

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXFL

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 45x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2064dag176-i-2j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

- - 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
 - 3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.4 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For additional information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available for download from the Microchip web site, www.microchip.com:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- "MPLAB[®] ICD 3 Design Advisory" (DS50001764)
- "MPLAB[®] REAL ICE[™] In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.5 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer or debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

TABLE 4-19: SYSTEM BUS TARGET PROTECTION GROUP 9 REGISTER MAP

ess										Bi	ts					18/2 17/1 — — — — — — — — — — — — — — — — — — —			
Virtual Addr (BF90_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	MULTI		—			CODE	<3:0>			—	—	—	—	_	—		0000
8020	SBISELOGI	15:0				INITIC)<7:0>					REGIO	N<3:0>		_		CMD<2:0>		0000
80.24	SBTOFI OG2	31:16	_	_	—	_	—	—	—	—	_	—	—	—	—	—	—	—	0000
0024	SBIELOGZ	15:0	_	_	—	_	—	—	—	_	_	—	—	—	—	—	GROU	P<1:0>	0000
80.28	SBTOFCON	31:16	_	_	—	_	—	—	—	ERRP	_	—	—	—	—	—	—	_	0000
0020	SBISECON	15:0	_	_	—	_		_	_	—	_	_	—	_		_	_	_	0000
8030	SBT9ECI RS	31:16	_	_	—	_		_	_	—	_	_	—	_		_	_	_	0000
0000	OBTOECERO	15:0	_	_	—	_				_	_		—	_		_		CLEAR	0000
8038	SBT9ECI RM	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	OBTOEOEI	15:0	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	CLEAR	0000
8C40	SBT9REG0	31:16								BASE<	<21:6>								xxxx
0010	OBTORECO	15:0			BASE	<5:0>			PRI				SIZE<4:0>		-	—	—	_	xxxx
8050	SBT9RD0	31:16	_	_	—	_	—	—	—	_	_	—	—	_	—	—	—	—	xxxx
0000		15:0	_	_	—	_	—	—	—			_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8058	SBT9WR0	31:16	_	_	—	_	—	—	—	_	_	—	—	_	—	—	—	—	xxxx
		15:0		—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8060	SBT9RFG1	31:16								BASE	<21:6>								xxxx
		15:0			BASE	<5:0>		1	PRI			1	SIZE<4:0>			—			xxxx
8C70	SBT9RD1	31:16		_	—						—		—	_		_		—	xxxx
		15:0	_	_	—	_	—	—	—	—	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8C78	SBT9WR1	31:16	—	_	—	_	—	—	—	—	—	—	—	_	-	—	—	—	xxxx
0010	50101111	15:0	_	—	_	_	_	—	_	—	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

© 2015-2018 Microchip Technology Inc.

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER (CONTINUED)

bit 6 **BFSWAP:** Boot Flash Bank Swap Control bit^(3,4)

- 1 = Boot Flash Bank 2 is mapped to the lower boot region and Boot Flash Bank 1 is mapped to the upper mapped region
- 0 = Boot Flash Bank 1 is mapped to the lower boot region and Boot Flash Bank 2 is mapped to the upper mapped region
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 NVMOP<3:0>: NVM Operation bits
 - These bits are only writable when WREN = 0.
 - 1111 = Reserved
 - •

 - 1000 = Reserved
 - 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
 - 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
 - 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
 - 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
 - 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
 - 0010 = Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
 - 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected⁽²⁾ 0000 = No operation
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.
 - **3:** This bit can only be modified when the WREN bit = 0, the NVMKEY unlock sequence is satisfied, and the SWAPLOCK<1:0> bits (NVMCON2<7:6>) are cleared to '0'.
 - **4:** The BFSWAP value is determined by the values the user programmed Sequence Numbers in each boot panel.

(1)	X000 Vester News	IRQ	Neeter #		Interru	pt Bit Location		Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Data 22	_ADC_DATA22_VECTOR	81	OFF081<17:1>	IFS2<17>	IEC2<17>	IPC20<12:10>	IPC20<9:8>	Yes
ADC Data 23	_ADC_DATA23_VECTOR	82	OFF082<17:1>	IFS2<18>	IEC2<18>	IPC20<20:18>	IPC20<17:16>	Yes
ADC Data 24	_ADC_DATA24_VECTOR	83	OFF083<17:1>	IFS2<19>	IEC2<19>	IPC20<28:26>	IPC20<25:24>	Yes
ADC Data 25	_ADC_DATA25_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
ADC Data 26	_ADC_DATA26_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
ADC Data 27	_ADC_DATA27_VECTOR	86	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
ADC Data 28	_ADC_DATA28_VECTOR	87	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
ADC Data 29	_ADC_DATA29_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
ADC Data 30	_ADC_DATA30_VECTOR	89	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
ADC Data 31	_ADC_DATA31_VECTOR	90	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
ADC Data 32	_ADC_DATA32_VECTOR	91	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Data 33	_ADC_DATA33_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
ADC Data 34	_ADC_DATA34_VECTOR	93	OFF093<17:1>	IFS2<29>	IEC2<29>	IPC23<12:10>	IPC23<9:8>	Yes
ADC Data 35	_ADC_DATA35_VECTOR	94	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Data 36	_ADC_DATA36_VECTOR	95	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Data 37	_ADC_DATA37_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Data 38	_ADC_DATA38_VECTOR	97	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Data 39	_ADC_DATA39_VECTOR	98	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Data 40	_ADC_DATA40_VECTOR	99	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Data 41	_ADC_DATA41_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC Data 42	_ADC_DATA42_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Data 43	_ADC_DATA43_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
USB Suspend/Resume Event	_USB1_SR_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	No
Core Performance Counter Interrupt	_CORE_PERF_COUNT_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
Core Fast Debug Channel Interrupt	_CORE_FAST_DEBUG_CHAN_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes
System Bus Protection Violation	_SYSTEM_BUS_PROTECTION_VECTOR	106	OFF106<17:1>	IFS3<10>	IEC3<10>	IPC26<20:18>	IPC26<17:16>	Yes
Crypto Engine Event	_CRYPTO_VECTOR	107	OFF107<17:1>	IFS3<11>	IEC3<11>	IPC26<28:26>	IPC26<25:24>	Yes
Reserved	_	108			—			_
SPI1 Fault	_SPI1_FAULT_VECTOR	109	OFF109<17:1>	IFS3<13>	IEC3<13>	IPC27<12:10>	IPC27<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals.

2: Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0				CHSPTR	<15:8>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				CHSPTF	R<7:0>			

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—		—	—
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0				CHDPTR	<15:8>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				CHDPTF	R<7:0>			

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

ess									•	В	its								
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0010		31:16	—	—	—	_	_	—	—		_	_	—	_		—	—	—	0000
0010	T IVITY/	15:0								TMR3	<15:0>								0000
0020	DD7	31:16	_	—	_	—	—	—	_	_	—	_	—	_	—	_	—	—	0000
0020		15:0		-		-	-			PR3<	:15:0>								FFFF
0500		31:16	_	—	_	_	_	-	_		_		—	_		-	_	_	0000
	10001	15:0	ON	—	SIDL	—	—	—	—	—	TGATE		TCKPS<2:0>	>	T32	—	TCS	—	0000
0510		31:16	—	—	_	_	—	—	_	—	—	—	—	_	—	—	_	_	0000
UEIU	TIVIRO	15:0								TMR4	<15:0>								0000
0520	DDg	31:16	_	_	_	_	_	_	_		_		_	_		_	_	_	0000
0620	FRO	15:0								PR4<	:15:0>								FFFF
1000	TOCON	31:16	—	-	—	—	_	—	—	-	_	-	—	—	-	—	—	—	0000
1000	19001	15:0	ON	—	SIDL	—	—	—	_	—	TGATE		TCKPS<2:0>	>	—	—	TCS	_	0000
1010		31:16	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
1010	TWR9	15:0								TMR5	<15:0>								0000
1020	DDO	31:16		—	_	_		—	—	—	—	—	—	_	—	—	—		0000
1020	PR9	15:0								PR5<	:15:0>								FFFF

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MZ Graphics (DA) Family

									.,
Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	7:0>			
SA ENCKEY3	31:24				ENCKEY<3	1:24>			
-	23·16				ENCKEY<2	3.16>			
	15.8				ENCKEY<	15:8>			
	7:0				ENCKEV	7:0>			
SA ENCKEVA	21.24					1:02			
SA_ENCRET4	31.24				ENCKET S	0.40			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	7:0>			
SA_ENCKEY5	31:24				ENCKEY<3	1:24>			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	7:0>			
SA_ENCKEY6	31:24				ENCKEY<3	1:24>			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7.0				ENCKEY<	7:0>			
SA ENCKEY7	31.24				ENCKEY<3	1:24>			
	22.16					2:16			
	23.10					3.10-			
	15.6				ENCRETS	10.02			
	7:0				ENCKEY<	/:0>			
SA_ENCKEY8	31:24				ENCKEY<3	1:24>			
	23:16				ENCKEY<2	3:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	7:0>			
SA_AUTHIV1	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA AUTHIV2	31:24				AUTHIV<3	1:24>			
	23.16				AUTHIV<2	3.16>			
	15.8					5.8>			
	7.0					7:0>			
	21.24					1:245			
SA_AUTTIVS	00.40					0.40			
	23:16				AUTHIV<2	5:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV4	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV5	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA AUTHIV6	31:24				AUTHIV<3	1:24>			
-	23 [.] 16				AUTHIV<2	3.16>			
	15.8					5.8>			
	7:0					7:05			
	31.04					1.245			
	01.24					1.27°			
	23:10				AUTHIV<2	5. 102 5.05			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			
SA_AUTHIV8	31:24				AUTHIV<3	1:24>			
	23:16				AUTHIV<2	3:16>			
	15:8				AUTHIV<1	5:8>			
	7:0				AUTHIV<	7:0>			

FIGURE 27-11: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

REGISTER 29-16: ADCFLTRX: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

- bit 24 **AFRDY:** Digital Filter '*x*' Data Ready Status bit
 - 1 = Data is ready in the FLTRDATA<15:0> bits
 - 0 = Data is not ready
 - **Note:** This bit is cleared by reading the FLTRDATA<15:0> bits or by disabling the Digital Filter module (by setting AFEN to '0').
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 CHNLID<4:0>: Digital Filter Analog Input Selection bits

These bits specify the analog input to be used as the oversampling filter data source.

```
11111 = Reserved

.

01100 = Reserved

01011 = AN11

.

00001 = AN1

00000 = AN0
```

- **Note:** Only the first 12 analog inputs, Class 1 (AN0-AN11) and Class 2 (AN5-AN11), can use a digital filter.
- bit 15-0 **FLTRDATA<15:0>:** Digital Filter '*x*' Data Output Value bits

The filter output data is as per the fractional format set in the FRACT bit (ADCCON1<23>). The FRACT bit should not be changed while the filter is enabled. Changing the state of the FRACT bit after the operation of the filter ended will not update the value of the FLTRDATA<15:0> bits to reflect the new format.

TABLE 30-2: CAN2 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES

SSS										Bi	ts								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	00001	31:16	_	_	_	_	ABAT		REQOP<2:0	>	(DPMOD<2:0	>	CANCAP	_	_	_	_	0480
1000	C2CON	15:0	ON	_	SIDLE	_	CANBUSY	_	_	_	_	_	_		. [18/2 17/1 — — DNCNT<4:0> SEG2PH<2			0000
1010	00050	31:16	_	_	_	_	_	_	_	_	_	WAKFIL		_	_	18/2 17/1 — — DNCNT<4:0> SEG2PH<2		>	0000
1010	C2CFG	15:0	SEG2PHTS	SAM	S	SEG1PH<2:0)>		PRSEG<2:0	>	SJW	<1:0>			BRP				0000
1020	C2INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE				—			_	MODIE	DNCNT<4:0> SEG2PH<2 <5:0> CTMRIE RBIE CTMRIF RBIF — — — > TXWARN RXWARI FIFOIP18 FIFOIP1 FIFOIP2 FIFOIP1 RXOVF18 RXOVF1 RXOVF2 RXOVF		TBIE	0000
1020	CZINT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	—	—	—	—	—	—	—	MODIF	DNCNT<4:0> SEG2PH<2 <5:0> CTMRIE RBIE CTMRIF RBIF — — — > TXWARN RXWARN FIFOIP18 FIFOIP1 FIFOIP2 FIFOIP1 RXOVF18 RXOVF1 RXOVF18 RXOVF1 RXOVF2 RXOVF1 — EID		TBIF	0000
1030		31:16	—	—	—	—	—	—	—	—		—	—		—	—	—		0000
1030	02VLC	15:0	—	—	—			FILHIT<4:0	>		—				ICODE<6:0>	18/2 17/1 — — ONCNT<4:0> SEG2PH<2			0040
1040	C2TREC	31:16	—	—	—	—	—		—	—	—	—	TXBO	TXBP	RXBP			EWARN	0000
1040	02IIILO	15:0		•		TERRO	CNT<7:0>							RERRC	NT<7:0>	— — DNCNT<4:0> SEG2PH<2			0000
1050	C2ESTAT	31:16	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	DNCNT<4:0> SEG2PH<2 <5:0> CTMRIE RBIE CTMRIF RBIF — — — TXWARN RXWARN FIFOIP18 FIFOIP17 FIFOIP2 FIFOIP17 RXOVF18 RXOVF11 RXOVF18 RXOVF11 RXOVF18 RXOVF11 - EID- — EID-		FIFOIP16	0000
1000	0210171	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	18/2 17/1 — — DNCNT<4:0> SEG2PH<2:		FIFOIP0	0000
1060	C2RXOVE	31:16	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
1000	02101011	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3			RXOVF0	0000
1070	C2TMR	31:16								CANTS	<15:0>					TXWARN RXWARN FIFOIP18 FIFOIP17 FIFOIP2 FIFOIP17 PRXOVF18 RXOVF11 RXOVF2 RXOVF11			0000
1070	0211111	15:0							CA	NTSPRE<15	:0>								0000
1080	C2RXM0	31:16						SID<10:0>							MIDE	FIFOIP2 FIFOIP1 RXOVF18 RXOVF17 RXOVF2 RXOVF1		7:16>	xxxx
1000	0210/100	15:0								EID<'	15:0>					FIFOIP18 FIFOIP17 FIFOIP18 FIFOIP17 FIFOIP2 FIFOIP17 RXOVF18 RXOVF18 RXOVF2 RXOVF17			xxxx
1040	C2RXM1	31:16						SID<10:0>							MIDE	—	EID<'	7:16>	xxxx
10/10	0210/001	15:0								EID<	15:0>					FIFOIP2 FIFOIP1 RXOVF18 RXOVF17 RXOVF2 RXOVF1			xxxx
10B0	C2RXM2	31:16						SID<10:0>							MIDE	—	EID<'	7:16>	xxxx
	02.04.12	15:0								EID<'	15:0>				1		1		xxxx
10B0	C2RXM3	31:16						SID<10:0>							MIDE	_	EID<'	7:16>	xxxx
		15:0				1				EID<'	15:0>	1							xxxx
1010	C2FLTCON0	31:16	FLTEN3	MSEL:	3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>			FSEL2<4:0>	`		0000
	02. 2. 00.10	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>			FSEL0<4:0>	`		0000
1000	C2ELTCON1	31:16	FLTEN7	MSEL	7<1:0>			FSEL7<4:03	>		FLTEN6	MSEL	6<1:0>			FSEL6<4:0>	`		0000
1000	OZI EI CONT	15:0	FLTEN5	MSEL	5<1:0>			FSEL5<4:0	>		FLTEN4	MSEL	4<1:0>			FSEL4<4:0>	,		0000
1050		31:16	FLTEN11	MSEL1	1<1:0>			FSEL11<4:0	>		FLTEN10	MSEL ²	0<1:0>		F	SEL10<4:0	>		0000
1020	02FLICUNZ	15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0	>		FLTEN8	MSEL	8<1:0>			FSEL8<4:0>	,		0000
1050		31:16	FLTEN15	MSEL1	5<1:0>			FSEL15<4:0	>		FLTEN14	MSEL ²	4<1:0>		F	SEL14<4:0	>		0000
10-0	C2FLICON3	15:0	FLTEN13	MSEL1	3<1:0>			FSEL13<4:0	>		FLTEN12	MSEL ²	2<1:0>		F	SEL12<4:0	>		0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	—	—
22:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23.10	—	WAKFIL	—	—	—	SEG	62PH<2:0>(1	,4)
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	:	SEG1PH<2:0	>	Р	RSEG<2:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	SJW<1:	0>(3)			BRP<	5:0>		

REGISTER 30-2: CICFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('	0', '1', x = Unknown)	

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	-

 $000 = \text{Length is } 1 \times TQ$

- Note 1: SEG2PH ≤ SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
 - 2: 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R-x	R-x									
51.24		CiFIFOUAn<31:24>									
22:16	R-x	R-x									
23.10	CiFIFOUAn<23:16>										
15.0	R-x	R-x									
15.0	CiFIFOUAn<15:8>										
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7.0		CiFIFOUAn<7:0>									

REGISTER 30-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

								,
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	_	_	_
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	_	_	_
7.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
7.0	_	_	_		(CiFIFOCI<4:0	>	

REGISTER 30-23: CIFIFOCIN: CAN MODULE MESSAGE INDEX REGISTER (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

Table 31-1 and Table 31-2 show two interfaces and the associated pins that can be used with the Ethernet Controller.

TABLE 31-1:MII MODE DEFAULT
INTERFACE SIGNALS
(FMIIEN = 1, FETHIO = 1)

Pin Name	Description
EMDC	Management Clock
EMDIO	Management I/O
ETXCLK	Transmit Clock
ETXEN	Transmit Enable
ETXD0	Transmit Data
ETXD1	Transmit Data
ETXD2	Transmit Data
ETXD3	Transmit Data
ETXERR	Transmit Error
ERXCLK	Receive Clock
ERXDV	Receive Data Valid
ERXD0	Receive Data
ERXD1	Receive Data
ERXD2	Receive Data
ERXD3	Receive Data
ERXERR	Receive Error
ECRS	Carrier Sense
ECOL	Collision Indication

TABLE 31-2:RMII MODE DEFAULT
INTERFACE SIGNALS
(FMIIEN = 0, FETHIO = 1)

Pin Name	Description
EMDC	Management Clock
EMDIO	Management I/O
ETXEN	Transmit Enable
ETXD0	Transmit Data
ETXD1	Transmit Data
EREFCLK	Reference Clock
ECRSDV	Carrier Sense – Receive Data Valid
ERXD0	Receive Data
ERXD1	Receive Data
ERXERR	Receive Error

Note: Ethernet controller pins that are not used by selected interface can be used by other peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	-	—		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	RXFWM<7:0>									
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
10.0	_	_	_	_	_	_		_		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0		RXEWM<7:0>								

REGISTER 31-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-24 Unimplemented: Read as '0'
- bit 23-16 **RXFWM<7:0>:** Receive Full Watermark bits

The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer.

- bit 15-8 Unimplemented: Read as '0'
- bit 7-0 **RXEWM<7:0>:** Receive Empty Watermark bits

The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer.

Note: This register is only used for RX operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	—	—	—	—	—	—	—	_		
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0		
7.0	_			B2	BIPKTGP<6:)>				

REGISTER 31-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	RBENDDLY<3:0>				PCHRG2RASDLY<3:0>			
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	RAS2CASDLY<3:0>				RAS2RASDLY <3:0>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	W2PCHRGDLY<3:0>				R2PCHRGDLY<3:0>			
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	—	—		PCHRGAL	LDLY<3:0>	

REGISTER 38-15: DDRDLYCFG2: DDR DELAY CONFIGURATION REGISTER 2

Legend:

8					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-28 RBENDDLY<3:0>: Read Burst End Delay bits

These bits specify the minimum number of clocks required from issue of a Read command to the read data burst completion.

bit 27-24 PCHRG2RASDLY<3:0>: Precharge-to-RAS Delay bits

These bits specify the minimum number of clocks required from a Precharge command to a RAS command to the same bank.

bit 23-20 RAS2CASDLY<3:0>: RAS-to-CAS Delay bits

These bits specify the minimum number of clocks required from a RAS command to a CAS command to the same bank.

bit 19-16 RAS2RASDLY<3:0>: Write-to-Read Delay bits

These bits specify the minimum number of clocks required from a RAS command to a RAS command to a different bank on the same Chip Select.

bit 15-12 W2PCHRGDLY<3:0>: Write-to-Precharge Delay bits 3-0

These bits specify the minimum number of clocks required from a Write command to a Precharge command to the same bank as the write.

An overflow bit (DDRDLYCFG1<26>) is provided for delays greater than 15 clock cycles.

bit 11-8 R2PCHRGDLY<3:0>: Read-to-Precharge Delay bits

These bits specify the minimum number of clocks required from a read command to a Precharge command to the same bank as the read.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 PCHRGALLDLY<3:0>: Precharge All Delay bits

These bits specify the minimum number of clocks required from a Precharge all banks command to an Activate or Refresh command.

REGISTER 38-25: DDRSCLLAT: DDL SELF CALIBRATION LOGIC LATENCY REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/ 5	Bit 28/20/12/4	Bit 27/19/11/ 3	Bit 26/18/10/ 2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—		—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—		—	—	—	—
7.0	R/W-0	R/W-1	R/W-1	R/W-0	U-0	U-0	R/W-1	R/W-0
7.0		DLY<3:0>		CAPCLKDLY<3:0>				

Legend:

R = Readable bit	W = Writable bit	Dit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **DDRCLKDLY<3:0>:** DDR Clock Delay bit Recommended value is 4.

bit 3-0 **CAPCLKDLY<3:0>:** Capture Clock Delay bit Recommended value is 3.

REGISTER 38-32:	DDRADLLBYP:	DDR ANALOG D	OLL BYPASS	REGISTER
-----------------	-------------	--------------	------------	----------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31.24	—	—	—	—	—	—	—	ANLDLLBYP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	_	_	_	_	_		_	

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-25 Unimplemented: Read as '0'

bit 24 ANLDLLBYP: Bypass Analog DLL bit

1 = Bypass the Analog DLL and use the PHY Digital DLL

0 = Reserved; do not use

bit 23-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC	W-0, HC
31:24	—	—	—	—	—	—	FEADE	FEACE
00.40	W-0, HC	W-0, HC	W-0, HC					
23:10	FECLE	FEDEBE	FEDCRCE	FEDTOE	FEIDXE	FECEBE	FECCRCE	FECTOE
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	W-0	U-0	U-0	W-0	W-0	W-0	W-0	W-0
7:0	FECNIACE	_	_	FEACIDXE	FEACEBE	FEACCRCE	FEACTOE	FEACNEE

REGISTER 39-15: SDHCFE: SDHC FORCE EVENT REGISTER

Legend:

R = Readable bit	Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-26 Unimplemented: Read as '0'

bit 25	FEADE: Force Event for ADMA Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 24	FEACE: Force Event for Auto CMD 12 Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 23	FECLE: Force Event for Current-Limit Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 22	FEDEBE: Force Event for Data End Bit Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 21	FEDCRCE: Force Event for Data CRC Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 20	FEDTOE: Force Event for Data Time-out Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 19	FEIDXE: Force Event for Command Index Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 18	FECEBE: Force Event for Command End Bit Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 17	FECCRCE: Force Event for Command CRC Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated
bit 16	FECTOE: Force Event for Command Time-out Error bit
	1 = Interrupt was generated
	0 = Interrupt was not generated

bit 15-8 Unimplemented: Read as '0'

40.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

This section describes the power-saving features on the PIC32MZ DA devices. These devices have multiple power domains and offer various methods and modes that allow the user to balance the power consumption with device performance.

40.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

40.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

40.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep mode.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode

- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

40.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a $\tt WAIT$ instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- · On any form of device Reset
- · On a WDT time-out interrupt

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
OS51	Fsys	System Frequency	DC	_	200	MHz	USB module disabled
			30		200	MHz	USB module enabled
OS55a	Fрв	Peripheral Bus Frequency	DC	_	100	MHz	For PBCLKx, 'x' < 7
OS55b			DC	_	200	MHz	For PBCLK7
OS56	Fref	Reference Clock Frequency	—	_	50	MHz	For REFCLK1, REFCLK3, REFCLK4, REFCLKO1, REFCLK3, and REFCLK4 pins

TABLE 44-24: SYSTEM TIMING REQUIREMENTS

TABLE 44-25: SPLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,VDDCORE = 1.7V to 1.9V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristi	cs ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OS50	FIN	PLL Input Frequency Range		5	_	64	MHz	ECPLL, HSPLL, FRCPLL modes
OS52	TLOCK	PLL Start-up Time (L	ock Time)	_	_	100	μs	—
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25	—	+0.25	%	Measured over 100 ms period
OS54	FVco	PLL Vco Frequency	Range	350	_	700	MHz	—
OS54a	Fpll	PLL Output Frequen	cy Range	10	_	200	MHz	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter \qquad \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{CommunicationClock}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter \quad \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} \quad \frac{D_{CLK}}{1.41}$$