

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	10-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f521-c-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.3.2. Stop Mode	. 90
8.3.3. Suspend Mode	. 90
9. Memory Organization and SFRs	. 92
9.1. Program Memory	. 92
9.2. Data Memory	. 93
9.3. General Purpose Registers	. 93
9.4. Bit Addressable Locations	. 93
9.5. Stack	93
9.6 Special Function Registers	. 00
10 Interrunt Handler	98
10.1 MCU Interrupt Sources and Vectors	98
10.2 Interrupt Priorities	98
10.3 Interrupt Latency	98
10.1 Interrupt Register Descriptions	100
10.5 External Interrunte	100
11 Poset Sources	104
11.1 Dowor On Pocot	107
11.2 Power-Eail Poset / V/DD Monitors (V/DDMON0 and V/DDMON1)	107
11.2. Fower-Fail Reset / VDD Monitors (VDDMONO and VDDMONT)	100
11.2. T. VDD Mornicor Thresholds and Minimum VDD	100
11.3. External Reset	110
11.4. MISSING CIOCK Delector Reset	110
11.6. DCA Wetchdog Timer Depot	110
11.7 Electric Depart	110
11.9. Softwara Daget	110
11.0. Sullwale Resel	112
12. Flash Memory	113
12.1. Programming The Flash Memory	113
12.1.1. Flash Lock and Key Functions	113
12.1.2. Flash Erase Procedure	114
12.1.3. Flash Write Procedure	114
12.2. Flash write and Erase Guidelines	115
12.2.1. V _{DD} Maintenance and the V _{DD} monitor	115
12.2.2. PSWE Maintenance	115
12.2.3. System Clock	110
12.3. Non-volatile Data Storage	117
12.4. Security Options	117
	120
13.1. Priority Crossbar Decoder	122
	126
13.3. General Purpose Port I/O	128
14. USCIIIators	135
14.1. Programmable Internal Oscillator	135
14.1.1. Internal Oscillator Suspend Mode	136
14.2. External Oscillator Drive Circuit	139
14.2.1. Clocking Timers Directly Through the External Oscillator	139

Name	Pin Numbers		Туре	Description
	'F52xA 'F52x-C	'F52x		
P0.3/TX*/	—	8	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "14. Oscillators" on page 135.
P0.2	9	9	D I/O or	Port 0.2. See Port I/O Section for a complete description.
XTAL1			A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. Section "14. Oscillators" on page 135.
P0.1/	10	10	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.
C2D			D I/O	Bi-directional data signal for the C2 Debug Interface
Note: Please	refer to Se	ection "2	20. Device S	Specific Behavior" on page 210.

Table 3.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10) (Continued)

Table 3.9. QFN-20 Landing Diagram Dimensions

Symbol	Min	Max
C1	3.90	4.00
C2	3.90	4.00
E	0.50 BS	SC.
X1	0.20	0.30
X2	2.75	2.85
Y1	0.65	0.75
Y2	2.75	2.85

Notes:

<u>General</u>

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

<u>Solder Mask Design</u>

 All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- **6.** The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.

Card Assembly

- 8. A No-Clean, Type-3 solder paste is recommended.
- **9.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

NW NU NU<	D/\//	P/M	DAM			Þ۸۸/		D ///	Posot Volue
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									01110111
End End End End End Other Other <td>Bit7</td> <td>Bit6</td> <td>Bit5</td> <td>Rit4</td> <td>Bit3</td> <td>Bit2</td> <td>Bit1</td> <td>Bit0</td> <td>SFR Address</td>	Bit7	Bit6	Bit5	Rit4	Bit3	Bit2	Bit1	Bit0	SFR Address
One of the select which Port pin is used as the Comparator0 negative input. Eits7-4: CMXON3-CMXON2 CMXON1 CMXON0 Negative Input CMXON3 CMXON1 CMXON0 Negative Input OME OME CMXON3 CMXON1 CMXON0 Negative Input CMXON3 CMXON1 CMXON0 Negative Input OME OME OME OME CMXOP3 CMXOP1 CMXOP0 P1.5* OME OME SOME SOME CMXOP3 CMXOP0 COMPATION OME CMXOP3 CMXOP1 CMXOP0 Positive Input OME SOME CMXOP3 CMXOP1 CMXOP0 Positive Input CMXOP3 CMXOP1 CMXOP0 Positive Input OME CMXOP3 CMXOP1 CMXOP0 Positive Input OME CMXOP3 CMXOP1 CMXOP0 Positive Input OME CMXOP1 CMXOP0 Positive Input	Diti	Dito	Dito	BIT	Dito	DILL	Ditt	Bito	0x9F
Bits7-4: CMXON3-CMXON0: Comparator0 Negative Input MUX Select. These bits select which Port pin is used as the Comparator0 negative input CMXON3 CMXON2 CMXON1 CMXON0 Negative Input 0 0 0 P0.1 0 0 0 P0.1 0 0 0 P0.3 0 0 1 P0.3 0 0 1 P0.5 0 0 1 P0.7* 0 1 0 P1.1* 0 1 0 P1.5* 0 1 1 P1.7* 0 1 1 P1.5* 0 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMXOP3-CMXOP0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. Image: CMXOP2 CMXOP1 CMXOP0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. Image: CMXOP2 CMXOP1 CMXOP0 Positive Input P0.0 0 0 1 0 P0.0 0 0 1 0									0,01
These bits select which Port pin is used as the Comparator0 negative input. $\overline{(MX0N3)}$ $\overline{(MX0N1)}$ $\overline{(MX0N0)}$ Negative Input 0 0 0 1 P0.3 0 0 1 0 P0.5 0 0 1 1 P0.7* 0 1 0 P0.5 0 0 1 1 P0.7* 0 1 0 0 1.1 P0.7* 0 1 0 P1.1* 0 1 1 P1.3* 0 1 1 P1.7* 0 1 1 P1.7* 0 1 1 P1.7* 0 1 1 1 P1.7* 0 1 1 1 P1.7* 0 1 </td <td>Bits7-4:</td> <td>CMX0N3-0</td> <td>CMX0NO: (</td> <td>Comparato</td> <td>r0 Negative</td> <td>Input MUX Se</td> <td>elect.</td> <td></td> <td></td>	Bits7-4:	CMX0N3-0	CMX0NO: (Comparato	r0 Negative	Input MUX Se	elect.		
$\overline{(MX0N3)}$ $\overline{(MX0N2)}$ $\overline{(MX0N1)}$ $\overline{(MX0N0)}$ $\overline{Negative Input}$ 0001P0.30010P0.50011P0.7*0100P1.1*0101P1.3*0111P1.7*0111P1.7*Note: Available only on the C8051F53x/53xA devicesBits1-0:CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select.Bits1-0:CMX0P3-CMX0P2CMX0P1CMX0P0Positive Input0000P0.0001P0.2001P0.4001P0.4010P1.4*011P1.6*		These bits	select whic	ch Port pin	is used as	the Comparato	r0 negative	e input.	
CMXON3 CMXON2 CMXON1 CMXON0 Negative Input 0 0 0 0 P0.1 0 0 0 1 P0.3 0 0 1 0 P0.5 0 0 1 1 P0.7* 0 1 0 P1.1* 0 1 0 P1.5* 0 1 1 P1.5* 0 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. Xinct and the comparator on the CMX0P3 CMX0P1 CMX0P0 Positive Input O O O O O O O O O O P0.0 O O O O O P0.0 O O O O O O P0.4 O O O O O O P0.4 O O O O O O P0.4 O O O O O O O P1.0* O O O O O O P1.4* O O O O O O P1.4*							•	•	
0000P0.10001P0.30010P0.50011P0.7*0100P1.1*0101P1.3*0110P1.5*0111P1.7*0111P1.7*0111P1.7*0111P1.7*0111P1.7*Iote: Available only on the C8051F53x/53xA devicesBits1-0:CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select.These bits select which Port pin is used as the Comparator0 positive input.		CMX0N3	CMX0N2	CMX0N1	CMX0N0	Negative Inp	ut		
0001P0.30010P0.50011P0.7*0100P1.1*0101P1.3*0110P1.5*0111P1.7*0111P1.7*0111P1.7*0111P1.7*0111P1.7*011P0.0Positive Input MUX Select.These bits select which Port pin is used as the Comparator0 positive input.		0	0	0	0	P0.1			
0 0 1 0 $P0.5$ 0 0 1 1 $P0.7^*$ 0 1 0 0 $P1.1^*$ 0 1 0 1 $P1.3^*$ 0 1 1 0 $P1.5^*$ 0 1 1 0 $P1.7^*$ Note: Available only on the C8051F53x/53xA devicesBits1-0:CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $\overline{MX0P3}$ CMX0P2CMX0P1CMX0P0 0 0 0 0 0 0 0 $P0.0$ 0 0 1 $P0.4$ 0 0 1 $P0.4$ 0 0 1 $P1.2^*$ 0 1 0 $P1.4^*$ 0 1 1 $P1.6^*$		0	0	0	1	P0.3			
0 0 1 1 $P0.7^*$ 0 1 0 0 $P1.1^*$ 0 1 0 1 $P1.3^*$ 0 1 1 0 $P1.5^*$ 0 1 1 1 $P1.7^*$ lote: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $O \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $		0	0	1	0	P0.5			
0 1 0 0 P1.1* 0 1 0 1 P1.3* 0 1 1 0 P1.5* 0 1 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. 0 0 0 P0.0 0 0 0 P0.0 0 0 1 P0.2 0 0 1 P0.4 0 0 1 P1.0* 0 1 0 P1.4* 0 1 0 P1.4* 0 1 1 P1.6*		0	0	1	1	P0.7*			
0 1 0 1 P1.3* 0 1 1 0 P1.5* 0 1 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. These bits select which Port pin is used as the Comparator0 positive input. $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{1}$		0	1	0	0	P1.1*			
0 1 1 0 P1.5* 0 1 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $\overline{\mathbf{CMX0P3}}$ $\overline{\mathbf{CMX0P2}}$ $\overline{\mathbf{CMX0P0}}$ $\overline{\mathbf{Positive Input}}$ 0 0 0 0 Positive Input 0 0 0 1 Po.2 0 0 1 1 Po.6* 0 1 0 P1.4* 0 0 1 0 P1.4* 0 0 1 1 P1.6* P1.6*		0	1	0	1	P1.3*			
0 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$		0	1	1	0	P1.5*			
Note: Available only on the C8051F53x/53xA devicesBits1–0: CMX0P3–CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input.		0	1	1	1	P1.7*			
CMX0P3CMX0P2CMX0P1CMX0P0Positive Input0000P0.00001P0.20010P0.40011P0.6*0100P1.0*0101P1.2*0110P1.4*0111P1.6*	Bits1–0:	CMX0P3–0 These bits	CMX0P0: C select whic	Comparator	r0 Positive is used as	Input MUX Seletthe Comparato	ect. r0 positive	input.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CMX0P3	CMX0P2	CMX0P1	CMX0P0	Positive Inp	ut		
		0	0	0	0	P0.0			
		0	0	0	1	P0.2			
0 0 1 1 P0.6* 0 1 0 0 P1.0* 0 1 0 1 P1.2* 0 1 1 0 P1.4* 0 1 1 P1.6*		0	0	1	0	P0.4			
0 1 0 0 P1.0* 0 1 0 1 P1.2* 0 1 1 0 P1.4* 0 1 1 P1.6*		0	0	1	1	P0.6*			
0 1 0 1 P1.2* 0 1 1 0 P1.4* 0 1 1 1 P1.6*		0	1	0	0	P1.0*			
0 1 1 0 P1.4* 0 1 1 1 P1.6*		0	1	0	1	P1.2*			
0 1 1 1 P1.6*		0	1	1	0	P1.4*			
		0	1	1	1	P1.6*			
			•		•				

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Valu
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
							SFR Address	: 0xD0
Bit7:	CY: Carry	/ Flag.						
	This bit is	set when	the last arithmet	ic operatio	n resulted i	n a carry (a	addition) or a	a borrow
	(subtracti	on). It is cl	eared to 0 by all	other arith	metic opera	ations.	,	
it6:	AC: Auxil	iary Carry	Flag					
	This bit is	set when	the last arithmeti	c operatior	resulted in	a carry int	o (addition)	or a borro
	from (sub	traction) th	ne high order nib	ble. It is cle	eared to 0 b	by all other	arithmetic o	perations
it5:	F0: User	Flag 0.						
	This is a	bit-address	sable, general pu	urpose flag	for use une	der softwar	e control.	
its4–3:	RS1-RS): Register	Bank Select.					
	These bit	s select wi	nich register ban	k is used c	uring regis	ter accesse	es.	
	RS1	RS0	Register Bank	Addr	ess			
	RS1 0	RS0 0	Register Bank	Addr 0x00–0x0	ess 7			
	RS1 0 0	RS0 0 1	Register Bank 0 1	Addr 0x00–0x0 0x08–0x0	ess 7 F			
	RS1 0 0 1	RS0 0 1 0	Register Bank 0 1 2	Addr 0x00–0x0 0x08–0x0 0x10–0x1	ess 7 F 7			
	RS1 0 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
	RS1 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
sit2:	RS1 0 1 1 0 V: Over	RS0 0 1 0 1 flow Flag.	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
lit2:	RS1 0 1 1 OV: Over This bit is	RS0 0 1 0 1 flow Flag.	Register Bank 0 1 2 3 nder the followin	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst	ess 7 F 7 F ances:			
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o	Register Bank 0 1 2 3 nder the followin r SUBB instructio	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes	ess 7 F 7 F F ances: a sign-chai	nge overflo	w.	
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD • A MUL	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o nstruction	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes	ess 7 F 7 F ances: a sign-chai	nge overflo r than 255)	W.	
Sit2:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction istruction o	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-b	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu	ess 7 F 7 F ances: a sign-chai ilt is greate ndition.	nge overflo r than 255)	w.	
Bit2:	RS1 0 1 1 OV : Over This bit is • An ADD • A MUL • A DIV ir The OV b	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o instruction struction c it is cleare	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2:	RS1 0 1 1 0 V: Over This bit is • An ADD • A MUL i • A DIV ir The OV k cases.	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o instruction struction wit is cleare	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate ndition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
iit2: iit1:	RS1 0 1 1 0 V: Over This bit is • An ADD • A MUL • A DIV ir The OV b cases. F1: User This is a	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o instruction struction bit is cleare Flag 1.	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2: Sit1:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir The OV b cases. F1: User This is a DAPITY:	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o instruction struction bit is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 Inder the followin r SUBB instruction results in an over causes a divide-b d to 0 by the AD sable, general pute	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chan It is greate ndition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions e control.	in all oth
3it2: 3it1: 3it1:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir The OV b cases. F1: User This is a PARITY: This bit is	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o instruction struction istruction o it is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD sable, general pugation p. the sum of the exit	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC, urpose flag	ess 7 F 7 F 7 F ances: a sign-chai at sign-chai it is greate adition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions re control.	in all othe

9. Memory Organization and SFRs

The memory organization of the C8051F52x/F52xA/F53x/F53x/F53xA is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory map is shown in Figure 9.1.

Figure 9.1. Memory Map

9.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F520/0A/1/1A and C8051F530/0A/1/1A implement 8 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Addresses above 0x1DFF are reserved on the 8 kB devices. The C8051F523/3A/4/4A and C8051F533/3A/4/4A implement 4 kB of Flash from addresses 0x0000 to 0x0FFF. The C8051F526/6A/7/7A and C8051F536/6A/7/7A implement 2 kB of Flash from addresses 0x0000 to 0x07FF.

Program memory is normally assumed to be read-only. However, the C8051F52x/F52xA/F53x/F53xA can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX write instruction. This feature provides a mechanism for updates to program code and use of the program memory space for non-volatile data storage. Refer to Section "12. Flash Memory" on page 113 for further details.

SFR Definition 13.9. P1: Port1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address:	0x90
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when con 0: P1.n pin is 1: P1.n pin is	ut appears / Output. h Output (hi ys reads 0 nfigured as s logic low. s logic high	on I/O pins igh impedar if selected a digital input	per Crossb nce if corres as analog in t.	ar Registers ponding P1 put in regist	s. MDOUT.n ter P1MDIN	bit = 0). I. Directly re	ads Port

SFR Definition 13.10. P1MDIN: Port1 Input Mode

SFR Definition 13.11. P1MDOUT: Port1 Output Mode

SFR Definition 13.12. P1SKIP: Port1 Skip

16.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 16.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 16.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 16.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

SFR Definition 16.4. SPI0DAT: SPI0 Data

17.4. LIN Slave Mode Operation

When the device is configured for slave mode operation, it must wait for a command from a master node. Access from the firmware to data buffer and ID registers of the LIN peripheral is only possible when a data request is pending (DTREQ bit (LIN0ST.4) is 1) and also when the LIN bus is not active (ACTIVE bit (LIN0ST.7) is set to 0).

The LIN peripheral in slave mode detects the header of the message frame sent by the LIN master. If slave synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time.

The LIN peripheral configured for slave mode will generated an interrupt in one of three situations:

- 1. After the reception of the IDENTIFIER FIELD.
- 2. When an error is detected.
- 3. When the message transfer is completed.

The application should perform the following steps when an interrupt is detected:

- 1. Check the status of the DTREQ bit (LIN0ST.4). This bit is set when the IDENTIFIER FIELD has been received.
- 2. If DTREQ (LIN0ST.4) is set, read the identifier from LIN0ID and process it. If DTREQ (LIN0ST.4) is not set, continue to step 7.
- 3. Set the TXRX bit (LIN0CTRL.5) to 1 if the current frame is a transmit operation for the slave and set to 0 if the current frame is a receive operation for the slave.
- 4. Load the data length into LIN0SIZE.
- 5. For a slave transmit operation, load the data to transmit into the data buffer.
- 6. Set the DTACK bit (LIN0CTRL.4). Continue to step 10.
- 7. If DTREQ (LIN0ST.4) is not set, check the DONE bit (LIN0ST.0). The transmission was successful if the DONE bit is set.
- 8. If the transmission was successful and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
- 9. If the transmission was not successful, check LIN0ERR to determine the nature of the error. Further error handling has to be done by the application.
- 10.Set the RSTINT (LIN0CTRL.3) and RSTERR bits (LIN0CTRL.2) to reset the interrupt request and the error flags.

In addition to these steps, the application should be aware of the following:

- 1. If the current frame is a transmit operation for the slave, steps 1 through 5 must be completed during the IN-FRAME RESPONSE SPACE. If it is not completed in time, a timeout will be detected by the master.
- 2. If the current frame is a receive operation for the slave, steps 1 through 5 have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN peripheral will be overwritten and a timeout error will be detected in the LIN peripheral.
- 3. The LIN module does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LINOCTRL.7) instead of setting the DTACK (LINOCTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN peripheral stops the processing of the LIN communication until the next SYNC BREAK is received.
- 4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is

SFR Definition 17.13. LIN0ST: LIN0 STATUS Register

R	R	R	R	R/W	R	R	R	Reset Value
ACTIVE	IDLTOUT	ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J
							Address:	0x09 (indirect)
Bit7:	ACTIVE: LIN	Bus Activi	ty Bit.					
	0: No transm	hission activ	vity detected	d on the LIN	l bus.			
	1: Transmiss	sion activity	detected of	n the LIN bu	JS.			
Bit6:	IDLTOUT: B	us Idle Time	eout Bit (sia	ave mode o	only).			
	0: The bus h	as not beel	n idle for fol	ur seconds.	مممعام امبينا	the hue is a		
Bit5.		arted transp	een delecte	a lor iour s	econas, bui	the bus is r	iot yet in Sie	sep mode.
DILJ.		nt transmis	sion has no	t heen inter	runted or st	onned This	hit is reset	to 0 after
	receiving a S	SYNCH BRI	FAK that do	es not inter	rupt a pend	ling transmis	ssion	
	1: New SYN	CH BREAK	detected b	efore the e	nd of the las	st transmissi	ion or the S	TOP bit
	(LIN0CTRL.	7) has beer	n set.					
Bit4:	DTREQ: Dat	a Request	bit (slave n	node only).				
	0: Data ident	tifier has no	t been rece	eived.				
	1: Data ident	tifier has be	en received	d.				
Bit3:	LININT: Inter	rrupt Reque	est bit.					、
	0: An interru	pt is not pe	nding. This	bit is cleare	d by setting	grstint (L	INOCTRL3)
Bi+2.	T: There is a	penaing Li	NU Interrup	ι.				
DILZ.	0. No error h	as heen de	ntented This	s hit is clear	ed hv settir			2)
	1: An error h	as been de	tected.	5 511 15 61641	cu by Setti	IS NOTENIN		
Bit1:	WAKEUP: V	Vakeup Bit.						
	0: A wakeup	signal is no	ot being trai	nsmitted an	d has not b	een received	d.	
	1: A wakeup	signal is be	eing transm	itted or has	been recei	ved.		
Bit0:	DONE: Tran	smission C	omplete Bit					
	0: A transmis	ssion is not	in progress	or has not	been starte	d. This bit is	cleared at t	the start of
	a transmissio	on.						
	1: The curre	nt transmis	sion is com	plete.				

18. Timers

Each MCU includes three counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit auto-reload timer for use with other device peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes	Timer 2 Modes
13-bit counter/timer	16 bit timer with auto relead
16-bit counter/timer	
8-bit counter/timer with auto-reload	
Two 8-bit counter/timers (Timer 0 only)	Two 8-bit timers with auto-reload

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M–T0M) and the Clock Scale bits (SCA1–SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 18.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it must be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

18.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (Section "10.4. Interrupt Register Descriptions" on page 100); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section 10.4). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

18.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "13.1. Priority Crossbar Decoder" on page 122 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is

18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 18.3. T0 Mode 3 Block Diagram

SFR Definition 18.1. TCON: Timer Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addrossablo
							SFR Address:	Ox88
Bit7:	TF1: Timer 1	Overflow I	Flag.					
	Set by hardv	vare when	Timer 1 ove	rflows. This	flag can b	e cleared by	software bu	ut is auto-
	0: No Timor	ared when	the CPU ve	ectors to the	i imer 1 in	terrupt servi	ce routine.	
	1. Timer 1 ha	as overflow	ed					
Bit6:	TR1: Timer 1	Run Cont	rol.					
	0: Timer 1 di	sabled.						
	1: Timer 1 er	nabled.						
Bit5:	TF0: Timer C	Overflow I	Flag.	и. т і.	0		()	
	Set by hardy	vare when	the CPLLye	erriows. This	Timer 0 in	e cleared by	Software bu	ut is auto-
	0: No Timer	0 overflow	detected.			ionupi servi	ce routine.	
	1: Timer 0 ha	as overflow	ed.					
Bit4:	TRO: Timer () Run Cont	rol.					
	0: Timer 0 di	sabled.						
D:42.	1: Timer 0 er	habled.						
DILJ.	This flag is s	et by hardw	i. Vare when a	n edae/leve	of type de	fined by IT1	is detected	lt can be
	cleared by so	oftware but	is automati	cally cleare	d when the	CPU vector	s to the Exte	ernal Inter-
	rupt 1 servic	e routine if	IT1 = 1. Wh	nen ÍT1 = 0,	this flag is	set to 1 whe	en INT0 is a	ctive as
	defined by bi	it IN1PL in I	register IT0	1CF (see S	FR Definitio	on 10.5. "IT(01CF: INT0/	INT1 Con-
D'/0	figuration" or	n page 105).					
Bit2:	This bit solo	t 1 Type Se	elect.	urod INITO in	torrupt will	ha adaa ar l	oval consitiv	
	configured a	ctive low or	r high by the	e IN1PL bit	in the IT01	CF register (see SFR	C. INTO 13
	Definition 10	.5. "IT01C	F: INT0/INT	1 Configura	ation" on pa	age 105).	(
	0: <u>INT0</u> is lev	el triggere	d.					
D:44	1: INT0 is ec	lge triggere	ed.					
BITT	This flag is s	i interrupt (et by bardw). Vare when a	n edae/leva	al of type de	fined by IT() is detected	lt can be
	cleared by so	oftware but	is automati	callv cleare	d when the	CPU vector	s to the Exte	ernal Inter-
	rupt 0 servic	e routine if	IT0 = 1. Wh	nen ÍT0 = 0,	this flag is	set to 1 whe	en <mark>INT0</mark> is a	ctive as
	defined by bi	t IN0PL in	register IT0	1CF (see S	FR Definitio	on 10.5. "IT(01CF: INT0/	INT1 Con-
D:40.	figuration" or	n page 105). 					
BITU:	This bit select	t U Type Se	the configu	ured INITO in	torrunt will	ha adaa ar l	oval consitiv	INITO is
	configured a	ctive low or	r high by the	e INOPL bit	in reaister l	T01CF (see	SFR Defini	tion 10.5.
	"IT <u>01CF</u> : INT	F0/INT1 Co	nfiguration"	on page 10)5).	(
	0: <u>INT0</u> is lev	vel triggere	d.					
	1: INTO is ec	lge triggere	ed.					

18.2.3. External Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 2 can be clocked from the system clock, or the system clock divided by 12, depending on the T2ML (CKCON.4) and T2XCLK bits. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator/8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16-bit auto-reload mode when using Capture Mode.

For example, if T2ML = 1b and TF2CEN = 1b, Timer 2 will clock every SYSCLK and capture every external clock divided by 8. If the SYSCLK is 24.5 MHz and the difference between two successive captures is 5984, then the external clock frequency is:

$$\frac{24.5 \text{ MHz}}{(5984/8)} = 0.032754 \text{ MHz or } 32.754 \text{ kHz}$$

This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

Figure 18.6. Timer 2 Capture Mode Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address	s: 0xC8
Bit7:	TF2H: Time	r 2 High By	te Overflow	Flag.				
	Set by hard	ware when	the Timer 2	high byte o	erflows fro	om 0xFF to	0x00. In 16	bit mode,
	this will occu	ur when tim tting this bit	causes the		tor to the T	imor 2 inte	nthe Timer 2	routine
	TF2H is not	automatica	llv cleared l	ov hardware	and must l	be cleared	bv software	e rouine.
Bit6:	TF2L: Time	r 2 Low Byte	e Overflow	Flag.				
	Set by hard	ware when	the Timer 2	low byte over	erflows fror	m 0xFF to	0x00. When	this bit is
	set, an inter	rupt will be	generated if	TF2LEN is	set and Tin	ner 2 interr	upts are ena	abled. TF2L
	will set when	n the low by	te overflow	s regardless	of the 1 m	er 2 mode	. This bit is r	not automat
Bit5 [.]	TF2LEN. Ti	mer 2 I ow F	are. Byte Interru	ot Enable				
	This bit ena	bles/disable	es Timer 2 L	ow Byte inte	errupts. If T	F2LEN is	set and Time	er 2 inter-
	rupts are en	abled, an ir	nterrupt will	be generate	d when the	e low byte	of Timer 2 ov	verflows.
	This bit sho	uld be clear	ed when op	erating Time	er 2 in 16-b	oit mode.		
	0: Timer 2 L	ow Byte inte	errupts disa	bled. bled				
Rit4 [.]	TE2CEN Ti	mer 2 Cant	ure Enable	bieu.				
51(1)	0: Timer 2 c	apture mod	e disabled.					
	1: Timer 2 c	apture mod	e enabled.					
Bit3:	T2SPLIT: Ti	mer 2 Split	Mode Enab	le.				
	When this b	it is set, Tin	her 2 operat	es as two 8-	bit timers v	with auto-re	eload.	
	0: Timer 2 0 1: Timer 2 0	perates in 1	two 8-bit auto-r	eload mode.	Ders			
Bit2:	TR2: Timer	2 Run Cont	rol.		1013.			
	This bit ena	bles/disable	es Timer 2. I	n 8-bit mode	e, this bit ei	nables/disa	ables TMR2	H only;
	TMR2L is al	lways enabl	ed in this m	ode.				
	0: Timer 2 d	isabled.						
Rit1.	1: Timer 2 e	nabled.	rite - don't	care				
Bit0:	T2XCLK: Ti	mer 2 Exter	nal Clock S	elect.				
	This bit sele	cts the exte	rnal clock s	ource for Tir	ner 2. If Tir	mer 2 is in	8-bit mode,	this bit
	selects the	external osc	illator clock	source for b	ooth timer b	oytes. How	vever, the Tir	ner 2 Clock
	Select bits (T2MH and	T2ML in reg	ister CKCO	N) may still	l be used t	o select bety	ween the
	external clo	ck and the s	system clock	k for either ti	mer. n clock divi	ided by 12		
	1. Timer 2 e	xternal cloc	k selection	is the extern	al clock div	vided by 12	•	

SFR Definition 18.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 18.11. TMR2L: Timer 2 Low Byte

SFR Definition 18.12. TMR2H Timer 2 High Byte

19.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 19.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 19.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Figure 19.7. PCA Frequency Output Mode

20. Device Specific Behavior

This chapter contains behavioral differences between the silicon revisions of C8051F52x/52xA/F53x/53xA devices.

These differences do not affect the functionality or performance of most systems and are described below.

20.1. Device Identification

The Part Number Identifier on the top side of the device package can be used for decoding device information. The first character of the trace code identifies the silicon revision. On C8051F52x-C/53x-C devices, the trace code (second line on the TSSOP-20 and DFN-10 packages; third line on the QFN-20 package) will begin with the letter "C". The "A" suffix at the end of the part number such as "C8051F530A" is only present on Revision B devices. All other revisions do not include this suffix. Figures 20.1, 20.2, and 20.3 show how to find the part number on the top side of the device package.

Figure 20.2. Device Package—QFN 20

