

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	10-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f527a-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.1. C8051F53xA/F53x-C Block Diagram	. 16
Figure 1.2. C8051F52xA/F52x-C Block Diagram	. 16
Figure 1.3. C8051F53x Block Diagram (Silicon Revision A)	. 17
Figure 1.4. C8051F52x Block Diagram (Silicon Revision A)	. 17
Figure 1.5. Development/In-System Debug Diagram	. 19
Figure 1.6. Memory Map	. 20
Figure 1.7. 12-Bit ADC Block Diagram	. 22
Figure 1.8. Comparator Block Diagram	. 23
Figure 1.9. Port I/O Functional Block Diagram	. 24
Figure 3.1. DFN-10 Pinout Diagram (Top View)	. 35
Figure 3.2. DFN-10 Package Diagram	. 38
Figure 3.3. DFN-10 Landing Diagram	. 39
Figure 3.4. TSSOP-20 Pinout Diagram (Top View)	. 40
Figure 3.5. TSSOP-20 Package Diagram	. 43
Figure 3.6. TSSOP-20 Landing Diagram	. 44
Figure 3.7. QFN-20 Pinout Diagram (Top View)	. 45
Figure 3.8. QFN-20 Package Diagram*	. 48
Figure 3.9. QFN-20 Landing Diagram*	. 50
Figure 4.1. ADC0 Functional Block Diagram	. 52
Figure 4.2. Typical Temperature Sensor Transfer Function	. 53
Figure 4.3. ADC0 Tracking Modes	. 55
Figure 4.4. 12-Bit ADC Tracking Mode Example	. 56
Figure 4.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4	. 58
Figure 4.6. ADC0 Equivalent Input Circuits	. 60
Figure 4.7. ADC Window Compare Example:	
Right-Justified Single-Ended Data	. 71
Figure 4.8. ADC Window Compare Example:	
Left-Justified Single-Ended Data	. 71
Figure 5.1. Voltage Reference Functional Block Diagram	. 72
Figure 6.1. External Capacitors for Voltage Regulator Input/Output	. 74
Figure 7.1. Comparator Functional Block Diagram	. 76
Figure 7.2. Comparator Hysteresis Plot	. 77
Figure 8.1. CIP-51 Block Diagram	. 81
Figure 9.1. Memory Map	. 92
Figure 11.1. Reset Sources	106
Figure 11.2. Power-On and V _{DD} Monitor Reset Timing	107
Figure 12.1. Flash Program Memory Map	117
Figure 13.1. Port I/O Functional Block Diagram	120
Figure 13.2. Port I/O Cell Block Diagram	121
Figure 13.3. Crossbar Priority Decoder with No Pins Skipped	
(TSSOP 20 and QFN 20)	122
Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped	
(TSSOP 20 and QFN 20)	123

Figure 1.3. C8051F53x Block Diagram (Silicon Revision A)

Figure 1.4. C8051F52x Block Diagram (Silicon Revision A)

Table 3.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10)

Name	Pin Nur	nbers	Туре	Description	
	'F52xA 'F52x-C	'F52x			
RST/ C2CK	1	1	D 1/0 D 1/0	Device Reset. Open-drain output of internal POR or V_{DD} monito An external source can initiate a system reset by driving this pi low for at least the minimum RST low time to generate a system reset, as defined in Table 2.8 on page 32. A 1 k Ω pullup to V_{REGIN} is recommended. See Reset Sources Section for a com- plete description.	
				Clock signal for the C2 Debug Interface.	
P0.0/	2	2	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.	
V _{REF}			A O or D In	External V _{REF} Input. See V _{REF} Section.	
GND	3	3		Ground.	
V _{DD}	4	4		Core Supply Voltage.	
V _{REGIN}	5	5		On-Chip Voltage Regulator Input.	
P0.5/RX*/	6	—	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.	
CNVSTR			D In	External Converter start input for the ADC0, see Section "4. 12- Bit ADC (ADC0)" on page 52 for a complete description.	
P0.5/	—	6	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.	
CNVSTR			D In	External Converter start input for the ADC0, see Section "4. 12- Bit ADC (ADC0)" on page 52 for a complete description.	
P0.4/TX*	7	—	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.	
P0.4/RX*	—	7	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.	
P0.3	8	—	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.	
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "14. Oscillators" on page 135.	
Note: Please	refer to Se	ection "2	20. Device S	Specific Behavior" on page 210.	

Name	Pin Numbers		Туре	Description					
	ʻF53xA ʻF53x-C	ʻF53x							
P0.4/TX*	19	—	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.					
P0.4/RX*	—	19	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.					
P0.3	20	—	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.					
P0.3/TX*	—	20	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.					
*Note: Please	*Note: Please refer to Section "20. Device Specific Behavior" on page 210.								

Table 3.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20) (Continued)

Figure 3.8. QFN-20 Package Diagram*

*Note: The Package Dimensions are given in Table 3.8, "QFN-20 Package Diagram Dimensions," on page 49.

Table 3.9. QFN-20 Landing Diagram Dimensions

Symbol	Min	Мах
C1	3.90	4.00
C2	3.90	4.00
E	0.50 BS	SC.
X1	0.20	0.30
X2	2.75	2.85
Y1	0.65	0.75
Y2	2.75	2.85

Notes:

<u>General</u>

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

<u>Solder Mask Design</u>

 All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- **6.** The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.

Card Assembly

- 8. A No-Clean, Type-3 solder paste is recommended.
- **9.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Gain Register Definition 4.1. ADC0GNH: ADC0 Selectable Gain High Byte

R/W	R/W	R/W	R/W GAIN	R/W H[7:0]	R/W	R/W	R/W	Reset Value
Bit7 Bits7–0: H	Bit6 High byte of	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	Address: 0x04

Gain Register Definition 4.2. ADC0GNL: ADC0 Selectable Gain Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
	GAINL	_[3:0]		Reserved	Reserved	Reserved	Reserved	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Address:			
								0x07			
Bits7–4∶ L Bits3–0∶ R	Bits7–4: Lower 4 bits of the Selectable Gain Word. Bits3–0: Reserved. Must Write 0000b.										

Gain Register Definition 4.3. ADC0GNA: ADC0 Additional Selectable Gain

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	GAINADD	0000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Address:
								0x08
Bits7–1:	Reserved.	Must Write	0000000b.					
Bit0:	GAINADD:	Additional (Gain Bit.					
	Setting this registers.	bit adds 1/6	64 (0.016) ថ្	gain to the g	gain value i	n the ADC	GNH and A	ADC0GNL

9. Memory Organization and SFRs

The memory organization of the C8051F52x/F52xA/F53x/F53x/F53xA is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory map is shown in Figure 9.1.

Figure 9.1. Memory Map

9.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F520/0A/1/1A and C8051F530/0A/1/1A implement 8 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Addresses above 0x1DFF are reserved on the 8 kB devices. The C8051F523/3A/4/4A and C8051F533/3A/4/4A implement 4 kB of Flash from addresses 0x0000 to 0x0FFF. The C8051F526/6A/7/7A and C8051F536/6A/7/7A implement 2 kB of Flash from addresses 0x0000 to 0x07FF.

Program memory is normally assumed to be read-only. However, the C8051F52x/F52xA/F53x/F53xA can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX write instruction. This feature provides a mechanism for updates to program code and use of the program memory space for non-volatile data storage. Refer to Section "12. Flash Memory" on page 113 for further details.

SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 9.1 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 9.2, for a detailed description of each register.

F8	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0			VDDMON
F0	В	P0MDIN	P1MDIN				EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN			P0SKIP	P1SKIP		P0MAT
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H		P1MAT
C0				ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	P0MASK
B8	IP		ADC0TK	ADC0MX	ADC0CF	ADC0L	ADC0	P1MASK
B0	OSCIFIN	OSCXCN	OSCICN	OSCICL				FLKEY
A8	IE	CLKSEL						
A0		SPI0CFG	SPI0CKR	SPI0DAT	POMDOUT	P1MDOUT		
98	SCON0	SBUF0		CPT0CN		CPT0MD		CPT0MX
90	P1		LINADDR	LINDATA		LINCF		
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
	(bit address-							
	able)							

Table 0.1 S	enocial Eurotio	n Pogistor		Momor	Man
Table 3.1. 3	pecial Functio	ii Keyistei	(SFR)		y wap

ramp or during a brownout condition even when V_{DD} is below the specified minimum of 2.0 V. There are two possible ways to handle this transitional period as described below:

If using the on-chip regulator (REG0) at the 2.6 V setting (default), it is recommended that user software set the VDDMON0 threshold to its high setting ($V_{RST-HIGH}$) as soon as possible after reset by setting the VDMLVL bit to 1 in SFR Definition 11.1 (VDDMON). In this typical configuration, no external hardware or additional software routines are necessary to monitor the V_{DD} level.

Note: Please refer to Section "20.5. VDD Monitor (VDDMON0) High Threshold Setting" on page 212 for important notes related to the VDD Monitor high threshold setting in older silicon revisions A and B.

If using the on-chip regulator (REG0) at the 2.1 V setting or if directly driving V_{DD} with REG0 disabled, the user system (software/hardware) should monitor V_{DD} at power-on and also during device operation. The two key parameters that can be affected when $V_{DD} < 2.0$ V are: internal oscillator frequency (Table 2.11 on page 34) and minimum ADC tracking time (Table 2.3 on page 28).

SFR Definition 11.1. VDDMON: V_{DD} Monitor Control

R/W	R	RW	R	R	R	R	R	Reset Value	
		VDMLVL	VDM1EN	Reserved	Reserved	Reserved	Reserved	1v010000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0]	
							SFR Address:	0xFF	
Bit7:	VDMEN: V _{DI}	_D Monitor E	nable (VDE	DMON0).					
	This bit turns	s the V _{DD} m	nonitor circu	it on/off. Th	e V _{DD} Moni	itor cannot g	generate sys	stem	
	resets until it	is also sel	ected as a i	reset source	e in register	RSTSRC (S	SFR Definiti	on 11.2).	
	The V _{DD} Mo	nitor can be	e allowed to	stabilize be	efore it is se	lected as a	reset sourc	e. Select-	
	ing the V _{DD}	monitor as	s a reset so	ource befor	e it has sta	bilized mag	y generate	a system	
	reset. See T	able 2.8 on	page 32 fo	or the minim	um V _{DD} Mo	nitor turn-oi	n time.		
	0: V _{DD} Monit	or Disable	d.						
	1: V _{DD} Monit	for Enabled	(default).						
Bit6:		DD Status.							
	This bit indic	ates the cu	rrent power	r supply stat	us (V _{DD} Mo	onitor output	t).		
	0: V _{DD} is at o	or below the	e v _{DD} Moni		JNU) Thresh	nold.			
D:45	1: V _{DD} is abo	ove the V _{DI}		/DDMON0)	i nresnoid.				
Bit5:				h a l al : a . a 4 4	-)/	(-1-6			
			JNU) Three	noid is set t	0 V _{RST-LOW}	(delauit).		ad for one	
	1. V _{DD} World		JNU) Thres			i. This settin	ig is require	o for any	
D:44				es lo anu/or		511. 14)			
BIt4:		evel-sensit	ive v _{DD} ivio	nitor Enable	e (VDDIVIOr	ia alaa aala	atad aa a ra	act	
		s the v _{DD} fi		ni on/on. n i rooot	umea on, it	is also sele	ected as a re	set	
		sitive VDD	Monitor Dis	abled					
	1: Level-sen	sitive VDD	Monitor En	abled (defau	ult).				
Bits3–0:	RESERVED	. Read = Va	ariable. Writ	te = don't ca	are.				
* Note: Availa	Note: Available only on the C8051F52x-C/F53x-C devices								

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 12.1 summarizes the Flash security features of the 'F52x/'F53x/'F53xA devices.

Action	C2 Debug	User Firmware executing from:			
	Interface	an unlocked page	a locked page		
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted		
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	Flash Error Reset	Permitted		
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted		
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted		
Erase page containing Lock Byte (if no pages are locked)	Permitted	Flash Error Reset	Flash Error Reset		
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset		
Lock additional pages (change 1s to 0s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset		
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset		
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset		

Table 12.1. Flash Security Summary

C2 Device Erase—Erases all Flash pages including the page containing the Lock Byte.

Flash Error Reset—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is 1 after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).

- Locking any Flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.

- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

SF Signals DFN10	REF		ral1	FAL2		VSTR		
PIN I/O	5	1	× 2	×	Λ	5		
	U		2	3	4		C8051E52xA/E52x-C	
RXO							devices	
тхо								
RXO						I	C8051F52x devices	
SCK								
MISO			I					
MOSI				1				
NSS*					l I			
		1				1		
			I					
CP0A								
CEX0								
CEX1								
CEX2								
ECI								
TO								
T1								
	0	0	0	0		•	L I	
		P	0 0SK	01910	:51	U		
SE Signals	Por	rt pir	n po I Fu	tenti	ally	ass	ignable to peripheral	
or orginals	Wh	ien t	thes	e sid	anals	sare	e enabled, the Crossbar must	
	to s	to skip their corresponding port pins.						

Note: 4-Wire SPI Only.

Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)

SFR Definition 14.4. OSCXCN: External Oscillator Control

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
XTLVLD	XOSCMD2	XOSCMD1	XOSCMD0	Reserved	XFCN2	XFCN1	XFCN0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-				
							SFR Address	s: 0xB1				
Di+7		wetal Ocaill	ator Valid Ek	na (Pondio	nly when \		- 11v)					
DILT.	0 [·] Crystal O	scillator is u	inused or no	ay. (Reau o of vet stable	my when /		= 11X.)					
	1: Crystal Oscillator is running and stable.											
Bits6-4:	XOSCMD2–0: External Oscillator Mode Bits.											
	00x: Externa	al Oscillator	circuit off.									
	010: Externa	al CMOS CI	ock Mode.	المالين الم	· O ata sa							
	100 RC Os	al CIVIOS CI cillator Mod	ock wode w	ith divide by	/ 2 stage.							
	100: 100 OS	tor Oscillato	or Mode.									
	110: Crystal	Oscillator N	/lode.									
	111: Crystal	Oscillator N	lode with div	vide by 2 st	age.							
Bit3:	RESERVED	\mathbf{R} . Read = 0	o; Must write	e Ob.	n Dite							
BItS2-U	000-111: Se	e table belo	w:	Jency Conti	OI BITS.							
	XECN	Crystal ()	(OSCMD = '	11x) RC	XOSCMD	() = 10x)	C (XOSCI	MD = 10x				
	000	f c			f < 25 kL	- 10,	K Easta	r = 0.97				
	000	20 kH-		- 25	$f \le 25 \text{ KHZ}$ K Factor = 0.87							1 = 0.87
	010		$< 1 \ge 30$ Km	2 20	$23 \text{ KHZ} < 1 \ge 50 \text{ KHZ} \qquad \text{K Factor} = 2$							
	010			12 50	100 kHz < f < 200 kHz K Eactor = 7							
	100		$<1 \ge 413$ Kr	12 100	$\frac{100 \text{ kHz}}{200 \text{ kHz}} = \frac{1}{2} \frac{200 \text{ kHz}}{100 \text{ kHz}} = \frac{1}{2} $							
	100		< f < 3.1 Mi	12 200 Hz 400	$\frac{1}{200 \text{ kHz}} < f \le 800 \text{ kHz}$ K Factor = 180							
	110	2.1 MU-	$<$ $1 \leq 3.1$ IVII	12 400 J-7 900	$400 \text{ kHz} < f \le 1.6 \text{ MHz}$ K Factor = 664							
	111	3.1 MHZ	$<$ I \geq 0.2 IVII	12 000	$\frac{16 \text{ MHz} < f < 3.2 \text{ MHz}}{1.6 \text{ MHz} < f < 3.2 \text{ MHz}} = \text{K Factor} = 1590$							
		0.2 1011 12		12 1.01								
Crystal N	lode (Circuit	from Figure	e 14.1, Optio	n 1; XOSC	MD = 11x)							
PC Mode	Choose XF(CN value to	match cryst	al or resona	ator freque	ncy.						
	Choose XF	CN value to	match frequ	iencv range	= 10x)							
	$f = 1.23(10^3)$)/(R x C).	where									
	f = frequenc	y of clock ir	MHz									
	C = capacito	or value in p	F									
O Mada (R = Pullup r	esistor valu	e in kΩ Ontion 0. V		1 ())							
C Wode (-igure 14.1, actor (KE) f	Option 3; X	USCMD =	10X) nev desire	٩.						
	f = KF / (C)	ענט (וער) וי (V הם) . whe	re	allon neque		u.						
	f = frequenc	v of clock in	MHz									
	C = capacitor value the XTAL2 pin in pF											
	$V_{DD} = Powe$	er Supply on	MCU in vol	ts								

16.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 16.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 16.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 16.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

SFR Definition 16.4. SPI0DAT: SPI0 Data

17.7.2. LIN Indirect Access SFR Registers Definition

Name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
LIN0DT1	0x00	DATA1[7:0]									
LIN0DT2	0x01		DATA2[7:0]								
LIN0DT3	0x02		DATA3[7:0]								
LIN0DT4	0x03				DATA	4[7:0]					
LIN0DT5	0x04				DATA	\$[7:0]					
LIN0DT6	0x05		DATA6[7:0]								
LIN0DT7	0x06		DATA7[7:0]								
LIN0DT8	0x07		DATA8[7:0]								
LIN0CTRL	0x08	STOP(s)	STOP(s) SLEEP(s) TXRX DTACK(s) RSTINT RSTERR WUPREQ STREE					STREQ(m)			
LIN0ST	0x09	ACTIVE	IDLTOUT	ABORT(s)	DTREQ(s)	LININT	ERROR	WAKEUP	DONE		
LIN0ERR	0x0A	SYNCH(s) PRTY(s) TOUT CHK BITE					BITERR				
LIN0SIZE	0x0B	ENHCHK LINSIZE[3:0]									
LIN0DIV	0x0C	DIVLSB[7:0]									
LINOMUL	0x0D	PRESCL[1:0] LINMUL[4:0] DIV9						DIV9			
LIN0ID	0x0E	ID[5:0]									

Table 17.4. LIN Registers* (Indirectly Addressable)

*These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.

SFR Definition 17.4. LIN0DT1: LIN0 Data Byte 1

clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 18.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "10.4. Interrupt Register Descriptions" on page 100), facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer
0	Х	Х	Disabled
1	0	Х	Enabled
1	1	0	Disabled
1	1	1	Enabled
X = Don't C	are	•	

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the INT0 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration).

Figure 18.1. T0 Mode 0 Block Diagram

183

FR Defi	nition 18	8.2. TMO	D: Timer Mo	ode						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	I		
							SFR Address:	0x89		
Bit7:	GATE1: T	ïmer 1 Gat	e Control.							
	0: Timer 1	enabled w	/hen TR1 = 1 i	rrespective	of INT0 log	jic level.				
	1: Timer 1	enabled o	nly when TR1	= 1 AND IN	TO is active	as defined	by bit IN1PL	in register		
D:40	1101CF (S		efinition 10.5.	"1101CF: IN	10/IN11 C	onfiguration	n" on page 10	15).		
DILO.	0. Timor E	Inter/ Inner Supction: Ti	n Select.	nted by clo	ok defined l	by T1M bit				
	1: Counter	r Function.	Timer 1 increme	mented by clot	iah-to-low	transitions	on external ir	nut nin		
	(T1).				ingir to lot			ipat piri		
Bits5-4:	T1M1–T1	MO: Timer	1 Mode Select	t.						
	These bits	s select the	Timer 1 opera	ation mode.						
	T1M1	T1M0		Mode						
	0	0	Mode 0: 13-b							
	0	1	Mode 1: 16-b	Mode 1: 16-bit counter/timer						
	1	0	Mode 2: 8-bit	Mode 2: 8-bit counter/timer with auto-reload						
	1	1	Mode 3: Timer 1 inactive							
Bit3:	GATE0: ⊤	ïmer 0 Gat	e Control.							
	0: Timer 0	Fimer 0 enabled when TR0 = 1 irrespective of $\overline{INT0}$ logic level.								
	1: Timer 0	enabled o	nly when TR0	= 1 AND IN	T0 is active	as defined	by bit IN0PL	in register		
-	IT01CF (s	ee SFR De	efinition 10.5.	"IT01CF: IN	T0/INT1 C	onfiguratior	n" on page 10	95).		
Bit2:	C/TO: Cou	Inter/ limer	Select.	منام من مام	ماد مام المم ما ا					
		r Function. 11	Timer 0 increme	mented by Club	igh-to-low	transitions	(CRCON.3). on external ir	nut nin		
	(T0)	i i unction.		inclued by i		transitions (iput piri		
Bits1-0:	T0M1-T0	M0: Timer	0 Mode Select	t.						
	These bits	s select the	Timer 0 opera	ation mode.						
	T0M1	ТОМО		Mode	9					
	0	0	Mode 0: 13-b	it counter/tin	ner					
	0	1	Mode 1: 16-b	it counter/tin	ner					
	1	0	Mode 2: 8-bit	Mode 2: 8-bit counter/timer with auto-reload						
	1	1	Mode 3: Two 8-bit counter/timers							

19.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 19.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note that PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 19.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
X	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High Speed Output
Х	1	0	0	Х	1	1	Х	Frequency Output
0	1	0	0	Х	0	1	Х	8-Bit Pulse Width Modulator
1	1	0	0	X	0	1	X	16-Bit Pulse Width Modulator
X = Don'	t Care							

Table 19.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

Figure 19.3. PCA Interrupt Block Diagram

21.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (/RST) and C2D (P0.1 or P0.6) pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 21.1.

Figure 21.1. Typical C2 Pin Sharing

The configuration in Figure 21.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The /RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

