

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	10-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f521-c-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.2.2. External Crystal Example	139
14.2.3. External RC Example	141
14.2.4. External Capacitor Example	141
14.3. System Clock Selection	143
15. UART0	144
15.1. Enhanced Baud Rate Generation	145
15.2. Operational Modes	146
15.2.1. 8-Bit UART	146
15.2.2. 9-Bit UART	147
15.3. Multiprocessor Communications	148
16. Enhanced Serial Peripheral Interface (SPI0)	151
16.1. Signal Descriptions	152
16.1.1. Master Out, Slave In (MOSI)	152
16.1.2. Master In, Slave Out (MISO)	152
16.1.3. Serial Clock (SCK)	152
16.1.4. Slave Select (NSS)	152
16.2. SPI0 Master Mode Operation	153
16.3. SPI0 Slave Mode Operation	154
16.4. SPI0 Interrupt Sources	155
16.5. Serial Clock Timing	156
16.6. SPI Special Function Registers	156
17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)	164
17.1. Software Interface with the LIN Peripheral	165
17.2. LIN Interface Setup and Operation	165
17.2.1. Mode Definition	165
17.2.2. Baud Rate Options: Manual or Autobaud	165
17.2.3. Baud Rate Calculations—Manual Mode	165
17.2.4. Baud Rate Calculations—Automatic Mode	168
17.3. LIN Master Mode Operation	169
17.4. LIN Slave Mode Operation	170
17.5. Sleep Mode and Wake-Up	171
17.6. Error Detection and Handling	171
17.7. LIN Registers	172
17.7.1. LIN Direct Access SFR Registers Definition	172
17.7.2. LIN Indirect Access SFR Registers Definition	174
18. Timers	182
18.1. Timer 0 and Timer 1	182
18.1.1. Mode 0: 13-bit Counter/Timer	182
18.1.2. Mode 1: 16-bit Counter/Timer	184
18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload	184
18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	185
18.2. Timer 2	190
18.2.1. 16-bit Timer with Auto-Reload	190
18.2.2. 8-bit Timers with Auto-Reload	191

SFR Definition 19.2. PCA0MD: PCA Mode	207
SFR Definition 19.3. PCA0CPMn: PCA Capture/Compare Mode	208
SFR Definition 19.4. PCA0L: PCA Counter/Timer Low Byte	209
SFR Definition 19.5. PCA0H: PCA Counter/Timer High Byte	209
SFR Definition 19.6. PCA0CPLn: PCA Capture Module Low Byte	209
SFR Definition 19.7. PCA0CPHn: PCA Capture Module High Byte	209
C2 Register Definition 21.1. C2ADD: C2 Address	214
C2 Register Definition 21.2. DEVICEID: C2 Device ID	214
C2 Register Definition 21.3. REVID: C2 Revision ID	215
C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control	215
C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data	215

Table 2.7. Comparator Electrical Characteristics

 $V_{\text{REGIN}} = 2.7-5.25$ V, -40 to +125 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Conditions	Min	Тур	Max	Units
CP0+ - CP0- = 100 mV		780	_	ns
CP0+ - CP0- = -100 mV		980	_	ns
CP0+ - CP0- = 100 mV		850	—	ns
CP0+ - CP0- = -100 mV		1120	—	ns
CP0+ - CP0- = 100 mV	—	870	—	ns
CP0+ - CP0- = -100 mV		1310	—	ns
CP0+ - CP0- = 100 mV		1980	—	ns
CP0+ – CP0– = –100 mV		4770	—	ns
	—	3	9	mV/V
CP0HYP1-0 = 00	—	0.7	2	mV
CP0HYP1-0 = 01	2	5	10	mV
CP0HYP1-0 = 10	5	10	20	mV
CP0HYP1-0 = 11	13	20	40	mV
CP0HYN1-0 = 00		0.7	2	mV
CP0HYN1-0 = 01	2	5	10	mV
CP0HYN1-0 = 10	5	10	20	mV
CP0HYN1-0 = 11	13	20	40	mV
	-0.25	_	V _{DD} + 0.25	V
	—	4	—	pF
	—	0.5	—	nA
	-15	_	15	mV
		1.5	—	kΩ
	—	0.2	4	mV/V
		2.3	—	μs
Mode 0		6	30	μA
Mode 1		3	15	μA
Mode 2	—	2	7.5	μA
Mode 3		0.3	3.8	uА
	Conditions CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 100 mV CP0+ - CP0- = 00 CP0HYP1-0 = 01 CP0HYP1-0 = 11 CP0HYN1-0 = 01 CP0HYN1-0 = 10 CP0HYN1-0 = 11 CP0HYN1-0 = 11 Mode 0 Mode 1 Mode 2 Mode 3	Conditions Min CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0HYP1-0 = 00 CP0HYP1-0 = 01 2 CP0HYN1-0 = 01 2 CP0HYN1-0 = 10 5 CP0HYN1-0 = 11 13 0.25	Conditions Min Typ CP0+ - CP0- = 100 mV 780 CP0+ - CP0- = -100 mV 980 CP0+ - CP0- = 100 mV 1120 CP0+ - CP0- = 100 mV 870 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = -100 mV 1310 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 4770 3 CP0HYP1-0 = 00 CP0HYP1-0 = 10 5 10 CP0HYN1-0 = 01 CP0HYN1-0 = 01 2 5 5 CP0HYN1-0 = 11 13 20 CP0HYN1-0 = 11 13 20 CP0HYN1-0 = 11 13 20 4 1.5	Conditions Min Typ Max CP0+ - CP0- = 100 mV 780 CP0+ - CP0- = -100 mV 980 CP0+ - CP0- = 100 mV 850 CP0+ - CP0- = 100 mV 1120 CP0+ - CP0- = 100 mV 870 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 4770 CP0+ - CP0- = -100 mV 4770 CP0HYP1-0 = 00 0.7 2 CP0HYP1-0 = 10 5 10 20 CP0HYN1-0 = 01 2 5 10 CP0HYN1-0 = 11 13 20 40 CP0HYN1-0 = 11 13 20 40 CP0HYN1-0 = 11 13 <t< td=""></t<>

1. Vcm is the common-mode voltage on CP0+ and CP0-.

2. Guaranteed by design and/or characterization.

Figure 3.6. TSSOP-20 Landing Diagram

Table 3.6. TSSOP-20 Landing Diagram Dimensions

	Symbol	Min	Max
	С	5.80	5.90
	E	0.65 BS	SC.
	X1	0.35	0.45
	Y1	1.35	1.45
Notes	:		
Gene	ral		
1.	All dimensions sh	own are in millimeters (mm) ι	inless otherwise noted.
2.	This land pattern	design is based on the IPC-73	351 guidelines.
Solde	er Mask Design		
3.	All metal pads are	e to be non-solder mask defin	ed (NSMD). Clearance
	between the sold	er mask and the metal pad is	to be 60 µm minimum,
Stone	all the way around	d the pad.	
Stend	<u>ii Design</u>		
4.	A stainless steel,	laser-cut and electro-polished	stencil with trapezoidal
5	The stencil thickn	ess should be 0.125 mm (5 m	sie release.
6.	The ratio of stend	il aperture to land pad size sh	ould be 1.1 for all
•	perimeter pads.		
Card	Assembly		
7.	A No-Clean, Type	-3 solder paste is recommend	ded.
8.	The recommende	d card reflow profile is per the	e JEDEC/IPC J-STD-
	020 specification	for Small Body Components.	

4.3.4. Burst Mode

Burst Mode is a power saving feature that allows ADC0 to remain in a very low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a very low power state, accumulates 1, 4, 8, or 16 samples using an internal Burst Mode Oscillator, then re-enters a very low power state. Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions then enter a very low power state within a single system clock cycle, even if the system clock is slow (e.g. 32.768 kHz), or suspended.

Burst Mode is enabled by setting BURSTEN to logic 1. When in Burst Mode, AD0EN controls the ADC0 idle power state (i.e., the state ADC0 enters when not tracking or performing conversions). If AD0EN is set to logic 0, ADC0 is powered down after each burst. If AD0EN is set to logic 1, ADC0 remains enabled after each burst. On each convert start signal, ADC0 is awakened from its Idle Power State. If AD0C0 is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the AD0PWR bits. Otherwise, ADC0 will start tracking and converting immediately. Figure 4.5 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4.

Important Note: When Burst Mode is enabled, only Post-Tracking and Dual-Tracking modes can be used.

When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADC0 End of Conversion Interrupt Flag (AD0INT) will be set after "repeat count" conversions have been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

Note: When using Burst Mode, care must be taken to issue a convert start signal no faster than once every four SYSCLK periods. This includes external convert start signals.

SFR Definition 4.12. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 4.13. ADC0LTL: ADC0 Less-Than Data Low Byte

Mnemonic	Description	Bytes	Clock Cycles
Boolean Manipulation	1		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			·
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0–R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00–0x7F) or an SFR (0x80–0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 7680 bytes of program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

8.2. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic 1. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

9. Memory Organization and SFRs

The memory organization of the C8051F52x/F52xA/F53x/F53x/F53xA is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory map is shown in Figure 9.1.

Figure 9.1. Memory Map

9.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F520/0A/1/1A and C8051F530/0A/1/1A implement 8 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Addresses above 0x1DFF are reserved on the 8 kB devices. The C8051F523/3A/4/4A and C8051F533/3A/4/4A implement 4 kB of Flash from addresses 0x0000 to 0x0FFF. The C8051F526/6A/7/7A and C8051F536/6A/7/7A implement 2 kB of Flash from addresses 0x0000 to 0x07FF.

Program memory is normally assumed to be read-only. However, the C8051F52x/F52xA/F53x/F53xA can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX write instruction. This feature provides a mechanism for updates to program code and use of the program memory space for non-volatile data storage. Refer to Section "12. Flash Memory" on page 113 for further details.

SFR Definition 12.1. PSCTL: Program Store R/W Control

R	R	R	R	R	R	R/W	R/W	Reset Value
		_		_	_	PSEE	PSWE	00000000
Bit	7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1
							SFR Address:	0x8F
Bits7- Bit1: Bit0:	2: UNUSED: F PSEE: Prog Setting this to be erased Flash memo tion address 0: Flash pro 1: Flash pro PSWE: Prog Setting this write instruct 0: Writes to 1: Writes to memory.	Read = 0000 ram Store E bit (in comb d. If this bit i ory using the sed by the M gram memo gram Memo gram Store V bit allows w tion. The FI Flash progr Flash progr	000b, Write Frase Enabl ination with s logic 1 an MOVX instru- ory erasure Write Enabl riting a byte ash locatior am memory am memory	= don't care e PSWE) allo d Flash writ truction will action. The v disabled. e of data to t n should be / disabled. / enabled; th	e. ows an entir es are enak erase the e value of the he Flash pr erased befo he MOVX w	e page of F bled (PSWE entire page data byte v ogram mer ore writing o vrite instruc	lash prograr E is logic 1), that contains vritten does nory using th data. tion targets l	n memory a write to s the loca- not matter. ne MOVX Flash
Note: S	See Section "12.1 requirements	. Programmir for flash eras	ig The Flash se and write	Memory" on operations.	page 113 for	minimum V	_{DD} and tempe	erature

SFR Definition 12.2. FLKEY: Flash Lock and Key

13.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 13.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which will be assigned to pins P0.4 and P0.5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Note: 4-Wire SPI Only.

Figure 13.3. Crossbar Priority Decoder with No Pins Skipped (TSSOP 20 and QFN 20)

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P1.0 and/or P0.7 (F53x/F53xA) or P0.2 and/or P0.3 (F52x/F52xA) for the external oscillator, P0.0 for V_{REF}, P1.2 (F53x/F53xA) or P0.5

SFR Definition 13.5. P0MDOUT: Port0 Output Mode

SFR Definition 13.6. P0SKIP: Port0 Skip

SFR Definition 14.2. OSCICL: Internal Oscillator Calibration

SFR Definition 14.3. OSCIFIN: Internal Fine Oscillator Calibration

15.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown below.

Figure 15.3. UART Interconnect Diagram

15.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 15.4. 8-Bit UART Timing Diagram

SFR Definition 16.1. SPI0CFG: SPI0 Configuration

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	—
							SFR Address	s: 0xA1
D:4 7.			ال با مع ا					
BIT /:	This bit is so	t to logic 1	u oniy). when a SPI	transfor is	in progress	(Master or	Slave Mod	
Bit 6	MSTEN: Ma	ster Mode F	nahle		in progress	(IVIASIEI UI	Slave Mou	e).
Bit 0.	0: Disable m	aster mode	. Operate i	n slave mod	e.			
	1: Enable ma	aster mode.	Operate a	s a master.				
Bit 5:	CKPHA: SP	I0 Clock Ph	ase.					
	This bit cont	rols the SPI	0 clock pha	ase.				
	0: Data cent	ered on first	t edge of S	CK period.*				
-	1: Data cent	ered on sec	ond edge o	of SCK perio	od.*			
Bit 4:	CKPOL: SP	IU CIOCK PO	larity.	o ritu i				
	0: SCK line l	rois the SPI	U CIOCK POI	anty.				
	1: SCK line h	high in idle s	state					
Bit 3:	SLVSEL: Sla	ave Selecte	d Flag (rea	d onlv).				
	This bit is se	t to logic 1 v	whenever th	he NSS pin	is low indic	ating SPI0 i	is the selec	ted slave. It
	is cleared to	logic 0 whe	en NSS is h	igh (slave n	ot selected). This bit d	oes not ind	icate the
	instantaneou	us value at t	he NSS pir	n, but rather	a de-glitch	ed version	of the pin ir	iput.
Bit 2:	NSSIN: NSS	S Instantane	ous Pin Inp	out (read on	y).			
	This bit mimi	ics the insta	Intaneous v	value that is	present on	the NSS p	ort pin at th	e time that
Dit 1	COMT: Shift	S read. This Podictor Er	s input is no	in Slave Me	0. .do road or	alv)		
DIL I.	This bit will b	ne set to log	lic 1 when a	all data has	heen transf	ferred in/ou	t of the shif	t register
	and there is	no new info	rmation av	ailable to re	ad from the	e transmit b	uffer or writ	e to the
	receive buffe	er. It returns	to logic 0 v	vhen a data	byte is trar	nsferred to t	the shift rec	jister from
	the transmit	buffer or by	a transition	n on SCK.	-		-	
	NOTE: SRM	T = 1 when	in Master I	Mode.				
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	d only).		
	I his bit will t	be set to log	IC 1 When t	ne receive t	ouffer has t	oeen read a	nd contains	s no new
	this bit will re	it there is ne		ION available			111111111111111111111111111111111111111	. Deen reau,
	NOTE: RXB	MT = 1 whe	en in Maste	r Mode.				
lote: See]	Table 16.1 for ti	ming parame	eters.					

17.1. Software Interface with the LIN Peripheral

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LIN0 Control Mode (LIN0CF) register. The other LIN registers are accessed indirectly through the two SFRs LIN0 Address (LINADDR) and LIN0 Data (LINDATA). The LINADDR register selects which LIN register is targeted by reads/writes of the LINDATA register. The full list of indirectly-accessible LIN register is given in Table 17.4 on page 174.

17.2. LIN Interface Setup and Operation

The hardware based LIN peripheral allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the peripheral is to define the basic characteristics of the node:

- Mode—Master or Slave
- Baud Rate—Either defined manually or using the autobaud feature (slave mode only).
- Checksum Type—Select between classic or enhanced checksum, both of which are implemented in hardware.

17.2.1. Mode Definition

Following the LIN specification, the peripheral implements both the Slave and Master operating modes in hardware. The mode is configured using the MODE bit (LIN0CF.6).

17.2.2. Baud Rate Options: Manual or Autobaud

The LIN peripheral can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LIN0CF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

17.2.3. Baud Rate Calculations—Manual Mode

The baud rate used by the peripheral is a function of the System Clock (SYSCLK) and the bit-timing Registers according to the following equation:

$$baud_rate = \frac{SYSCLK}{2^{(prescaler + 1)} \times divider \times (multiplier + 1)}$$

The prescaler, divider and multiplier factors are part of the LIN0DIV and LIN0MUL registers and can assume values in the following range:

17.4. LIN Slave Mode Operation

When the device is configured for slave mode operation, it must wait for a command from a master node. Access from the firmware to data buffer and ID registers of the LIN peripheral is only possible when a data request is pending (DTREQ bit (LIN0ST.4) is 1) and also when the LIN bus is not active (ACTIVE bit (LIN0ST.7) is set to 0).

The LIN peripheral in slave mode detects the header of the message frame sent by the LIN master. If slave synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time.

The LIN peripheral configured for slave mode will generated an interrupt in one of three situations:

- 1. After the reception of the IDENTIFIER FIELD.
- 2. When an error is detected.
- 3. When the message transfer is completed.

The application should perform the following steps when an interrupt is detected:

- 1. Check the status of the DTREQ bit (LIN0ST.4). This bit is set when the IDENTIFIER FIELD has been received.
- 2. If DTREQ (LIN0ST.4) is set, read the identifier from LIN0ID and process it. If DTREQ (LIN0ST.4) is not set, continue to step 7.
- 3. Set the TXRX bit (LIN0CTRL.5) to 1 if the current frame is a transmit operation for the slave and set to 0 if the current frame is a receive operation for the slave.
- 4. Load the data length into LIN0SIZE.
- 5. For a slave transmit operation, load the data to transmit into the data buffer.
- 6. Set the DTACK bit (LIN0CTRL.4). Continue to step 10.
- 7. If DTREQ (LIN0ST.4) is not set, check the DONE bit (LIN0ST.0). The transmission was successful if the DONE bit is set.
- 8. If the transmission was successful and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
- 9. If the transmission was not successful, check LIN0ERR to determine the nature of the error. Further error handling has to be done by the application.
- 10.Set the RSTINT (LIN0CTRL.3) and RSTERR bits (LIN0CTRL.2) to reset the interrupt request and the error flags.

In addition to these steps, the application should be aware of the following:

- 1. If the current frame is a transmit operation for the slave, steps 1 through 5 must be completed during the IN-FRAME RESPONSE SPACE. If it is not completed in time, a timeout will be detected by the master.
- 2. If the current frame is a receive operation for the slave, steps 1 through 5 have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN peripheral will be overwritten and a timeout error will be detected in the LIN peripheral.
- 3. The LIN module does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LINOCTRL.7) instead of setting the DTACK (LINOCTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN peripheral stops the processing of the LIN communication until the next SYNC BREAK is received.
- 4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is

SFR Definition 17.15. LIN0SIZE: LIN0 Message Size Register

SFR Definition 17.16. LIN0DIV: LIN0 Divider Register

18.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see Section "10.5. External Interrupts" on page 104 for details on the external input signals INT0 and INT0).

Figure 18.2. T0 Mode 2 Block Diagram

R/W Reset Value TOMO Bit0 SFR Address: 0x89 by bit IN1PL in register on page 105). (CKCON.4). on external input pin
TOMO 0000000 Bit0 SFR Address: 0x89 by bit IN1PL in register " on page 105). CKCON.4). on external input pin
Bit0 SFR Address: 0x89 by bit IN1PL in register " on page 105). (CKCON.4). on external input pin
SFR Address: 0x89 by bit IN1PL in register " on page 105). (CKCON.4). on external input pin
by bit IN1PL in register " on page 105). (CKCON.4). on external input pin
by bit IN1PL in register " on page 105). (CKCON.4). on external input pin
by bit IN1PL in register " on page 105). (CKCON.4). on external input pin
" on page 105). (CKCON.4). on external input pin
(CKCON.4). on external input pin
on external input pin
by bit IN0PL in register
" on page 105).
CRCON.3).

