

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	10-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f523-c-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 1.1. Product Selection Guide (Recommended for New Designs)	14
Table 1.2. Product Selection Guide (Not Recommended for New Designs)	15
Table 1.3. Operating Modes Summary	21
Table 2.1. Absolute Maximum Ratings	25
Table 2.2. Global DC Electrical Characteristics	26
Table 2.3. ADC0 Electrical Characteristics	28
Table 2.4. Temperature Sensor Electrical Characteristics	29
Table 2.5. Voltage Reference Electrical Characteristics	29
Table 2.6. Voltage Regulator Electrical Specifications	30
Table 2.7. Comparator Electrical Characteristics	31
Table 2.8. Reset Electrical Characteristics	32
Table 2.9. Flash Electrical Characteristics	33
Table 2.10. Port I/O DC Electrical Characteristics	33
Table 2.11. Internal Oscillator Electrical Characteristics	34
Table 3.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10)	36
Table 3.2. DFN-10 Package Diagram Dimensions	38
Table 3.3. DFN-10 Landing Diagram Dimensions	39
Table 3.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20)	40
Table 3.5. TSSOP-20 Package Diagram Dimensions	43
Table 3.6. TSSOP-20 Landing Diagram Dimensions	44
Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20)	46
Table 3.8. QFN-20 Package Diagram Dimensions	49
Table 3.9. QFN-20 Landing Diagram Dimensions	51
Table 8.1. CIP-51 Instruction Set Summary	83
Table 9.1. Special Function Register (SFR) Memory Map	94
Table 9.2. Special Function Registers	95
Table 10.1. Interrupt Summary	99
Table 12.1. Flash Security Summary 1	18
Table 15.1. Timer Settings for Standard Baud Rates	
Using the Internal Oscillator 1	50
Table 16.1. SPI Slave Timing Parameters 1	63
Table 17.1. Baud-Rate Calculation Variable Ranges 1	66
Table 17.2. Manual Baud Rate Parameters Examples 1	67
Table 17.3. Autobaud Parameters Examples 1	68
Table 17.4. LIN Registers* (Indirectly Addressable) 1	74
Table 19.1. PCA Timebase Input Options 1	96
Table 19.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 1	97
Table 19.3. Watchdog Timer Timeout Intervals1 2	205

1. System Overview

The C8051F52x/F52xA/F53x/F53xA family of devices are fully integrated, low power, mixed-signal systemon-a-chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- True 12-bit 200 ksps ADC with analog multiplexer and up to 16 analog inputs
- Precision programmable 24.5 MHz internal oscillator that is within ±0.5% across the temperature range and for VDD voltages greater than or equal to the on-chip voltage regulator minimum output at the low setting. The oscillator is within ±1.0% for VDD voltages below this minimum output setting.
- Up to 7680 bytes of on-chip Flash memory
- 256 bytes of on-chip RAM
- Enhanced UART, and SPI serial interfaces implemented in hardware
- LIN 2.1 peripheral (fully backwards compatible, master and slave modes)
- Three general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V_{DD} Monitor, and Temperature Sensor
- On-chip Voltage Comparator
- Up to 16 Port I/O

With on-chip Power-On Reset, V_{DD} monitor, Watchdog Timer, and clock oscillator, the C8051F52x/F52xA/F53x/F53xA devices are truly standalone system-on-a-chip solutions. The Flash memory is byte writable and can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Laboratories 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system programming and debugging without occupying package pins.

Each device is specified for 2.0 to 5.25 V operation (supply voltage can be up to 5.25 V using on-chip regulator) over the automotive temperature range (–40 to +125 °C). The F52x/F52xA is available in the DFN10 (3 x 3 mm) package. The F53x/F53xA is available in the QFN20 (4 x 4 mm) or the TSSOP20 package.

1.1. Ordering Information

The following features are common to all devices in this family:

- 25 MHz system clock and 25 MIPS throughput (peak)
- 256 bytes of internal RAM
- Enhanced SPI peripheral
- Enhanced UART peripheral
- Three Timers
- Three Programmable Counter Array channels
- Internal 24.5 MHz oscillator
- Internal Voltage Regulator
- 12-bit, 200 ksps ADC
- Internal Voltage Reference and Temperature Sensor
- One Analog Comparator

Table 1.1 shows the features that differentiate the devices in this family.

Table 1.1. Product Selection Guide (Recommended for New Designs)

Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package	Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package
C8051F520-C-IM	8	6	\checkmark	DFN-10	C8051F534-C-IM	4	16	—	QFN-20
C8051F521-C-IM	8	6		DFN-10	C8051F536-C-IM	2	16	\checkmark	QFN-20
C8051F523-C-IM	4	6	\checkmark	DFN-10	C8051F537-C-IM	2	16	—	QFN-20
C8051F524-C-IM	4	6		DFN-10	C8051F530-C-IT	8	16	\checkmark	TSSOP-20
C8051F526-C-IM	2	6	\checkmark	DFN-10	C8051F531-C-IT	8	16	_	TSSOP-20
C8051F527-C-IM	2	6		DFN-10	C8051F533-C-IT	4	16	\checkmark	TSSOP-20
C8051F530-C-IM	8	16	\checkmark	QFN-20	C8051F534-C-IT	4	16	_	TSSOP-20
C8051F531-C-IM	8	16	_	QFN-20	C8051F536-C-IT	2	16	\checkmark	TSSOP-20
C8051F533-C-IM	4	16	\checkmark	QFN-20	C8051F537-C-IT	2	16		TSSOP-20

All devices in Table 1.1 are also available in an automotive version. For the automotive version, the -I in the ordering part number is replaced with -A. For example, the automotive version of the C8051F520-C-IM is the C8051F520-C-AM.

The -AM and -AT devices receive full automotive quality production status, including AEC-Q100 qualification (fault coverage report available upon request), registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered NDA and approved user account. The -AM and -AT devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding -AM and -AT devices for your automotive project.

1.3. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 7680 bytes ('F520/0A/1/1A and 'F530/0A/1/1A), 4 kB ('F523/3A/4/4A and C8051F53x/53xA), or 2 kB ('F526/6A/7/7A and 'F536/6A/7/7A) of Flash. This memory is byte writable and erased in 512-byte sectors, and requires no special off-chip programming voltage.

Figure 1.6. Memory Map

Table 2.3. ADC0 Electrical Characteristics

 V_{DD} = 2.1 V, V_{REF} = 1.5 V (REFSL=0), -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		1	<u> </u>	II	
Resolution		1	12		bits
Integral Nonlinearity		<u> </u>		±3	LSB
Differential Nonlinearity	Guaranteed Monotonic			±1	LSB
Offset Error ¹		-10	±1	+10	LSB
Full Scale Error		-20	±1	+20	LSB
Dynamic Performance (10 kHz sine	-wave Single-ended input, 0 to	1 dB belo	ow Full S	cale, 200 k	(sps)
Signal-to-Noise Plus Distortion		60	66		dB
Total Harmonic Distortion	Up to the 5 th harmonic	<u> </u>	74		dB
Spurious-Free Dynamic Range		—	88		dB
Conversion Rate	<u> </u>	<u> </u>		·	
SAR Conversion Clock		<u> </u>		3	MHz
Burst Mode Oscillator	-	<u> </u>		27	MHz
Conversion Time in SAR Clocks ²		<u> </u>	13		clocks
Track/Hold Acquisition Time ^{3,6}		1	—		μs
Throughput Rate ⁴		-	—	200	ksps
Analog Inputs					
	gain = 1.0 (default)	0		V _{REF}	V
ADC Input Voltage Range [~]	gain = n	0	—	V _{REF} / n	
Absolute Pin Voltage wrt to GND		0	—	V _{REGIN}	V
Sampling Capacitance			24		рF
Input Multiplexer Impedance			1.5		kΩ
Power Specifications			<u> </u>	·	
Power Supply Current (from VDD)	Operating Mode, 200 ksps	<u> </u>	1050	1400	μA
Burst Mode (Idle)		<u> </u>	930		μA
Power-on Time		1 -	5		μs
Power Supply Rejection		1	1		mV/V
Notes: 1. Represents one standard deviati	ion from the mean. Offset and full-s	scale error	can be re	emoved thro	uah

1. Represents one standard deviation from the mean. Offset and full-scale error can be removed to calibration.

2. An additional 2 FCLK cycles are required to start and complete a conversion.

3. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "4.3.6. Settling Time Requirements" on page 60.

4. An increase in tracking time will decrease the ADC throughput.

5. See Section "4.4. Selectable Gain" on page 60 for more information about setting the gain.

 Additional tracking time might be needed ifVDD < 2.0 V; See Section "11.2.1. VDD Monitor Thresholds and Minimum VDD" on page 108 for minimum V_{DD} requirements.

Figure 3.2. DFN-10 Package Diagram

Dimension	Min	Nom	Max					
A	0.80	0.90	1.00					
A1	0.00	0.02	0.05					
b	0.18	0.25	0.30					
D		3.00 BSC.						
D2	1.50	1.50 1.65						
е		0.50 BSC.						
E		3.00 BSC.						
E2	2.23	2.38	2.53					
L	0.30	0.40	0.50					
L1	0.00	—	0.15					
aaa	—	—	0.15					
bbb	—	—	0.15					
ddd	—	—	0.05					
eee	—	—	0.08					

Table 3.2. DFN-10 Package Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to JEDEC outline MO-220, variation VEED except for custom features D2, E2, and L, which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 3.8. QFN-20 Package Diagram*

*Note: The Package Dimensions are given in Table 3.8, "QFN-20 Package Diagram Dimensions," on page 49.

SFR Definition 4.5. ADC0CF: ADC0 Configuration

D/M		D ///				D M	DAA	Pocot Valuo
r\/ VV	N/ W	ADOSC	IN/ VV	N/ VV			GAINEN	11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
2	2.10	2.110	2	2110	2112	2	2.10	0xBC
Bits7-3:	AD0SC4-0:	ADC0 SAR	Conversio	n Clock Per	iod Bits.			
	SAR Conver	sion clock is	s derived fr	om FCLK by	/ the followi	ng equatio	n, where AL	00SC refers
	to the 5-bit v	alue held in	bits AD0S	C4–0. SAR	Conversion	n clock requ	uirements a	re given in
	Table 2.3 on	page 28.	_					
	BURSTEN =	0: FCLK is	the curren	t system clo	ock.			
	BURSTEN =	1: FCLK is	the Burst I	Mode Oscill	ator, specifi	ed in Table	2.3.	
	ADOSC =	\underline{FCLK}	-1* c	or CIK		FCLK		
	nbobe -	CLK_{SAR}	1 0		SAR = AL	DOSC + 1		
Note: Roun	d the result up.							
Bits2–1:	AD0RPT1-0	: ADC0 Re	peat Count	-				
	Controls the	number of	conversion	s taken and	accumulate	ed betweer	n ADC0 End	d of
	Conversion (ADCINT) a	nd ADC0 V	Vindow Con	nparator (A	DCWINT) i	nterrupts. A	convert
	start is requir	red for each	n conversio	n unless Bu	rst Mode is	enabled. I	n Burst Mo	de, a single
	convert start	can initiate		elf-timed cor	IVERSIONS. H		oth modes	are
	than '00' th		bit in the		nen ADUR	et ho sot t	Set to a va	iue other
	00.1 conver	sion is nerf		ADCOCINIC	egister mu			justineu).
	01: 4 conver	sions are pe	erformed a	nd accumul	ated			
	10: 8 conver	sions are p	erformed a	nd accumul	ated.			
	11: 16 conve	rsions are p	performed a	and accumu	lated.			
		•						
Dit0.								
DILU.	GAINEN: Ga	in Enable E	Bit.					
BILU.	GAINEN: Ga Controls the	in Enable E gain progra	Bit. amming. Fo	r more infor	mation of t	he usage, r	efer to the	following

SFR Definition 6.1. REG0CN: Regulator Control

	DAM	P	DAM	P	P		5	Deschilde
R/W	R/W	R	R/W	ĸ	R	ĸ	R	Reset Value
REGDIS	Reserved	—	REG0MD	—	—	—	DROPOUT	01010000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address:	0xC9
Bit7:	REGDIS: Vo	ltage Regu	lator Disabl	e Bit.				
	This bit disat	oles/enable	s the Voltag	e Regulato	r.			
	0: Voltage Re	egulator Er	abled.	, 0				
	1: Voltage Re	equlator Di	sabled.					
Bit6:	RESERVED	. Read = 1k	. Must write	ə 1b.				
Bit5:	UNUSED. R	ead = 0b. V	Vrite = don'i	t care.				
Bit4:	REGOMD: Vo	oltage Reg	ulator Mode	Select Bit.				
	This bit selec	cts the Volta	age Regulat	tor output vo	oltage.			
	0: Voltage Re	egulator ou	tout is 2.1 \	·. ·	5			
	1: Voltage Re	egulator ou	tput is 2.6 \	/ (default).				
Bits3-1	UNUSED R	ead = 000h	Write = dc	n't care				
Bit0	DROPOUT	Voltage Re	gulator Dro	nut Indicat	or Bit			
Bitt.	0: Voltage R	oulator is	not in drong		or Bit.			
	1: Voltage R	aulator is	in or noor d	ropout				
	i. voltage Re	eguiator is	in or near u	iopoul.				

7. Comparator

C8051F52x/F52xA/F53x/F53xA devices include one on-chip programmable voltage comparator. The Comparator is shown in Figure 7.1.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0), or an asynchronous "raw" output (CP0A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP or SUS-PEND mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "13.2. Port I/O Initialization" on page 126). The Comparator may also be used as a reset source (see Section "11.5. Comparator Reset" on page 110).

The Comparator inputs are selected in the CPT0MX register (SFR Definition 7.2). The CMX0P3–CMX0P0 bits select the Comparator0 positive input; the CMX0N3–CMX0N0 bits select the Comparator0 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register and configured to be skipped by the Crossbar (for details on Port configuration, see Section "13.3. General Purpose Port I/O" on page 128).

Figure 7.1. Comparator Functional Block Diagram

The Comparator output can be polled in software, used as an interrupt source, internal oscillator suspend awakening source and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP or SUSPEND mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	2
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer	·	·	
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

Mnemonic	Description	Bytes	Clock Cycles
Boolean Manipulation	1		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			·
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

R/W	R/W	R/W	/ R/W	R/W	R/W	R/W	R	Reset Valu
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressah
							SFR Address	: 0xD0
Bit7:	CY: Carry	/ Flag.						
	This bit is	set when	the last arithmet	ic operatio	n resulted i	n a carry (a	addition) or a	a borrow
	(subtracti	on). It is cl	eared to 0 by all	other arith	metic opera	ations.	,	
it6:	AC: Auxil	iary Carry	Flag					
	This bit is	set when	the last arithmeti	c operatior	resulted in	n a carry int	o (addition)	or a borro
	from (sub	traction) th	ne high order nib	ble. It is cle	eared to 0 b	by all other	arithmetic o	perations
it5:	F0: User	Flag 0.						
	This is a l	bit-address	sable, general pu	urpose flag	for use une	der softwar	e control.	
its4–3:	RS1-RS(): Register	Bank Select.					
	I hese bit	s select wi	hich register ban	k is used d	uring regis	ter accesse	es.	
			Desister Deals	٨٩٩٣				
	RS1	RS0	Register Bank	Addr	ess			
	RS1 0	RS0 0	Register Bank	Addr 0x00–0x0	ess 7			
	RS1 0 0	RS0 0 1	Register Bank 0 1	Addr 0x00-0x0 0x08-0x0	ess 7 F			
	RS1 0 0 1	RS0 0 1 0	Register Bank 0 1 2	Addr 0x00–0x0 0x08–0x0 0x10–0x1	ess 7 F 7			
	RS1 0 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
	RS1 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1	ess 7 F 7 F			
iit2:	RS1 0 1 1 0 1 0 V: Over	RS0 0 1 0 1 1	Register Bank 0 1 2 3	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1	ess 7 F 7 F			
Sit2:	RS1 0 1 1 OV: Over This bit is	RS0 0 1 0 1 flow Flag. set to 1 u	Register Bank 0 1 2 3 nder the followin	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst	ess 7 F 7 F ances:			
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o	Register Bank 0 1 2 3 nder the followin or SUBB instructio	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumsta	ess 7 F 7 F ances: a sign-chai	nge overflo	w.	
Sit2:	RS1 0 0 1 1 1 OV : Over This bit is • An ADD • A MUL i	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction	Register Bank 0 1 2 3 nder the followin or SUBB instruction results in an over	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumsta on causes erflow (resu	ess 7 F 7 F ances: a sign-chai	nge overflo r than 255)	W.	
Sit2:	RS1 0 0 1 1 1 OV : Over This bit is • An ADD • A MUL i • A DIV in	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o nstruction struction	Register Bank 0 1 2 3 nder the followin or SUBB instruction results in an over causes a divide-b	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumsta on causes erflow (resu	ess 7 F 7 F ances: a sign-chai It is greate ndition.	nge overflo r than 255)	w.	
Sit2:	RS1 0 1 1 1 0V: Over This bit is • An ADD • A MUL i • A DIV in The OV b	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction struction o it is cleare	Register Bank 0 1 2 3 nder the followin or SUBB instruction results in an over causes a divide-b causes a divide-b	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumstr on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai ilt is greate ndition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2:	RS1 0 0 1 1 2 0V: Over This bit is • An ADD • A MUL i • A DIV in The OV b cases.	RS0 0 1 0 1 flow Flag. 5 set to 1 u b, ADDC, o nstruction ostruction ostruction ostruction	Register Bank 0 1 2 3 nder the followin or SUBB instruction results in an over causes a divide-b causes a divide-b causes a divide-b	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate ndition. SUBB, MU	nge overflo r than 255) L, and DIV	ow. instructions	in all oth
iit2: iit1:	RS1 0 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV in The OV b cases. F1: User	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction struction istruction it is cleare Flag 1.	Register Bank 0 1 2 3 nder the followin or SUBB instruction results in an over causes a divide-b causes a divide-b	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumsta on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
lit2: lit1:	RS1 0 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV in The OV b cases. F1: User This is a l PARITY	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction struction struction it is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 nder the followin or SUBB instruction results in an over causes a divide-b ed to 0 by the AD sable, general pu	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumsta on causes erflow (resu by-zero cor D, ADDC, urpose flag	ess 7 F 7 F 7 F ances: a sign-chai lt is greate ndition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	ow. instructions re control.	in all oth
3it2: 3it1: 3it0:	RS1 0 0 1 1 1 0V: Over This bit is • An ADD • A MUL i • A DIV in The OV b cases. F1: User This is a l PARITY: This bit is	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction istruction o it is cleare Flag 1. bit-address Parity Flag set to 1 if	Register Bank 0 1 2 3 ander the followin or SUBB instruction results in an over causes a divide-back ad to 0 by the AD sable, general pugat the sum of the exit	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumsta on causes erflow (resu by-zero cor D, ADDC, urpose flag	ess 7 F 7 F 7 F ances: a sign-chai ilt is greate ndition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions re control.	in all oth

15. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "15.1. Enhanced Baud Rate Generation" on page 145). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte. (Please refer to Section "20. Device Specific Behavior" on page 210 for more information on the pins associated with the UART interface.)

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 15.1. UART0 Block Diagram

16.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 16.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 16.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 16.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

SFR Definition 17.12. LIN0CTRL: LIN0 Control Register

W	W	W	R/W	R/W	R/W	R/W	R/W	Reset Value
STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address:	0x08 (indirect)
Bit7:	STOP: Stop	Communic	ation Proce	ssing Bit (s	lave mode	only).		
	This bit is to	be set by th	ne applicatio	on to block	the process	sing of the LI	N Commun	ications
	until the next	t SYNCH B	REAK signa	al. It is used	I when the a	application is	handling a	data
	request inter	rupt and ca	nnot use th	e frame cor	itent with th	e received id	entitier (alv	ays reads
Bit6.	U). SI FED: Slow	an Mode W	arnina					
Ditto.	This bit is to	be set by th	ne applicati	on to warn t	he nerinhei	ral that a Slee	en Mode Fi	rame was
	received and	that the B	us is in slee	p mode or	if a Bus Idle	timeout inte	rrupt is rea	uested.
	The applicat	ion must re	set it when	a Wake-Up	interrupt is	requested.		
Bit5:	TXRX: Trans	smit/Receiv	e Selection	Bit.		·		
	This bit dete	rmines if the	e current fra	ame is a tra	nsmit frame	e or a receive	e frame.	
	0: Current fra	ame is a reo	ceive opera	tion.				
D ¹ /4	1: Current fra	ame is a tra	insmit opera	ation.	• `			
Bit4:	DIACK: Dat	a acknowle	dge bit (sla	ve mode o	nly).		ofor The b	
	Set to 1 alter	r nandling a	by the LIN	st interrupt	to acknowle	eage the tran	isier. The b	it will auto-
Bit3	RSTINT Inte	srrunt Rese	t hit	Controller.				
Bito.	This bit alwa	vs reads as	s 0.					
	0: No effect.	<i>j</i>						
	1: Reset the	LININT bit	(LIN0ST.3).					
Bit2:	RSTERR: Er	rror Reset E	Bit.					
	This bit alwa	ys reads as	s 0.					
	0: No effect.		LINIOOT					
D:44	1: Reset the	error bits in	LINUST ar	IC LINUERI	۲.			
DITI.	Set to 1 to te	vake-up Re arminato slo	equest bit.	, sondina a	wakoun sid	nal The hit	will automa	utically be
	cleared to 0	by the LIN	controller	y senuing a	wakeup sig	griai. The bit		lically be
Bit0:	STREQ: Sta	rt Request	Bit (master	mode only	<i>(</i>).			
	1: Start a LIN	v transmiss	ion. This sh	ould be set	only after l	oading the id	entifier, dat	ta length
	and data buf	fer if neces	sary.		-	-		-
	The bit is res	set to 0 upo	n transmiss	ion comple	tion or erroi	r detection.		

SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PRE	SCL[1:0]	CL[1:0] LINMUL[4:0]					DIV9	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							Address	: 0x0D (indirect)
Bit7-6:	PRESCL1-0	: LIN Baud	Rate Preso	caler Bits.				
	These bits a	re the baud	l rate presca	aler bits.				
Bit5–1:	LINMUL4–0	: LIN Baud	Rate Multip	lier Bits.				
	These bits a	re the baud	l rate multip	lier bits. The	ese bits are	not used in	n slave mode	э.
Bit0:	DIV9: LIN Ba	aud Rate D	ivider Most	Significant I	Bit.			
	The most sig	nificant bit	of the baud	I rate divide	r. The 8 lea	st significan	nt bits are in	LIN0DIV.
	The valid rar	nge for the	divider is 20)0 to 511.				
		-						

SFR Definition 17.18. LIN0ID: LIN0 ID Register

18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 18.3. T0 Mode 3 Block Diagram

19.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- Disable the WDT by writing a 0 to the WDTE bit.
- Select the desired PCA clock source (with the CPS2-CPS0 bits).
- Load PCA0CPL2 with the desired WDT update offset value.
- Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- Enable the WDT by setting the WDTE bit to 1.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 19.4, this results in a WDT timeout interval of 3072 system clock cycles. Table 19.3 lists some example timeout intervals for typical system clocks.

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)
24,500,000	255	32.1
24,500,000	128	16.2
24,500,000	32	4.1
18,432,000	255	42.7
18,432,000	128	21.5
18,432,000	32	5.5
11,059,200	255	71.1
11,059,200	128	35.8
11,059,200	32	9.2
3,062,500	255	257
3,062,500	128	129.5
3,062,500	32	33.1
191,406 ²	255	4109
191,406 ²	128	2070
191,406 ²	32	530
32,000	255	24576
32,000	128	12384
32,000	32	3168
Notes: 1. Assumes SYSCLK / 12 as the PCA clock source, and a PCA0L		
value of 0x00 at the update time.		

Table 19.3. Watchdog Timer Timeout Intervals¹

2. Internal oscillator reset frequency.

