



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                           |
|----------------------------|------------------------------------------------------------------|
| Core Processor             | 8051                                                             |
| Core Size                  | 8-Bit                                                            |
| Speed                      | 25MHz                                                            |
| Connectivity               | SPI, UART/USART                                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT               |
| Number of I/O              | 6                                                                |
| Program Memory Size        | 8KB (8K x 8)                                                     |
| Program Memory Type        | FLASH                                                            |
| EEPROM Size                | -                                                                |
| RAM Size                   | 256 x 8                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.25V                                                     |
| Data Converters            | A/D 6x12b                                                        |
| Oscillator Type            | Internal                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                               |
| Mounting Type              | Surface Mount                                                    |
| Package / Case             | 10-VFDFN Exposed Pad                                             |
| Supplier Device Package    | 10-DFN (3x3)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f521a-imr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)   | 124 |
|------------------------------------------------------------------------|-----|
| Figure 13.6. Crossbar Priority Decoder with Some Pins Skipped (DFN 10) | 125 |
| Figure 14.1. Oscillator Diagram                                        | 135 |
| Figure 14.2. 32 kHz External Crystal Example                           | 140 |
| Figure 15.1. UART0 Block Diagram                                       | 144 |
| Figure 15.2. UARTO Baud Rate Logic                                     | 145 |
| Figure 15.3. UART Interconnect Diagram                                 | 146 |
| Figure 15.4. 8-Bit UART Timing Diagram                                 | 146 |
| Figure 15.5. 9-Bit UART Timing Diagram                                 | 147 |
| Figure 15.6. UART Multi-Processor Mode Interconnect Diagram            | 148 |
| Figure 16.1. SPI Block Diagram                                         | 151 |
| Figure 16.2. Multiple-Master Mode Connection Diagram                   | 154 |
| Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram    | 154 |
| Figure 16.4. 4-Wire Single Master and Slave Mode Connection Diagram    | 154 |
| Figure 16.5. Data/Clock Timing Relationship                            | 156 |
| Figure 16.6. SPI Master Timing (CKPHA = 0)                             | 161 |
| Figure 16.7. SPI Master Timing (CKPHA = 1)                             | 161 |
| Figure 16.8. SPI Slave Timing (CKPHA = 0)                              | 162 |
| Figure 16.9. SPI Slave Timing (CKPHA = 1)                              | 162 |
| Figure 17.1. LIN Block Diagram                                         | 164 |
| Figure 18.1. T0 Mode 0 Block Diagram                                   | 183 |
| Figure 18.2. T0 Mode 2 Block Diagram                                   | 184 |
| Figure 18.3. T0 Mode 3 Block Diagram                                   | 185 |
| Figure 18.4. Timer 2 16-Bit Mode Block Diagram                         | 190 |
| Figure 18.5. Timer 2 8-Bit Mode Block Diagram                          | 191 |
| Figure 18.6. Timer 2 Capture Mode Block Diagram                        | 192 |
| Figure 19.1. PCA Block Diagram                                         | 195 |
| Figure 19.2. PCA Counter/Timer Block Diagram                           | 196 |
| Figure 19.3. PCA Interrupt Block Diagram                               | 197 |
| Figure 19.4. PCA Capture Mode Diagram                                  | 198 |
| Figure 19.5. PCA Software Timer Mode Diagram                           | 199 |
| Figure 19.6. PCA High-Speed Output Mode Diagram                        | 200 |
| Figure 19.7. PCA Frequency Output Mode                                 | 201 |
| Figure 19.8. PCA 8-Bit PWM Mode Diagram                                | 202 |
| Figure 19.9. PCA 16-Bit PWM Mode                                       | 203 |
| Figure 19.10. PCA Module 2 with Watchdog Timer Enabled                 | 204 |
| Figure 20.1. Device Package—TSSOP 20                                   | 210 |
| Figure 20.2. Device Package—QFN 20                                     | 210 |
| Figure 20.3. Device Package—DFN 10                                     | 211 |
| Figure 21.1. Typical C2 Pin Sharing                                    | 216 |
|                                                                        |     |



includes software with a developer's studio and debugger, a USB debug adapter, a target application board with the associated MCU installed, and the required cables and wall-mount power supply. The development kit requires a computer with Windows installed. As shown in Figure 1.5, the PC is connected to the USB debug adapter. A six-inch ribbon cable connects the USB debug adapter to the user's application board, picking up the two C2 pins and GND.

The Silicon Laboratories IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to be socketed. Silicon Laboratories' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.



Figure 1.5. Development/In-System Debug Diagram



## 1.3. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 7680 bytes ('F520/0A/1/1A and 'F530/0A/1/1A), 4 kB ('F523/3A/4/4A and C8051F53x/53xA), or 2 kB ('F526/6A/7/7A and 'F536/6A/7/7A) of Flash. This memory is byte writable and erased in 512-byte sectors, and requires no special off-chip programming voltage.



Figure 1.6. Memory Map



#### Table 2.6. Voltage Regulator Electrical Specifications

 $V_{DD}$  = 2.1 or 2.6 V; -40 to +125 °C unless otherwise specified.

| Parameter                                 | Conditions                                                            | Min              | Тур  | Max               | Units |
|-------------------------------------------|-----------------------------------------------------------------------|------------------|------|-------------------|-------|
| Input Voltage Range (V <sub>REGIN</sub> ) | C8051F52x/53x                                                         | 2.7 <sup>1</sup> |      | 5.25              | V     |
| ·                                         | C8051F52xA/53xA                                                       |                  |      | 1                 | !     |
|                                           | V <sub>DD</sub> connected to V <sub>REGIN</sub>                       | 1.8              |      | 2.7               | !     |
|                                           | V <sub>DD</sub> not connected to V <sub>REGIN</sub>                   | 2.2 <sup>2</sup> | '    | 5.25              | !     |
|                                           | C8051F52x-C/53x-C                                                     |                  |      |                   | !     |
|                                           | V <sub>DD</sub> connected to V <sub>REGIN</sub>                       | 2.0              | '    | 2.75              | !     |
|                                           | V <sub>DD</sub> not connected to V <sub>REGIN</sub>                   | 2.2 <sup>2</sup> | _ '  | 5.25              | !     |
| Dropout Voltage (V <sub>DO</sub> )        | Output Current = 1-50 mA                                              | —                | 10   | —                 | mV/mA |
| Output Voltage (V <sub>DD</sub> )         | Output Current = 1 to 50 mA                                           |                  |      |                   | V     |
|                                           | REG0MD = 0                                                            | 2.0              | 2.1  | 2.25              |       |
|                                           | REG0MD = 1                                                            | 2.5              | 2.6  | 2.75              |       |
| Bias Current                              | 2.1 V operation                                                       | <u> </u>         | 1    | 5                 | μA    |
| 1                                         | (REG0MD = 0; T = 25 °C)                                               |                  |      |                   |       |
| 1                                         | 2.6 V operation                                                       | _                | 1    | 5                 | -   · |
|                                           | (REG0MD = 1; T = 25 °C)                                               |                  |      |                   |       |
| Dropout Indicator Detection               |                                                                       | $\Box -$         | 75   | $\lceil - \rceil$ | mV    |
| Threshold                                 |                                                                       |                  |      |                   |       |
| Output Voltage Temperature                |                                                                       | —                | 0.25 | —                 | mV/⁰C |
| Coefficient                               |                                                                       |                  |      |                   |       |
| VREG Settling Time                        | 50 mA load with $V_{REGIN} = 2.4 V$ and                               | —                | 250  | —                 | μs    |
|                                           | V <sub>DD</sub> load capacitor of 4.8 µF                              |                  |      |                   |       |
| Notes:                                    | •                                                                     |                  |      |                   |       |
| 1. The minimum input voltage is           | s 2.7 V or $V_{DD}$ + $V_{DO}$ (max load), whichever is               | 3 greater.       |      |                   |       |
| 2. The minimum input voltage is           | s 2.2 v or v <sub>DD</sub> + v <sub>DO</sub> (max load), whichever is | s greater.       |      |                   |       |



#### **Table 2.9. Flash Electrical Characteristics**

 $V_{DD}$  = 1.8 to 2.75 V; –40 to +125 °C unless otherwise specified

| Parameter              | Conditions                      | Min                                | Тур   | Max | Units       |
|------------------------|---------------------------------|------------------------------------|-------|-----|-------------|
| Flash Size             | 'F520/0A/1/1A and 'F530/0A/1/1A | 7680                               |       |     | bytes       |
|                        | 'F523/3A/4/4A and 'F533/3A/4/4A | 4096                               |       |     |             |
|                        | 'F526/6A/7/7A and 'F536/6A/7/7A | 2048                               |       |     |             |
| Endurance <sup>2</sup> | $V_{DD} \ge V_{RST-HIGH}^{1}$   | 20 k                               | 150 k |     | Erase/Write |
| Erase Cycle Time       |                                 | 27                                 | 32    | 38  | ms          |
| Write Cycle Time       |                                 | 57                                 | 65    | 74  | μs          |
| V <sub>DD</sub>        | Write/Erase Operations          | V <sub>RST-HIGH</sub> <sup>1</sup> | —     | —   | V           |
|                        |                                 |                                    |       |     |             |

Notes:

 See Table 2.8 on page 32 for the V<sub>RST-HIGH</sub> specification.
For –I (industrial Grade) parts, flash should be programmed (erase/write) at a minimum temperature of 0 °C for reliable flash operation across the entire temperature range of -40 to +125 °C. This minimum programming temperature does not apply to -A (Automotive Grade) parts.

#### Table 2.10. Port I/O DC Electrical Characteristics

V<sub>REGIN</sub> = 2.7 to 5.25 V, -40 to +125 °C unless otherwise specified

| Parameters  | Conditions                                            | Min                       | Тур                     | Max                  | Units |
|-------------|-------------------------------------------------------|---------------------------|-------------------------|----------------------|-------|
| Output High | I <sub>OH</sub> = –3 mA, Port I/O push-pull           | V <sub>REGIN</sub> – 0.4  |                         | _                    | V     |
| Voltage     | I <sub>OH</sub> = −10 μA, Port I/O push-pull          | V <sub>REGIN</sub> – 0.02 | —                       | —                    |       |
|             | I <sub>OH</sub> = –10 mA, Port I/O push-pull          | —                         | V <sub>REGIN</sub> -0.7 | —                    |       |
| Output Low  | V <sub>REGIN</sub> = 2.7 V:                           |                           |                         |                      |       |
| Voltage     | I <sub>OL</sub> = 70 μA                               | —                         | —                       | 45                   |       |
|             | I <sub>OL</sub> = 8.5 mA                              | —                         | —                       | 550                  | m\/   |
|             | V <sub>REGIN</sub> = 5.25 V:                          |                           |                         |                      | 1110  |
|             | I <sub>OL</sub> = 70 μA                               | —                         | —                       | 40                   |       |
|             | I <sub>OL</sub> = 8.5 mA                              |                           | —                       | 400                  |       |
| Input High  |                                                       | V <sub>REGIN</sub> x 0.7  | —                       | —                    | V     |
| Voltage     |                                                       |                           |                         |                      |       |
| Input Low   |                                                       | —                         | —                       | V <sub>REGIN</sub> x | V     |
| Voltage     |                                                       |                           |                         | 0.3                  |       |
| Input       | Weak Pullup Off                                       | —                         | —                       | ±2                   |       |
| Leakage     |                                                       |                           |                         |                      |       |
| Current     | C8051F52xA/53xA:                                      |                           |                         |                      |       |
|             | Weak Pullup On, $V_{IN} = 0 V$ ; $V_{REGIN} = 1.8 V$  | —                         | 5                       | 15                   | пΔ    |
|             |                                                       |                           |                         |                      | μΛ    |
|             | C8051F52x/52xA/53x/53xA:                              |                           |                         |                      |       |
|             | Weak Pullup On, $V_{IN} = 0 V$ ; $V_{REGIN} = 2.7 V$  | —                         | 20                      | 50                   |       |
|             | Weak Pullup On, $V_{IN} = 0 V$ ; $V_{REGIN} = 5.25 V$ | —                         | 65                      | 115                  |       |



#### Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20)

| Name               | Pin Numbers       |           | Туре             | Description                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|-------------------|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | ʻF53xA<br>ʻF53x-C | ʻF53x     |                  |                                                                                                                                                                                                                                                                                                                                                                               |
| RST/               | 1                 | 1         | D I/O            | Device Reset. Open-drain output of internal POR or $V_{DD}$ monitor.<br>An external source can initiate a system reset by driving this pin<br>low for at least the minimum RST low time to generate a system<br>reset, as defined in Table 2.8 on page 32. A 1 k $\Omega$ pullup to<br>$V_{REGIN}$ is recommended. See Reset Sources Section for a com-<br>plete description. |
| C2CK               |                   |           | D I/O            | Clock signal for the C2 Debug Interface.                                                                                                                                                                                                                                                                                                                                      |
| P0.0/              | 2                 | 2         | D I/O or<br>A In | Port 0.0. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| V <sub>REF</sub>   |                   |           | A O or<br>D In   | External V <sub>REF</sub> Input. See V <sub>REF</sub> Section.                                                                                                                                                                                                                                                                                                                |
| GND                | 3                 | 3         |                  | Ground.                                                                                                                                                                                                                                                                                                                                                                       |
| V <sub>DD</sub>    | 4                 | 4         |                  | Core Supply Voltage.                                                                                                                                                                                                                                                                                                                                                          |
| V <sub>REGIN</sub> | 5                 | 5         |                  | On-Chip Voltage Regulator Input.                                                                                                                                                                                                                                                                                                                                              |
| P1.7               | 6                 | 6         | D I/O or<br>A In | Port 1.7. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| P1.6               | 7                 | 7         | D I/O or<br>A In | Port 1.6. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| P1.5               | 8                 | 8         | D I/O or<br>A In | Port 1.5. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| P1.4               | 9                 | 9         | D I/O or<br>A In | Port 1.4. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| P1.3               | 10                | 10        | D I/O or<br>A In | Port 1.3. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| P1.2/              | 11                | 11        | D I/O or<br>A In | Port 1.2. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| CNVSTR             |                   |           | D In             | External Converter start input for the ADC0, see Section "4. 12-<br>Bit ADC (ADC0)" on page 52 for a complete description.                                                                                                                                                                                                                                                    |
| P1.1               | 12                | 12        | D I/O or<br>A In | Port 1.1. See Port I/O Section for a complete description.                                                                                                                                                                                                                                                                                                                    |
| Note: Please       | refer to Se       | ection "2 | 20. Device S     | Specific Behavior" on page 210.                                                                                                                                                                                                                                                                                                                                               |



**Important Note About the V<sub>REF</sub> Pin:** Port pin P0.0 is used as the external V<sub>REF</sub> input and as an output for the internal V<sub>REF</sub>. When using either an external voltage reference or the internal reference circuitry, P0.0 should be configured as an analog pin, and skipped by the Digital Crossbar. To configure P0.0 as an analog pin, clear Bit 0 in register P0MDIN to 0. To configure the Crossbar to skip P0.0, set Bit 0 in register P0SKIP to 1. Refer to Section "13. Port Input/Output" on page 120 for complete Port I/O configuration details.

The TEMPE bit in register REF0CN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

| R/W       | R/W                                                                                                            | R/W                        | R/W           | R/W             | R/W                 | R/W          | R/W         | Reset Value  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------|----------------------------|---------------|-----------------|---------------------|--------------|-------------|--------------|--|--|
| Reserve   | d Reserved                                                                                                     | ZTCEN                      | REFLV         | REFSL           | TEMPE               | BIASE        | REFBE       | 00000000     |  |  |
| Bit7      | Bit6                                                                                                           | Bit5                       | Bit4          | Bit3            | Bit2                | Bit1         | Bit0        | SFR Address: |  |  |
|           |                                                                                                                |                            |               |                 |                     |              |             | 0xD1         |  |  |
|           |                                                                                                                |                            |               |                 |                     |              |             |              |  |  |
| Bits7–6:  | RESERVED                                                                                                       | . Read = 00                | )b. Must wri  | te 00b.         |                     |              |             |              |  |  |
| Bit5:     | it5: ZTCEN: Zero-TempCo Bias Enable Bit*.                                                                      |                            |               |                 |                     |              |             |              |  |  |
|           | 0: ZeroTC B                                                                                                    | ias Genera                 | tor automat   | ically enable   | ed when ne          | eded.        |             |              |  |  |
| D'44      | 1: Zero IC B                                                                                                   | las Genera                 | tor forced o  | n.              |                     |              |             |              |  |  |
| Bit4:     | <b>REFLV</b> : Volta                                                                                           | age Refere                 | nce Output    | Level Selec     | X.<br>internel volt | laga rafara  |             |              |  |  |
|           |                                                                                                                | us the outp                | ut voltage i  |                 | internal von        | lage referen | ice.        |              |  |  |
|           | 1. Internal vo                                                                                                 | ltage refer                | ance set to   | 1.5 v.<br>2 2 V |                     |              |             |              |  |  |
| Bit3      | REFSL: Volt                                                                                                    | age Refere                 | nce Select    | <i></i> v.      |                     |              |             |              |  |  |
|           | This bit sele                                                                                                  | cts the sour               | ce for the ir | nternal volta   | ge referenc         | e.           |             |              |  |  |
|           | 0: V <sub>REE</sub> pin u                                                                                      | used as vol                | tage referer  | nce.            | 0                   |              |             |              |  |  |
|           | 1: V <sub>DD</sub> used                                                                                        | as voltage                 | reference.    |                 |                     |              |             |              |  |  |
| Bit2:     | TEMPE: Ten                                                                                                     | nperature S                | ensor Enab    | ole Bit.        |                     |              |             |              |  |  |
|           | 0: Internal Te                                                                                                 | emperature                 | Sensor off.   |                 |                     |              |             |              |  |  |
|           | 1: Internal Te                                                                                                 | emperature                 | Sensor on.    |                 |                     |              |             |              |  |  |
| Bit1:     | BIASE: Inter                                                                                                   | nal Analog                 | Bias Gener    | rator Enable    | e Bit.              |              |             |              |  |  |
|           | 0: Internal A                                                                                                  | nalog Bias                 | Generator a   | automaticall    | y enabled w         | vhen neede   | ed.         |              |  |  |
| D'40      | 1: Internal A                                                                                                  | nalog Bias                 | Generator o   | on.             |                     |              |             |              |  |  |
| Bit0:     | REFBE: Inte                                                                                                    | ernal Refere               | nce Butter    | Enable Bit.     |                     |              |             |              |  |  |
|           | 1. Internal R                                                                                                  | elelence Bi<br>eference Bi | ullei ulsable | od Internal v   | voltano rofo        | ronco drivo  | n on the V. | nin          |  |  |
|           |                                                                                                                |                            |               |                 | illaye rele         |              |             | REF PIII.    |  |  |
| *Note: Se | *Note: See Section "20.7. Internal Occillator Support Mode" on page 242 for a note related to the ZTOEN bit in |                            |               |                 |                     |              |             |              |  |  |
| 11010.00  | older silicon re                                                                                               | evisions.                  | onator ousp   |                 | 11 page 2121        |              |             |              |  |  |
|           |                                                                                                                |                            |               |                 |                     |              |             |              |  |  |
|           |                                                                                                                |                            |               |                 |                     |              |             |              |  |  |

## SFR Definition 5.1. REF0CN: Reference Control



# 8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51<sup>™</sup> instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/F52xA/F53x/F53xA family has a superset of all the peripherals included with a standard 8051. See Section "1. System Overview" on page 13 for more information about the available peripherals. The CIP-51 includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 8.1 for a block diagram). The CIP-51 core includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput
- 256 Bytes of Internal RAM
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- Integrated Debug Logic
- Program and Data Memory Security



Figure 8.1. CIP-51 Block Diagram



#### 8.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access data stored in XDATA memory space. In the CIP-51, the MOVX instruction can also be used to write or erase on-chip program memory space implemented as reprogrammable Flash memory. The Flash access feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to Section "12. Flash Memory" on page 113 for further details.

| Mnemonic              | Mnemonic Description                     |   |   |  |  |  |
|-----------------------|------------------------------------------|---|---|--|--|--|
| Arithmetic Operations | 1                                        |   |   |  |  |  |
| ADD A, Rn             | Add register to A                        | 1 | 1 |  |  |  |
| ADD A, direct         | Add direct byte to A                     | 2 | 2 |  |  |  |
| ADD A, @Ri            | Add indirect RAM to A                    | 1 | 2 |  |  |  |
| ADD A, #data          | Add immediate to A                       | 2 | 2 |  |  |  |
| ADDC A, Rn            | Add register to A with carry             | 1 | 1 |  |  |  |
| ADDC A, direct        | Add direct byte to A with carry          | 2 | 2 |  |  |  |
| ADDC A, @Ri           | Add indirect RAM to A with carry         | 1 | 2 |  |  |  |
| ADDC A, #data         | Add immediate to A with carry            | 2 | 2 |  |  |  |
| SUBB A, Rn            | Subtract register from A with borrow     | 1 | 1 |  |  |  |
| SUBB A, direct        | Subtract direct byte from A with borrow  | 2 | 2 |  |  |  |
| SUBB A, @Ri           | Subtract indirect RAM from A with borrow | 1 | 2 |  |  |  |
| SUBB A, #data         | Subtract immediate from A with borrow    | 2 | 2 |  |  |  |
| INC A                 | Increment A                              | 1 | 1 |  |  |  |
| INC Rn                | Increment register                       | 1 | 1 |  |  |  |
| INC direct            | Increment direct byte                    | 2 | 2 |  |  |  |
| INC @Ri               | Increment indirect RAM                   | 1 | 2 |  |  |  |
| DEC A                 | Decrement A                              | 1 | 1 |  |  |  |
| DEC Rn                | Decrement register                       | 1 | 1 |  |  |  |
| DEC direct            | Decrement direct byte                    | 2 | 2 |  |  |  |
| DEC @Ri               | Decrement indirect RAM                   | 1 | 2 |  |  |  |
| INC DPTR              | Increment Data Pointer                   | 1 | 1 |  |  |  |
| MUL AB                | Multiply A and B                         | 1 | 4 |  |  |  |
| DIV AB                | Divide A by B                            | 1 | 8 |  |  |  |
| DA A                  | Decimal adjust A                         | 1 | 1 |  |  |  |
| Logical Operations    |                                          |   |   |  |  |  |
| ANL A, Rn             | AND Register to A                        | 1 | 1 |  |  |  |
| ANL A, direct         | AND direct byte to A                     | 2 | 2 |  |  |  |
| ANL A, @Ri            | AND indirect RAM to A                    | 1 | 2 |  |  |  |
| ANL A, #data          | AND immediate to A                       | 2 | 2 |  |  |  |
| ANL direct, A         | AND A to direct byte                     | 2 | 2 |  |  |  |
| ANL direct, #data     | AND immediate to direct byte             | 3 | 3 |  |  |  |
| ORL A, Rn             | OR Register to A                         | 1 | 1 |  |  |  |
| ORL A, direct         | OR direct byte to A                      | 2 | 2 |  |  |  |
| ORL A, @Ri            | OR indirect RAM to A                     | 1 | 2 |  |  |  |
| ORL A, #data          | OR immediate to A                        | 2 | 2 |  |  |  |
| ORL direct, A         | OR A to direct byte                      | 2 | 2 |  |  |  |



#### **10.4.** Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

#### SFR Definition 10.1. IE: Interrupt Enable

| R/W               | R/W            | R/W           | R/W                      | R/W                      | R/W          | R/W           | R/W           | Reset Value |
|-------------------|----------------|---------------|--------------------------|--------------------------|--------------|---------------|---------------|-------------|
| EA                | ESPI0          | ET2           | ES0                      | ET1                      | EX1          | ET0           | EX0           | 00000000    |
| Bit7              | Bit6           | Bit5          | Bit4                     | Bit3                     | Bit2         | Bit1          | Bit0          | Bit         |
|                   |                |               |                          |                          |              |               |               | Addressable |
|                   |                |               |                          |                          |              |               | SFR Address   | UXA6        |
| Bit7              | EA: Global II  | nterrunt En   | ahla                     |                          |              |               |               |             |
| Dit/              | This bit globa | ally enable   | s/disables a             | ll interrupts            | It override  | s the individ | dual interrup | t mask set- |
|                   | tings.         |               |                          |                          |              |               |               |             |
|                   | 0: Disable al  | l interrupt s | sources.                 |                          |              |               |               |             |
|                   | 1: Enable ea   | ch interrup   | t according              | to its individ           | lual mask s  | etting.       |               |             |
| Bit6:             | ESPI0: Enab    | le Serial P   | eripheral In             | terface (SPI             | 0) Interrupt |               |               |             |
|                   | This bit sets  | the maskin    | ig of the SP             | 10 interrupts            | 5.           |               |               |             |
|                   | 0: Disable al  | I SPI0 inter  | rupts.                   |                          |              |               |               |             |
| D:45.             | 1: Enable int  | errupt requ   | lests genera             | ated by SPI              | ).           |               |               |             |
| BITO              | This bit sots  | the maskin    | terrupt.                 | or 2 interru             | nt           |               |               |             |
|                   | 0. Disable Ti  | mer 2 inter   | runt                     |                          | pi.          |               |               |             |
|                   | 1: Enable int  | errupt reau   | iests genera             | ated by the <sup>.</sup> | TF2L or TF   | 2H flaos.     |               |             |
| Bit4:             | ES0: Enable    | UART0 In      | terrupt.                 | , <b>,</b>               | -            | - 5-          |               |             |
|                   | This bit sets  | the maskin    | ig of the UA             | RT0 interru              | pt.          |               |               |             |
|                   | 0: Disable U   | ART0 inter    | rupt.                    |                          |              |               |               |             |
|                   | 1: Enable UA   | ART0 interr   | upt.                     |                          |              |               |               |             |
| Bit3:             | ET1: Enable    | Timer 1 In    | terrupt.                 |                          |              |               |               |             |
|                   | This bit sets  | the maskin    | ig of the lin            | ner 1 interru            | pt.          |               |               |             |
|                   | 1. Enable int  |               | lienupi.<br>Iests genera | ated by the              | TF1 flag     |               |               |             |
| Bit2 <sup>.</sup> | EX1: Enable    | External Ir   | nterrunt 1               | aled by the              | n nay.       |               |               |             |
|                   | This bit sets  | the maskin    | ig of the ext            | ernal interru            | ipt 1.       |               |               |             |
|                   | 0: Disable ex  | ternal inter  | rrupt 1.                 |                          | •            |               |               |             |
|                   | 1: Enable ex   | tern interru  | pt 1 reques              | ts.                      |              |               |               |             |
| Bit1:             | ET0: Enable    | Timer 0 In    | terrupt.                 |                          |              |               |               |             |
|                   | This bit sets  | the maskin    | ig of the Tim            | ner 0 interru            | pt.          |               |               |             |
|                   | 0: Disable al  | I Timer 0 in  | iterrupt.                |                          |              |               |               |             |
| Bit0.             | FY0: Enable    | External Ir   | tests genera             | aled by the              | rro nag.     |               |               |             |
| Dito.             | This bit sets  | the maskin    | no of the ext            | ernal interri            | int 0        |               |               |             |
|                   | 0: Disable ex  | ternal inter  | rrupt 0.                 |                          |              |               |               |             |
|                   | 1: Enable ex   | tern interru  | pt 0 reques              | ts.                      |              |               |               |             |
|                   |                |               | -                        |                          |              |               |               |             |



### SFR Definition 13.7. P0MAT: Port0 Match



#### SFR Definition 13.8. P0MASK: Port0 Mask





#### SFR Definition 13.9. P1: Port1

| R/W      | R/W                                                                                                                            | R/W                                                                                                     | R/W                                                         | R/W                                            | R/W                                         | R/W                          | R/W                         | Reset Value        |
|----------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|---------------------------------------------|------------------------------|-----------------------------|--------------------|
| P1.7     | P1.6                                                                                                                           | P1.5                                                                                                    | P1.4                                                        | P1.3                                           | P1.2                                        | P1.1                         | P1.0                        | 11111111           |
| Bit7     | Bit6                                                                                                                           | Bit5                                                                                                    | Bit4                                                        | Bit3                                           | Bit2                                        | Bit1                         | Bit0                        | Bit<br>Addressable |
|          |                                                                                                                                |                                                                                                         |                                                             |                                                |                                             |                              | SFR Address:                | 0x90               |
| Bits7–0: | P1.[7:0]<br>Write - Outpu<br>0: Logic Low<br>1: Logic High<br>Read - Alway<br>pin when con<br>0: P1.n pin is<br>1: P1.n pin is | ut appears<br>o Output.<br>n Output (hi<br>ys reads 0 i<br>nfigured as<br>s logic low.<br>s logic high. | on I/O pins<br>gh impedar<br>if selected a<br>digital input | per Crossbance if corres<br>as analog in<br>t. | ar Registers<br>ponding P1<br>put in regist | s.<br>IMDOUT.n<br>ter P1MDIN | bit = 0).<br>I. Directly re | ads Port           |

#### SFR Definition 13.10. P1MDIN: Port1 Input Mode





### 14.3. System Clock Selection

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to 1 by hardware when the external oscillator is settled. **To avoid reading a false XTLVLD in crystal mode, the software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.** RC and C modes typically require no startup time.

The CLKSL bit in register CLKSEL selects which oscillator source is used as the system clock. CLKSL must be set to 1 for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when another oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator and external oscillator, as long as the selected clock source is enabled and has settled.

### SFR Definition 14.5. CLKSEL: Clock Select





# 16. Enhanced Serial Peripheral Interface (SPI0)

The Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.







## SFR Definition 16.2. SPI0CN: SPI0 Control

| R/W               | R/W                                                                                              | R/W                      | R/W           | R/W                           | R/W            | R              | R/W                     | Reset Value    |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------|--------------------------|---------------|-------------------------------|----------------|----------------|-------------------------|----------------|--|--|--|
| SPIF              | WCOL                                                                                             | MODF                     | RXOVRN        | NSSMD1                        | NSSMD0         | TXBMT          | SPIEN                   | 00000110       |  |  |  |
| Bit7              | Bit6                                                                                             | Bit5                     | Bit4          | Bit3                          | Bit2           | Bit1           | Bit0                    | Bit            |  |  |  |
| Biti              | Bito                                                                                             | Bito                     | Bitt          | Bito                          | DILL           | DRT            |                         | Addressable    |  |  |  |
|                   |                                                                                                  |                          |               |                               |                |                | SFR Address             | s: 0x⊦8        |  |  |  |
| Bit7 <sup>.</sup> | SPIF SPIOL                                                                                       | nterrunt Fla             | n             |                               |                |                |                         |                |  |  |  |
| Bitr.             | This bit is se                                                                                   | t to logic 1             | bv hardwar    | e at the end                  | l of a data tr | ansfer. If in  | terrupts ar             | e enabled.     |  |  |  |
|                   | setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not |                          |               |                               |                |                |                         |                |  |  |  |
|                   | automatically                                                                                    | y cleared by             | y hardware.   | It must be                    | cleared by s   | oftware.       |                         |                |  |  |  |
| Bit6:             | WCOL: Write                                                                                      | e Collision              | Flag.         |                               |                |                |                         |                |  |  |  |
|                   | This bit is se                                                                                   | t to logic 1 k           | by hardware   | e (and gene                   | rates a SPI0   | interrupt) i   | f a write to            | SPI0DAT is     |  |  |  |
|                   | attempted w                                                                                      | hen the trar             | nsmit buffer  | has not bee                   | en emptied t   | othe SPIs      | hift register           | . When this    |  |  |  |
|                   | bit is not aut                                                                                   | omatically (             | UDAT WIII De  | e ignorea, a<br>pardware, lt  | nd the trans   | ared by so     | MIII NOT DE V<br>ftware | vritten. This  |  |  |  |
| Bit5 <sup>.</sup> | MODE Mod                                                                                         | e Fault Flag             | neared by n   | iaiuwaie. it                  |                | area by 30     | itware.                 |                |  |  |  |
|                   | This bit is se                                                                                   | t to logic 1             | by hardwar    | e (and gene                   | erates a SPI   | 0 interrupt)   | when a ma               | aster mode     |  |  |  |
|                   | collision is de                                                                                  | etected (NS              | SS is low, M  | STEN = 1,                     | and NSSMD      | D[1:0] = 01)   | . This bit is           | not auto-      |  |  |  |
|                   | matically cle                                                                                    | ared by har              | dware. It m   | ust be clea                   | red by softw   | are.           |                         |                |  |  |  |
| Bit4:             | RXOVRN: R                                                                                        | eceive Ove               | errun Flag (S | Slave Mode                    | only).         |                |                         |                |  |  |  |
|                   | This bit is se                                                                                   | t to logic 1             | by hardwar    | e (and gene                   | erates a SPI   | 0 interrupt)   | when the r              | receive but-   |  |  |  |
|                   | shifted into t                                                                                   | ho SPIO shi              | ia irom a pr  | evious tran<br>This hit is no | sier and the   | ally cleared   | he current              | transier is    |  |  |  |
|                   | be cleared b                                                                                     | v software.              | in register.  |                               |                |                |                         |                |  |  |  |
| Bits3-2:          | NSSMD1-N                                                                                         | SSMD0: SI                | ave Select I  | Mode.                         |                |                |                         |                |  |  |  |
|                   | Selects betw                                                                                     | veen the fol             | lowing NSS    | operation i                   | modes:         |                |                         |                |  |  |  |
|                   | (See Sectior                                                                                     | n "16.2. SPI             | 0 Master M    | ode Operat                    | ion" on page   | e 153 and \$   | Section "16             | .3. SPI0       |  |  |  |
|                   | Slave Mode                                                                                       | Operation"               | on page 15    | 54).                          |                |                |                         |                |  |  |  |
|                   | 00: 3-Wire S                                                                                     | lave or 3-w              | ire Master I  | viode. NSS                    | signal is not  | t routed to    | a port pin.             | dovico         |  |  |  |
|                   | 1x: 4-Wire S                                                                                     | ingle-Maste              | r Mode NS     | S signal is                   | manned as :    | an outout fi   | rom the dev             | vice and will  |  |  |  |
|                   | assume the                                                                                       | value of NS              | SMD0.         | o signa is                    |                | anoutputn      |                         |                |  |  |  |
| Bit1:             | TXBMT: Tra                                                                                       | nsmit Buffe              | r Empty.      |                               |                |                |                         |                |  |  |  |
|                   | This bit will b                                                                                  | be set to log            | gic 0 when r  | new data ha                   | is been writt  | en to the tr   | ansmit buff             | er. When       |  |  |  |
|                   | data in the tr                                                                                   | ansmit buff              | er is transfe | erred to the                  | SPI shift reg  | jister, this b | oit will be se          | et to logic 1, |  |  |  |
| D:40.             | indicating the                                                                                   | at it is safe            | to write a ne | ew byte to t                  | he transmit    | buffer.        |                         |                |  |  |  |
| DILU              | This hit enab                                                                                    | ) ⊑⊓able.<br>Jes/disable | s the SPI     |                               |                |                |                         |                |  |  |  |
|                   | 0: SPI disabl                                                                                    | led.                     |               |                               |                |                |                         |                |  |  |  |
|                   | 1: SPI enabl                                                                                     | ed.                      |               |                               |                |                |                         |                |  |  |  |



| Parameter                                                                                                                                                                                                        | Description                    | Min                     | Max                     | Units |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|-------------------------|-------|--|--|--|
| Master Mode Timing* (See Figure 16.6 and Figure 16.7)                                                                                                                                                            |                                |                         |                         |       |  |  |  |
| т <sub>мскн</sub>                                                                                                                                                                                                | SCK High Time                  | 1 x T <sub>SYSCLK</sub> |                         | ns    |  |  |  |
| T <sub>MCKL</sub>                                                                                                                                                                                                | SCK Low Time                   | 1 x T <sub>SYSCLK</sub> |                         | ns    |  |  |  |
| T <sub>MIS</sub>                                                                                                                                                                                                 | MISO Valid to SCK Sample Edge  | 20                      | —                       | ns    |  |  |  |
| Т <sub>МІН</sub>                                                                                                                                                                                                 | SCK Sample Edge to MISO Change | 0                       | —                       | ns    |  |  |  |
| Slave Mode Timing* (See Figure 16.8 and Figure 16.9)                                                                                                                                                             |                                |                         |                         |       |  |  |  |
| T <sub>SE</sub>                                                                                                                                                                                                  | NSS Falling to First SCK Edge  | 2 x T <sub>SYSCLK</sub> | _                       | ns    |  |  |  |
| T <sub>SD</sub>                                                                                                                                                                                                  | Last SCK Edge to NSS Rising    | 2 x T <sub>SYSCLK</sub> |                         | ns    |  |  |  |
| T <sub>SEZ</sub>                                                                                                                                                                                                 | NSS Falling to MISO Valid      | _                       | 4 x T <sub>SYSCLK</sub> | ns    |  |  |  |
| T <sub>SDZ</sub>                                                                                                                                                                                                 | NSS Rising to MISO High-Z      | _                       | 4 x T <sub>SYSCLK</sub> | ns    |  |  |  |
| тскн                                                                                                                                                                                                             | SCK High Time                  | 5 x T <sub>SYSCLK</sub> | —                       | ns    |  |  |  |
| T <sub>CKL</sub>                                                                                                                                                                                                 | SCK Low Time                   | 5 x T <sub>SYSCLK</sub> | —                       | ns    |  |  |  |
| T <sub>SIS</sub>                                                                                                                                                                                                 | MOSI Valid to SCK Sample Edge  | 2 x T <sub>SYSCLK</sub> | —                       | ns    |  |  |  |
| T <sub>SIH</sub>                                                                                                                                                                                                 | SCK Sample Edge to MOSI Change | 2 x T <sub>SYSCLK</sub> | _                       | ns    |  |  |  |
| Т <sub>SOH</sub>                                                                                                                                                                                                 | SCK Shift Edge to MISO Change  | —                       | 4 x T <sub>SYSCLK</sub> | ns    |  |  |  |
| Note: T <sub>SYSCLK</sub> is equal to one period of the device system clock (SYSCLK) in ns.<br>The maximum possible frequency of the SPI can be calculated as:<br>Transmission: SYSCLK/2<br>Reception: SYSCLK/10 |                                |                         |                         |       |  |  |  |

### Table 16.1. SPI Slave Timing Parameters



clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 18.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "10.4. Interrupt Register Descriptions" on page 100), facilitating pulse width measurements.

| TR0            | GATE0 | INT0 | Counter/Timer |  |  |
|----------------|-------|------|---------------|--|--|
| 0              | Х     | Х    | Disabled      |  |  |
| 1              | 0     | Х    | Enabled       |  |  |
| 1              | 1     | 0    | Disabled      |  |  |
| 1              | 1     | 1    | Enabled       |  |  |
| X = Don't Care |       |      |               |  |  |

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the INT0 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration).



Figure 18.1. T0 Mode 0 Block Diagram



183



## SFR Definition 18.10. TMR2RLH: Timer 2 Reload Register High Byte



#### SFR Definition 18.11. TMR2L: Timer 2 Low Byte



### SFR Definition 18.12. TMR2H Timer 2 High Byte





#### 19.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 19.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

**Note:** A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

#### Equation 19.1. Square Wave Frequency Output

Where  $F_{PCA}$  is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.



Figure 19.7. PCA Frequency Output Mode

