

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	10-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f521a-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	13
	1.1. Ordering Information	14
	1.2. CIP-51 [™] Microcontroller	18
	1.2.1. Fully 8051 Compatible Instruction Set	18
	1.2.2. Improved Throughput	18
	1.2.3. Additional Features	18
	1.2.4. On-Chip Debug Circuitry	18
	1.3. On-Chip Memory	20
	1.4. Operating Modes	21
	1.5. 12-Bit Analog to Digital Converter	22
	1.6. Programmable Comparator	23
	1.7. Voltage Regulator	23
	1.8. Serial Port	23
	1.9. Port Input/Output	24
2.	Electrical Characteristics	25
	2.1. Absolute Maximum Ratings	25
	2.2. Electrical Characteristics	26
3.	Pinout and Package Definitions	35
4.	12-Bit ADC (ADC0)	52
	4.1. Analog Multiplexer	52
	4.2. Temperature Sensor	53
	4.3. ADC0 Operation	54
	4.3.1. Starting a Conversion	54
	4.3.2. Tracking Modes	54
	4.3.3. Timing	55
	4.3.4. Burst Mode	5/
	4.3.5. Output Conversion Code	59
	4.3.6. Settling Time Requirements	60
	4.4. Selectable Gain	60
	4.4.1. Calculating the Gain Value.	61
	4.4.2. Setting the Gain Value	0Z
	4.5. Flogrammable Window Detector	71
5	4.5.1. Willdow Delector III Single-Ended Mode	72
5. 6	Voltage Regulator (REG0)	74
7	Comparator	76
7. 8	CIP-51 Microcontroller	81
0.	8.1 Instruction Set	82
	8.1.1. Instruction and CPU Timing	82
	8.1.2. MOVX Instruction and Program Memory	83
	8.2. Register Descriptions	86
	8.3. Power Management Modes	89
	8.3.1. Idle Mode	90

Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)	124
Figure 13.6. Crossbar Priority Decoder with Some Pins Skipped (DFN 10)	125
Figure 14.1. Oscillator Diagram	135
Figure 14.2. 32 kHz External Crystal Example	140
Figure 15.1. UART0 Block Diagram	144
Figure 15.2. UARTO Baud Rate Logic	145
Figure 15.3. UART Interconnect Diagram	146
Figure 15.4. 8-Bit UART Timing Diagram	146
Figure 15.5. 9-Bit UART Timing Diagram	147
Figure 15.6. UART Multi-Processor Mode Interconnect Diagram	148
Figure 16.1. SPI Block Diagram	151
Figure 16.2. Multiple-Master Mode Connection Diagram	154
Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram	154
Figure 16.4. 4-Wire Single Master and Slave Mode Connection Diagram	154
Figure 16.5. Data/Clock Timing Relationship	156
Figure 16.6. SPI Master Timing (CKPHA = 0)	161
Figure 16.7. SPI Master Timing (CKPHA = 1)	161
Figure 16.8. SPI Slave Timing (CKPHA = 0)	162
Figure 16.9. SPI Slave Timing (CKPHA = 1)	162
Figure 17.1. LIN Block Diagram	164
Figure 18.1. T0 Mode 0 Block Diagram	183
Figure 18.2. T0 Mode 2 Block Diagram	184
Figure 18.3. T0 Mode 3 Block Diagram	185
Figure 18.4. Timer 2 16-Bit Mode Block Diagram	190
Figure 18.5. Timer 2 8-Bit Mode Block Diagram	191
Figure 18.6. Timer 2 Capture Mode Block Diagram	192
Figure 19.1. PCA Block Diagram	195
Figure 19.2. PCA Counter/Timer Block Diagram	196
Figure 19.3. PCA Interrupt Block Diagram	197
Figure 19.4. PCA Capture Mode Diagram	198
Figure 19.5. PCA Software Timer Mode Diagram	199
Figure 19.6. PCA High-Speed Output Mode Diagram	200
Figure 19.7. PCA Frequency Output Mode	201
Figure 19.8. PCA 8-Bit PWM Mode Diagram	202
Figure 19.9. PCA 16-Bit PWM Mode	203
Figure 19.10. PCA Module 2 with Watchdog Timer Enabled	204
Figure 20.1. Device Package—TSSOP 20	210
Figure 20.2. Device Package—QFN 20	210
Figure 20.3. Device Package—DFN 10	211
Figure 21.1. Typical C2 Pin Sharing	216

1.1. Ordering Information

The following features are common to all devices in this family:

- 25 MHz system clock and 25 MIPS throughput (peak)
- 256 bytes of internal RAM
- Enhanced SPI peripheral
- Enhanced UART peripheral
- Three Timers
- Three Programmable Counter Array channels
- Internal 24.5 MHz oscillator
- Internal Voltage Regulator
- 12-bit, 200 ksps ADC
- Internal Voltage Reference and Temperature Sensor
- One Analog Comparator

Table 1.1 shows the features that differentiate the devices in this family.

Table 1.1. Product Selection Guide (Recommended for New Designs)

Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package	Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package
C8051F520-C-IM	8	6	\checkmark	DFN-10	C8051F534-C-IM	4	16	—	QFN-20
C8051F521-C-IM	8	6		DFN-10	C8051F536-C-IM	2	16	\checkmark	QFN-20
C8051F523-C-IM	4	6	\checkmark	DFN-10	C8051F537-C-IM	2	16	—	QFN-20
C8051F524-C-IM	4	6		DFN-10	C8051F530-C-IT	8	16	\checkmark	TSSOP-20
C8051F526-C-IM	2	6	\checkmark	DFN-10	C8051F531-C-IT	8	16	_	TSSOP-20
C8051F527-C-IM	2	6		DFN-10	C8051F533-C-IT	4	16	\checkmark	TSSOP-20
C8051F530-C-IM	8	16	\checkmark	QFN-20	C8051F534-C-IT	4	16	_	TSSOP-20
C8051F531-C-IM	8	16	_	QFN-20	C8051F536-C-IT	2	16	\checkmark	TSSOP-20
C8051F533-C-IM	4	16	\checkmark	QFN-20	C8051F537-C-IT	2	16		TSSOP-20

All devices in Table 1.1 are also available in an automotive version. For the automotive version, the -I in the ordering part number is replaced with -A. For example, the automotive version of the C8051F520-C-IM is the C8051F520-C-AM.

The -AM and -AT devices receive full automotive quality production status, including AEC-Q100 qualification (fault coverage report available upon request), registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered NDA and approved user account. The -AM and -AT devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding -AM and -AT devices for your automotive project.

Table 2.11. Internal Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified; Using factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units
Oscillator Frequency ¹	$\frac{\text{IFCN} = 111\text{b}}{\text{VDD} \ge \text{VREGMIN}^2}$	24.5 - 0.5%	24.5 ³	24.5 + 0.5%	MHz
	IFCN = 111b VDD < VREGMIN ²	24.5 – 1.0%	24.5 ³	24.5 + 1.0%	
	Oscillator On OSCICN[7:6] = 11b		800	1100	μΑ
	Oscillator Suspend OSCICN[7:6] = 00b ZTCEN = 1				
	T = 25 °C		67	_ '	μA
Oscillator Supply Current	T = 85 °C		77	_ '	μA
(from V _{DD})	T = 125 °C		117	300	μA
	Oscillator Suspend OSCICN[7:6] = 00b ZTCEN = 0				
	T = 25 °C		2	_ '	μA
	T = 85 °C		3	_ '	μA
	T = 125 °C		50	_ '	μA
Wake-Up Time From Sus- pend	$OSCICN[7:6] = 00b$ $ZTCEN = 0^{4}$	—	_	1	μs
	OSCICN[7:6] = 00b ZTCEN = 1	—	5		Instruction Cycles
Power Supply Sensitivity	Constant Temperature		0.10		%/V
Temperature Sensitivity ⁵	Constant Supply		ĺ		
	TC ₁		5.0	_ '	ppm/°C
	TC ₂		-0.65	_ '	ppm/°C ²

Notes:

1. See Section "11.2.1. VDD Monitor Thresholds and Minimum VDD" on page 108 for minimum V_{DD} requirements.

- VREGMIN is the minimum output of the voltage regulator for its low setting (REG0CN: REG0MD = 0b). See Table 2.6, "Voltage Regulator Electrical Specifications," on page 30.
- 3. This is the average frequency across the operating temperature range.
- 4. See "20.7. Internal Oscillator Suspend Mode" on page 212 for ZTCEN setting in older silicon revisions.
- 5. Use temperature coefficients TC_1 and TC_2 to calculate the new internal oscillator frequency using the following equation:

$$f(T) = f0 x (1 + TC_1 x (T - T0) + TC_2 x (T - T0)^2)$$

where f0 is the internal oscillator frequency at 25 °C and T0 is 25 °C.

3. Pinout and Package Definitions

Figure 3.1. DFN-10 Pinout Diagram (Top View)

Dimension	MIN	NOM	MAX
A	0.80	0.90	1.00
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D		4.00 BSC.	•
D2	2.55	2.70	2.85
е		0.50 BSC.	•
E		4.00 BSC.	
E2	2.55	2.70	2.85
L	0.30	0.40	0.50
L1	0.00	—	0.15
aaa	_	—	0.15
bbb	—	—	0.10
ddd	_	—	0.05
eee		—	0.08
Z		0.43	
Y	_	0.18	

Table 3.8. QFN-20 Package Diagram Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-220, variation VGGD except for custom features D2, E2, Z, Y, L, and L1, which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.2. Temperature Sensor

An on-chip temperature sensor is included on the C8051F52x/F52xA/F53x/F53xA devices which can be directly accessed via the ADC0 multiplexer. To use ADC0 to measure the temperature sensor, the ADC multiplexer channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 5.2. The output voltage (V_{TEMP}) is the positive ADC input selected by bits AD0MX[4:0] in register ADC0MX. The TEMPE bit in register REF0CN enables/disables the temperature sensor, as described in SFR Definition 5.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 5.1 for the slope and offset parameters of the temperature sensor.

Figure 4.2. Typical Temperature Sensor Transfer Function

SFR Definition 4.6. ADC0H: ADC0 Data Word MSB

SFR Definition 4.7. ADC0L: ADC0 Data Word LSB

9. Memory Organization and SFRs

The memory organization of the C8051F52x/F52xA/F53x/F53x/F53xA is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory map is shown in Figure 9.1.

Figure 9.1. Memory Map

9.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F520/0A/1/1A and C8051F530/0A/1/1A implement 8 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Addresses above 0x1DFF are reserved on the 8 kB devices. The C8051F523/3A/4/4A and C8051F533/3A/4/4A implement 4 kB of Flash from addresses 0x0000 to 0x0FFF. The C8051F526/6A/7/7A and C8051F536/6A/7/7A implement 2 kB of Flash from addresses 0x0000 to 0x07FF.

Program memory is normally assumed to be read-only. However, the C8051F52x/F52xA/F53x/F53xA can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX write instruction. This feature provides a mechanism for updates to program code and use of the program memory space for non-volatile data storage. Refer to Section "12. Flash Memory" on page 113 for further details.

ramp or during a brownout condition even when V_{DD} is below the specified minimum of 2.0 V. There are two possible ways to handle this transitional period as described below:

If using the on-chip regulator (REG0) at the 2.6 V setting (default), it is recommended that user software set the VDDMON0 threshold to its high setting ($V_{RST-HIGH}$) as soon as possible after reset by setting the VDMLVL bit to 1 in SFR Definition 11.1 (VDDMON). In this typical configuration, no external hardware or additional software routines are necessary to monitor the V_{DD} level.

Note: Please refer to Section "20.5. VDD Monitor (VDDMON0) High Threshold Setting" on page 212 for important notes related to the VDD Monitor high threshold setting in older silicon revisions A and B.

If using the on-chip regulator (REG0) at the 2.1 V setting or if directly driving V_{DD} with REG0 disabled, the user system (software/hardware) should monitor V_{DD} at power-on and also during device operation. The two key parameters that can be affected when $V_{DD} < 2.0$ V are: internal oscillator frequency (Table 2.11 on page 34) and minimum ADC tracking time (Table 2.3 on page 28).

SFR Definition 11.1. VDDMON: V_{DD} Monitor Control

R/W	R	RW	R	R	R	R	R	Reset Value					
		VDMLVL	VDM1EN	Reserved	Reserved	Reserved	Reserved	1v010000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0]					
							SFR Address:	0xFF					
Bit7:	VDMEN: V _{DI}	_D Monitor E	nable (VDE	DMON0).									
	This bit turns the V_{DD} monitor circuit on/off. The V_{DD} Monitor cannot generate system												
	resets until it is also selected as a reset source in register RSTSRC (SFR Definition 11.2).												
	The V_{DD} Monitor can be allowed to stabilize before it is selected as a reset source. Select-												
	ing the V _{DD}	ing the $V_{\mbox{\scriptsize DD}}$ monitor as a reset source before it has stabilized may generate a system											
	reset. See T	reset. See Table 2.8 on page 32 for the minimum V_{DD} Monitor turn-on time.											
	0: V _{DD} Monit	or Disable	d.										
	1: V _{DD} Monit	for Enabled	(default).										
Bit6:		DD Status.											
	This bit indic	ates the cu	rrent power	r supply stat	us (V _{DD} Mo	onitor output	t).						
	0: V _{DD} is at o	or below the	e v _{DD} Moni		JNU) Thresh	nold.							
D:45	1: V _{DD} is abo	ove the V _{DI}		/DDMON0)	i nresnoid.								
Bits:				h a l al : a . a 4 4	-)/	(-1-6							
	0: V _{DD} Monit		JNU) Three	noid is set t	0 V _{RST-LOW}	(delauit).		ad for one					
	1. V _{DD} World		JNU) Thres			i. This settin	ig is require	o for any					
D:44				es lo anu/or		511. 14)							
BIt4:		evel-sensit	ive v _{DD} ivio	nitor Enable	e (VDDIVIOr	vi). .ia alaa aala	atad aa a ra	act					
		s the v _{DD} fi		ni on/on. n i rooot	umea on, it	is also sele	ected as a re	set					
		sitive VDD	Monitor Dis	abled									
	1: Level-sen	sitive VDD	Monitor En	abled (defau	ult).								
Bits3–0:	RESERVED	. Read = Va	ariable. Writ	te = don't ca	are.								
* Note: Availa	able only on the	e C8051F52	x-C/F53x-C c	devices									

14.3. System Clock Selection

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to 1 by hardware when the external oscillator is settled. **To avoid reading a false XTLVLD in crystal mode, the software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.** RC and C modes typically require no startup time.

The CLKSL bit in register CLKSEL selects which oscillator source is used as the system clock. CLKSL must be set to 1 for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when another oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator and external oscillator, as long as the selected clock source is enabled and has settled.

SFR Definition 14.5. CLKSEL: Clock Select

15.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to 1. If the above conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set to 1. A UART0 interrupt will occur if enabled when either TI0 or RI0 is set to 1.

Figure 15.5. 9-Bit UART Timing Diagram

147

SFR Definition 15.2. SBUF0: Serial (UART0) Port Data Buffer

Table 15.1. Timer Settings for Standard Baud RatesUsing the Internal Oscillator

	Frequency: 2	24.5 MHz					
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)
	230400	-0.32%	106	SYSCLK	XX	1	0xCB
	115200	-0.32%	212	SYSCLK	XX	1	0x96
	57600	0.15%	426	SYSCLK	XX	1	0x2B
C. J	28800	-0.32%	848	SYSCLK/4	01	0	0x96
C fr	14400	0.15%	1704	SYSCLK / 12	00	0	0xB9
CL	9600	-0.32%	2544	SYSCLK / 12	00	0	0x96
/S(2400	-0.32%	10176	SYSCLK / 48	10	0	0x96
S) Int	1200	0.15%	20448	SYSCLK / 48	10	0	0x2B

X = Don't care

Note: SCA1–SCA0 and T1M bit definitions can be found in Section 18.1.

SFR Definition 16.1. SPI0CFG: SPI0 Configuration

R	R/W	R/W	R/W	R	R	R	R	Reset Value				
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	—				
							SFR Address	s: 0xA1				
D:4 7.			ال با مع ا									
BIT /:	This bit is so	t to logic 1	u oniy). when a SPI	transfor is	in progress	(Master or	Slave Mod					
Bit 6	MSTEN: Ma	ster Mode F	nahle		in progress	(IVIASIEI UI	Slave Mou	e).				
Bit 0.	0: Disable master mode. Operate in slave mode.											
	1: Enable master mode. Operate as a master.											
Bit 5:	CKPHA: SP	I0 Clock Ph	ase.									
	This bit cont	rols the SPI	0 clock pha	ase.								
	0: Data cent	ered on first	t edge of S	CK period.*								
-	1: Data cent	ered on sec	ond edge o	of SCK perio	od.*							
Bit 4:	CKPOL: SP	IU CIOCK PO	larity.	o ritu i								
	0: SCK line l	rois the SPI	U CIOCK POI	anty.								
	1: SCK line h	high in idle s	state									
Bit 3:	SLVSEL: Sla	ave Selecte	d Flag (rea	d onlv).								
	This bit is se	t to logic 1 v	whenever th	he NSS pin	is low indic	ating SPI0 i	is the selec	ted slave. It				
	is cleared to	logic 0 whe	en NSS is h	igh (slave n	ot selected). This bit d	oes not ind	icate the				
	instantaneou	us value at t	he NSS pir	n, but rather	a de-glitch	ed version	of the pin ir	iput.				
Bit 2:	NSSIN: NSS	S Instantane	ous Pin Inp	out (read on	y).							
	This bit mimi	ics the insta	Intaneous v	value that is	present on	the NSS p	ort pin at th	e time that				
Dit 1	COMT: Shift	S read. This Podictor Er	s input is no	in Slave Me	0. .do road or	alv)						
DIL I.	This bit will b	ne set to log	lic 1 when a	all data has	heen transf	ferred in/ou	t of the shif	t register				
	and there is	no new info	rmation av	ailable to re	ad from the	e transmit b	uffer or writ	e to the				
	receive buffe	er. It returns	to logic 0 v	vhen a data	byte is trar	nsferred to t	the shift rec	jister from				
	the transmit	buffer or by	a transition	n on SCK.	-		-					
	NOTE: SRM	T = 1 when	in Master I	Mode.								
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	d only).						
	I his bit will t	be set to log	IC 1 When t	ne receive t	ouffer has t	oeen read a	nd contains	s no new				
	this bit will re	it there is ne		ION available			111111111111111111111111111111111111111	. Deen reau,				
	NOTE: RXB	MT = 1 whe	en in Maste	r Mode.								
lote: See]	Table 16.1 for ti	ming parame	eters.									

SFR Definition 16.3. SPI0CKR: SPI0 Clock Rate

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Addres	s: 0xA2			
Bits7–0: SCR7–SCR0: SPI0 Clock Rate.											
These bits determine the frequency of the SCK output when the SPI0 module is configured											
fo	or master m	ode operat	ion. The SC	CK clock fre	quency is a	divided ver	sion of the	system			
С	lock, and is	given in the	e following	equation, w	here SYSC	LK is the sy	stem clock	c frequency			
a	ind SPI0CK	R is the 8-b	oit value hel	d in the SPI	OCKR regis	ster.					
		C.	VOOLV								
	freek	=	YSCLK								
	JSCK	$2 \times (SP)$	PIOCKR +	1)							
fo	or 0 <= SPI	0CKR <= 2	55								
Example: If	SYSCLK =	2 MHz and	SPI0CKR	= 0x04,							
		200000	0								
	f_{SCK} =	$=\frac{200000}{2\times(4)}$	$\frac{1}{1}$								
		2 × (4 +	1)								
	f –	200247									
	J_{SCK} –	200K112,									

in progress. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.

17.5. Sleep Mode and Wake-Up

To reduce the system's power consumption, the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode Frame from the Identifier and data bytes. After that, the LIN slave node must be put into the Sleep Mode by setting the SLEEP bit (LINOCTRL.6).

If the SLEEP bit (LIN0CTRL.6) of the LIN slave application is not set and there is no bus activity for four seconds (specified bus idle timeout), the IDLTOUT bit (LIN0ST.6) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit (LIN0CTRL.6).

Sending a Wakeup signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a Wakeup signal, the application has to set the WUPREQ bit (LIN0CTRL.1). After successful transmission of the wakeup signal, the DONE bit (LIN0ST.0) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the Wakeup signal but it generates an interrupt request if the master does not respond to the Wakeup signal within 150 milliseconds. In that case, the ERROR bit (LIN0ST.2) and TOUT bit (LIN0ERR.2) are set. The application then has to decide whether or not to transmit another Wakeup signal.

All LIN nodes that detect a wakeup signal will set the WAKEUP (LIN0ST.1) and DONE bits (LIN0ST.0) and generate an interrupt request. After that, the application has to clear the SLEEP bit (LIN0CTRL.6) in the LIN slave.

17.6. Error Detection and Handling

The LIN peripheral generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing LIN0ERR. After that, it has to reset the error register and the ERROR bit (LIN0ST.2) by writing a 1 to the RSTERR bit (LIN0CTRL.2). Starting a new message with the LIN peripheral selected as master or sending a Wakeup signal with the LIN peripheral selected as a master or slave is possible only if ERROR bit (LIN0ST.2) is set to 0.

17.7.2. LIN Indirect Access SFR Registers Definition

Name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
LIN0DT1	0x00		DATA1[7:0]									
LIN0DT2	0x01		DATA2[7:0]									
LIN0DT3	0x02		DATA3[7:0]									
LIN0DT4	0x03				DATA	4[7:0]						
LIN0DT5	0x04				DATA	5[7:0]						
LIN0DT6	0x05				DATA	6[7:0]						
LIN0DT7	0x06				DATA	7[7:0]						
LIN0DT8	0x07				DATA	8[7:0]						
LIN0CTRL	0x08	STOP(s)	SLEEP(s)	TXRX	DTACK(s)	RSTINT	RSTERR	WUPREQ	STREQ(m)			
LIN0ST	0x09	ACTIVE	IDLTOUT	ABORT(s)	DTREQ(s)	LININT	ERROR	WAKEUP	DONE			
LIN0ERR	0x0A				SYNCH(s)	PRTY(s)	TOUT	СНК	BITERR			
LIN0SIZE	0x0B	ENHCHK					LINS	SIZE[3:0]				
LIN0DIV	0x0C				DIVLS	SB[7:0]						
LINOMUL	0x0D	PRES	ESCL[1:0] LINMUL[4:0] DIV9									
LIN0ID	0x0E					ID	0[5:0]					

Table 17.4. LIN Registers* (Indirectly Addressable)

*These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.

SFR Definition 17.4. LIN0DT1: LIN0 Data Byte 1

19.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 19.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

SFR Definition 19.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PWM16	6n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
SFR Addr	SFR Address: PCA0CPM0: 0xDA, PCA0CPM1: 0xDB, PCA0CPM2: 0xDC										
	Dit7 , DWM16 , 16 bit Dules Width Medulation Erable										
Bit7:	PWM16n : 16	-bit Pulse V	Vidth Modul	ation Enabl	e. Maakulatian						
		acleated	Dae when P	uise width	wodulation	mode is en	abled (PW	$\operatorname{NVIN} = 1$).			
	1: 16-bit PM/	Selected.									
Bit6	FCOMn Cor	nnarator Fi	inction Enal	hle							
Bito.	This bit enables/disables the comparator function for PCA module n.										
	0: Disabled.										
	1: Enabled.										
Bit5:	CAPPn: Cap	ture Positiv	e Function	Enable.							
	This bit enab	les/disables	s the positiv	e edge cap	ture for PCA	A module n.					
	0: Disabled.										
	1: Enabled.										
Bit4:	CAPNn: Cap	ture Negati	ve Function	i Enable.		سمانام ممر ۸					
	0: Disabled	ies/disables	s the negativ	ve euge cap		A module i	1.				
	1. Enabled										
Bit3:	MATn: Match	n Function E	Enable.								
	This bit enab	les/disables	s the match	function for	PCA modu	ile n. When	enabled, i	matches of			
	the PCA cour	nter with a i	module's ca	pture/comp	are register	cause the	CCFn bit i	n PCA0MD			
	register to be	set to logic	: 1.								
	0: Disabled.										
-	1: Enabled.										
Bit2:	TOGn: logg	e Function	Enable.	function for		ula ia Milaana		matak an af			
	the PCA cour	ies/disables	s the toggle	nunction ior	PCA modu	lie n. when	enabled, l logic lovel	natches of			
	CEXn pin to t	ogale If the	PWMn hit	is also set t	to logic 1 th	ne module o	iogic level	Frequency			
	Output Mode				lo logio i, a			riequency			
	0: Disabled.										
	1: Enabled.										
Bit1:	PWMn: Pulse	e Width Mo	dulation Mo	de Enable.							
	This bit enab	les/disables	the PWM f	unction for	PCA module	e n. When e	enabled, a	pulse width			
	modulated sig	gnal is outp	ut on the Cl	= Xn pin. 8-t	DIT PVVIVI IS U	ISED IF PWIN	116n is cle	ared; 16-bit			
	Frequency O	utout Mode		gic i. li the	TOGI DILIS	also set, tr	ie module	operates in			
	0. Disabled		•								
	1: Enabled										
Bit0:	ECCFn: Cap	ture/Compa	are Flag Inte	errupt Enab	le.						
	This bit sets t	the masking	g of the Cap	ture/Compa	are Flag (CO	CFn) interru	pt.				
	0: Disable CO	CFn interrup	ots.								
	1: Enable a C	Capture/Cor	npare Flag	interrupt re	quest when	CCFn is se	et.				

