Read as '0'
- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = All 16 bits of address are multiplexed on PMD<15:0>
 - 10 = All 16 bits of address are multiplexed on PMD<7:0>
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 8 bits are on PMA<15:8>
 - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
 - **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	REVISION<7:0>											
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	VERSION<7:0>											
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8	ID<15:8>											
7.0	R-0 R-0 R-0 R-0 F			R-0	R-0	R-0						
7:0				ID<7	:0>							

REGISTER 27-1: CEVER: CRYPTO ENGINE REVISION, VERSION, AND ID REGISTER

Legend:

Logonal							
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-24 REVISION<7:0>: Crypto Engine Revision bits

bit 23-16 VERSION<7:0>: Crypto Engine Version bits

bit 15-0 ID<15:0>: Crypto Engine Identification bits

TABLE 30-1: CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES (CONTINUED)

ess										Bits	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
00F0	C1FLTCON3	31:16	FLTEN15	MSEL1	5<1:0>		FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:					SEL14<4:0	>		0000				
UUFU		15:0	FLTEN13	MSEL1	3<1:0>			FSEL13<4:0	>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0	>		0000
0100	C1FLTCON4	31:16		MSEL1				FSEL19<4:0			FLTEN18	MSEL1				SEL18<4:0			0000
0.00	0.1.2.00111	15:0	FLTEN17	MSEL1	7<1:0>		FSEL17<4:0>				FLTEN16	MSEL1	6<1:0>		F	SEL16<4:0	>		0000
0110	C1FLTCON5	31:16								FLTEN22	MSEL2				SEL22<4:0>			0000	
0.10		15:0	FLTEN21	MSEL2		FSEL21<4:0>					FLTEN20	MSEL2				SEL20<4:0			0000
0120	C1FLTCON6	31:16	FLTEN27							FLTEN26	MSEL2				SEL26<4:0			0000	
		15:0	FLTEN25	MSEL2				FSEL25<4:0			FLTEN24	MSEL2				SEL24<4:0			0000
0130	C1FLTCON7	31:16										0000							
		15:0	FLTEN29								0000								
0140- 0330	C1RXFn (n = 0-31)	31:16											XXXX						
0330	(11 - 0-31)	15:0											XXXX						
0340	C1FIFOBA	31:16 15:0	C1FIFOBA<31:0>										0000						
0350	C1FIFOCONn	31:16	_	_	_	_	_		—	—	_		—			FSIZE<4:0>			0000
0000	(n = 0)	15:0	—	FRESET	UINC	DONLY	_	_	—	—	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI<1:0>		0000
0360	C1FIFOINIn	31:16	—	—	_	—	—	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	—	—	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
0000	(n = 0)	15:0	_	_	_	—	—	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	_	_	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
0370	C1FIFOUAn (n = 0)	31:16 15:0								C1FIFOUA	<31:0>								0000
0380	C1FIFOCIn	31:16	_	—	_	—	—	_	—	—		—	_	—		_	_	—	0000
0380	(n = 0)	15:0		_	_	_	_	_	—	—		—	_		C1	FIFOCI<4:)>		0000
		31:16	—	_		—	_	—	_	—		-	_			FSIZE<4:0>			0000
		15:0	_	FRESET	UINC	DONLY	_	_	—	—	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPR	<1:0>	0000
	C1FIFOCONn	31:16	_	_	_	—	_	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	_	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
0390- 0B40	C1FIFOINTn C1FIFOUAn C1FIFOCIn	15:0	—	-	—	—	—	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	—	-	—	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
	(n = 1-31)	31:16								C1FIFOUA	<31.0>								0000
	. ,	15:0								GIFIFUUA									0000
		31:16	_	_	_	—		_	_	_	—	—	—		-	_	—	_	0000
1		15:0	—	—	—	—	—	—	—	—	—	—	—		C1	IFIFOCI<4:0)>		0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more Note 1: information.

PIC32MZ Graphics (DA) Family

				-					
Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
31:24	_	—	_	_		WKONREM	WKONINS	WKONINT	
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	HC, R/W-0	R/W-0	
23:16	_	—	_	_	INTBG	RDWTCON	CONTREQ	SBGREQ	
15:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
15:8	_	—	-	_	_	—	_	SDBP	
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
7:0	CDSSEL	CDTLVL	_	DMAS	EL<1:0>	HSEN	DTXWIDTH	_	

REGISTER 39-7: SDHCCON1: SDHC CONTROL REGISTER 1

Legend:		HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-27 Unimplemented: Read as '0'

	oninplemented. Read as 0
bit 26	WKONREM: Wake-up Event Enable on SD Card Removal bit
	1 = Wake-up event is enabled
	0 = Wake-up event is disabled
bit 25	WKONINS: Wake-up Event Enable on SD Card Insertion bit
	1 = Wake-up event is enabled
	0 = Wake-up event is disabled
bit 24	WKONINT: Wake-up Event Enable on SD Card Interrupt bit
	1 = Wake-up event is enabled
	0 = Wake-up event is disabled
bit 23-20	Unimplemented: Read as '0'
bit 19	INTBG: Interrupt at Block Gap bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	RDWTCON: Read Wait Control bit
	1 = Read wait control is enabled
	0 = Read wait control is disabled
bit 17	CONTREQ: Continue Request bit
	A write to this bit is ignored if STOPREQ is set to '1'. 1 = Restart
	1 - Restant 0 = No effect
bit 16	SBGREQ: Stop at Block Gap Request bit
	1 = Stop
	0 = Transfer
bit 15-9	Unimplemented: Read as '0'
bit 8	SDBP: SD Bus Power bit
	1 = Bus power is on
	0 = Bus power is off
bit 7	CDSSEL: Card Detect Signal Selection bit
	1 = The card detect test level is select (for test purposes)
	0 = SDCDx is selected (for normal use)
bit 6	CDTLVL: Card Detect Test Level bit
	1 = Card is inserted
	0 = Card is not inserted

REGISTER 41-10: CFGEBIA: EXTERNAL BUS INTERFACE ADDRESS PIN CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	EBIA23EN	EBIA22EN	EBIA21EN	EBIA20EN	EBIA19EN	EBIA18EN	EBIA17EN	EBIA16EN
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	EBIA15EN	EBIA14EN	EBIA13EN	EBIA12EN	EBIA11EN	EBIA10EN	EBIA9EN	EBIA8EN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	EBIA7EN	EBIA6EN	EBIA5EN	EBIA4EN	EBIA3EN	EBIA2EN	EBIA1EN	EBIA0EN

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

bit 23-0 **EBIA23EN:EBIA0EN:** EBI Address Pin Enable bits

- 1 = EBIAx pin is enabled for use by EBI
- 0 = EBIAx pin has is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

DC CHA	RACTERI	STICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments		
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	—	10	μs	See Note 1		
D313	DACREFH	CVREF Input Voltage	AVss		AVDD	V	CVRSRC with CVRSS = 0		
		Reference Range	VREF-	_	VREF+	V	CVRSRC with CVRSS = 1		
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size		
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size		
D315	DACRES	Resolution	_		DACREFH/24		CVRCON <cvrr> = 1</cvrr>		
			_	_	DACREFH/32		CVRCON <cvrr> = 0</cvrr>		
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>		
			—		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>		

TABLE 44-19: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No. Symbol Characteristics			Min.	Тур.	Max.	Units	Conditions	
OS51	Fsys	System Frequency	DC		200	MHz	USB module disabled	
			30	_	200	MHz	USB module enabled	
OS55a	Fрв	Peripheral Bus Frequency	DC		100	MHz	For PBCLKx, 'x' < 7	
OS55b			DC	—	200	MHz	For PBCLK7	
OS56	Fref	Reference Clock Frequency			50	MHz	For REFCLK1, REFCLK3, REFCLK4, REFCLKO1, REFCLK3, and REFCLK4 pins	

TABLE 44-24: SYSTEM TIMING REQUIREMENTS

TABLE 44-25: SPLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol Characteristics ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions		
OS50	Fin	PLL Input Frequency Range		5	_	64	MHz	ECPLL, HSPLL, FRCPLL modes	
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	_	100	μs	—	
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25	_	+0.25	%	Measured over 100 ms period	
OS54	FVco	PLL Vco Frequency Range		350		700	MHz	—	
OS54a	Fpll	PLL Output Frequen	cy Range	10	_	200	MHz	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter \qquad \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{CommunicationClock}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter \quad \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} \quad \frac{D_{CLK}}{1.41}$$

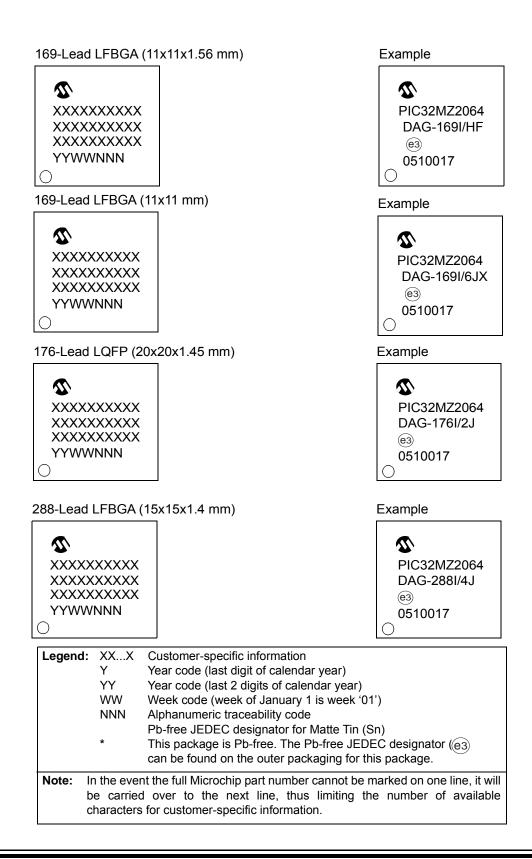

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min. Typ. Max. Units Conditi				
TS10	Vts	Rate of Change	—	5	—	mV/ºC	—
TS11	TR	Resolution	-2	_	+2	°C	—
TS12	IVTEMP	Voltage Range	0.5	_	1.5	V	—
TS13	TMIN	Minimum Temperature	—	-40	—	°C	IVTEMP = 0.5V
TS14	Тмах	Maximum Temperature	_	160	_	°C	IVTEMP = 1.5V

TABLE 44-48: TEMPERATURE SENSOR SPECIFICATIONS

Note 1: The temperature sensor is functional at VBORIOMIN < VDDIO < VDDIOMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

46.0 PACKAGING INFORMATION

46.1 Package Marking Information

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2532-8