# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f530a-it |
|----------------------------|-----------------------------------------------------------------|
| Supplier Device Package    | 20-TSSOP                                                        |
| Package / Case             | 20-TSSOP (0.173", 4.40mm Width)                                 |
| Mounting Type              | Surface Mount                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                              |
| Oscillator Type            | Internal                                                        |
| Data Converters            | A/D 16x12b                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.25V                                                    |
| RAM Size                   | 256 x 8                                                         |
| EEPROM Size                | -                                                               |
| Program Memory Type        | FLASH                                                           |
| Program Memory Size        | 8KB (8K x 8)                                                    |
| Number of I/O              | 16                                                              |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT              |
| Connectivity               | LINbus, SPI, UART/USART                                         |
| Speed                      | 25MHz                                                           |
| Core Size                  | 8-Bit                                                           |
| Core Processor             | 8051                                                            |
| Product Status             | Active                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| SFR | Definition | 13.13. P0SKIP: Port0 Skip                           | 134 |
|-----|------------|-----------------------------------------------------|-----|
| SFR | Definition | 13.14. P1MAT: Port1 Match                           | 134 |
| SFR | Definition | 13.15. P1MASK: Port1 Mask                           | 134 |
| SFR | Definition | 14.1. OSCICN: Internal Oscillator Control           | 137 |
| SFR | Definition | 14.2. OSCICL: Internal Oscillator Calibration       | 138 |
| SFR | Definition | 14.3. OSCIFIN: Internal Fine Oscillator Calibration | 138 |
| SFR | Definition | 14.4. OSCXCN: External Oscillator Control           | 142 |
| SFR | Definition | 14.5. CLKSEL: Clock Select                          | 143 |
| SFR | Definition | 15.1. SCON0: Serial Port 0 Control                  | 149 |
| SFR | Definition | 15.2. SBUF0: Serial (UART0) Port Data Buffer        | 150 |
| SFR | Definition | 16.1. SPI0CFG: SPI0 Configuration                   | 157 |
| SFR | Definition | 16.2. SPI0CN: SPI0 Control                          | 158 |
| SFR | Definition | 16.3. SPI0CKR: SPI0 Clock Rate                      | 159 |
| SFR | Definition | 16.4. SPI0DAT: SPI0 Data                            | 160 |
| SFR | Definition | 17.1. LINADDR: Indirect Address Register            | 172 |
| SFR | Definition | 17.2. LINDATA: LIN Data Register                    | 172 |
| SFR | Definition | 17.3. LINCF Control Mode Register                   | 173 |
| SFR | Definition | 17.4. LIN0DT1: LIN0 Data Byte 1                     | 174 |
| SFR | Definition | 17.5. LIN0DT2: LIN0 Data Byte 2                     | 175 |
| SFR | Definition | 17.6. LIN0DT3: LIN0 Data Byte 3                     | 175 |
| SFR | Definition | 17.7. LIN0DT4: LIN0 Data Byte 4                     | 175 |
| SFR | Definition | 17.8. LIN0DT5: LIN0 Data Byte 5                     | 176 |
| SFR | Definition | 17.9. LIN0DT6: LIN0 Data Byte 6                     | 176 |
| SFR | Definition | 17.10. LIN0DT7: LIN0 Data Byte 7                    | 176 |
| SFR | Definition | 17.11. LIN0DT8: LIN0 Data Byte 8                    | 176 |
| SFR | Definition | 17.12. LIN0CTRL: LIN0 Control Register              | 177 |
| SFR | Definition | 17.13. LINOST: LINO STATUS Register                 | 178 |
| SFR | Definition | 17.14. LIN0ERR: LIN0 ERROR Register                 | 179 |
| SFR | Definition | 17.15. LIN0SIZE: LIN0 Message Size Register         | 180 |
| SFR | Definition | 17.16. LIN0DIV: LIN0 Divider Register               | 180 |
| SFR | Definition | 17.17. LINOMUL: LINO Multiplier Register            | 181 |
| SFR | Definition | 17.18. LIN0ID: LIN0 ID Register                     | 181 |
| SFR | Definition | 18.1. TCON: Timer Control                           | 186 |
| SFR | Definition | 18.2. TMOD: Timer Mode                              | 187 |
| SFR | Definition | 18.3. CKCON: Clock Control                          | 188 |
| SFR | Definition | 18.4. TL0: Timer 0 Low Byte                         | 189 |
| SFR | Definition | 18.5. TL1: Timer 1 Low Byte                         | 189 |
| SFR | Definition | 18.6. TH0: Timer 0 High Byte                        | 189 |
| SFR | Definition | 18.7. TH1: Timer 1 High Byte                        | 189 |
| SFR | Definition | 18.8. TMR2CN: Timer 2 Control                       | 193 |
| SFR | Definition | 18.9. TMR2RLL: Timer 2 Reload Register Low Byte     | 194 |
| SFR | Definition | 18.10. TMR2RLH: Timer 2 Reload Register High Byte   | 194 |
| SFR | Definition | 18.11. TMR2L: Timer 2 Low Byte                      | 194 |
| SFR | Definition | 18.12. TMR2H Timer 2 High Byte                      | 194 |
| SFR | Definition | 19.1. PCA0CN: PCA Control                           | 206 |



#### **Table 2.9. Flash Electrical Characteristics**

 $V_{DD}$  = 1.8 to 2.75 V; –40 to +125 °C unless otherwise specified

| Parameter              | Conditions                      | Min                                | Тур   | Max | Units       |
|------------------------|---------------------------------|------------------------------------|-------|-----|-------------|
| Flash Size             | 'F520/0A/1/1A and 'F530/0A/1/1A | 7680                               | _     | _   | bytes       |
|                        | 'F523/3A/4/4A and 'F533/3A/4/4A | 4096                               |       |     |             |
|                        | 'F526/6A/7/7A and 'F536/6A/7/7A | 2048                               |       |     |             |
| Endurance <sup>2</sup> | $V_{DD} \ge V_{RST-HIGH}^{1}$   | 20 k                               | 150 k |     | Erase/Write |
| Erase Cycle Time       |                                 | 27                                 | 32    | 38  | ms          |
| Write Cycle Time       |                                 | 57                                 | 65    | 74  | μs          |
| V <sub>DD</sub>        | Write/Erase Operations          | V <sub>RST-HIGH</sub> <sup>1</sup> |       |     | V           |
|                        |                                 |                                    |       |     |             |

Notes:

 See Table 2.8 on page 32 for the V<sub>RST-HIGH</sub> specification.
 For –I (industrial Grade) parts, flash should be programmed (erase/write) at a minimum temperature of 0 °C for reliable flash operation across the entire temperature range of -40 to +125 °C. This minimum programming temperature does not apply to -A (Automotive Grade) parts.

#### Table 2.10. Port I/O DC Electrical Characteristics

V<sub>REGIN</sub> = 2.7 to 5.25 V, -40 to +125 °C unless otherwise specified

| Parameters  | Conditions                                            | Min                       | Тур                     | Max                  | Units |
|-------------|-------------------------------------------------------|---------------------------|-------------------------|----------------------|-------|
| Output High | I <sub>OH</sub> = –3 mA, Port I/O push-pull           | V <sub>REGIN</sub> – 0.4  |                         | _                    | V     |
| Voltage     | I <sub>OH</sub> = −10 μA, Port I/O push-pull          | V <sub>REGIN</sub> – 0.02 | —                       | —                    |       |
|             | I <sub>OH</sub> = –10 mA, Port I/O push-pull          | —                         | V <sub>REGIN</sub> -0.7 | —                    |       |
| Output Low  | V <sub>REGIN</sub> = 2.7 V:                           |                           |                         |                      |       |
| Voltage     | I <sub>OL</sub> = 70 μA                               | —                         | —                       | 45                   |       |
|             | I <sub>OL</sub> = 8.5 mA                              | —                         | —                       | 550                  | m\/   |
|             | V <sub>REGIN</sub> = 5.25 V:                          |                           |                         |                      | 1110  |
|             | I <sub>OL</sub> = 70 μA                               | —                         | —                       | 40                   |       |
|             | I <sub>OL</sub> = 8.5 mA                              |                           | —                       | 400                  |       |
| Input High  |                                                       | V <sub>REGIN</sub> x 0.7  | —                       | —                    | V     |
| Voltage     |                                                       |                           |                         |                      |       |
| Input Low   |                                                       | —                         | —                       | V <sub>REGIN</sub> x | V     |
| Voltage     |                                                       |                           |                         | 0.3                  |       |
| Input       | Weak Pullup Off                                       | —                         | —                       | ±2                   |       |
| Leakage     |                                                       |                           |                         |                      |       |
| Current     | C8051F52xA/53xA:                                      |                           |                         |                      |       |
|             | Weak Pullup On, $V_{IN} = 0 V$ ; $V_{REGIN} = 1.8 V$  | —                         | 5                       | 15                   | пΔ    |
|             |                                                       |                           |                         |                      | μΛ    |
|             | C8051F52x/52xA/53x/53xA:                              |                           |                         |                      |       |
|             | Weak Pullup On, $V_{IN} = 0 V$ ; $V_{REGIN} = 2.7 V$  | —                         | 20                      | 50                   |       |
|             | Weak Pullup On, $V_{IN} = 0 V$ ; $V_{REGIN} = 5.25 V$ | —                         | 65                      | 115                  |       |





### Figure 3.6. TSSOP-20 Landing Diagram

#### Table 3.6. TSSOP-20 Landing Diagram Dimensions

|       | Symbol             | Min                              | Max                      |  |  |  |  |  |
|-------|--------------------|----------------------------------|--------------------------|--|--|--|--|--|
|       | С                  | 5.80                             | 5.90                     |  |  |  |  |  |
|       | E                  | 0.65 BS                          | SC.                      |  |  |  |  |  |
|       | X1                 | 0.35                             | 0.45                     |  |  |  |  |  |
|       | Y1                 | 1.35                             | 1.45                     |  |  |  |  |  |
| Notes | :                  |                                  |                          |  |  |  |  |  |
| Gene  | ral                |                                  |                          |  |  |  |  |  |
| 1.    | All dimensions sh  | own are in millimeters (mm) ι    | inless otherwise noted.  |  |  |  |  |  |
| 2.    | This land pattern  | design is based on the IPC-73    | 351 guidelines.          |  |  |  |  |  |
| Solde | er Mask Design     |                                  |                          |  |  |  |  |  |
| 3.    | All metal pads are | e to be non-solder mask defin    | ed (NSMD). Clearance     |  |  |  |  |  |
|       | between the sold   | er mask and the metal pad is     | to be 60 µm minimum,     |  |  |  |  |  |
| Stone | all the way around | d the pad.                       |                          |  |  |  |  |  |
| Stend | <u>ii Design</u>   |                                  |                          |  |  |  |  |  |
| 4.    | A stainless steel, | laser-cut and electro-polished   | stencil with trapezoidal |  |  |  |  |  |
| 5     | The stencil thickn | ess should be 0.125 mm (5 m      | sie release.             |  |  |  |  |  |
| 6.    | The ratio of stend | il aperture to land pad size sh  | ould be 1.1 for all      |  |  |  |  |  |
| •     | perimeter pads.    |                                  |                          |  |  |  |  |  |
| Card  | Assembly           |                                  |                          |  |  |  |  |  |
| 7.    | A No-Clean, Type   | -3 solder paste is recommend     | ded.                     |  |  |  |  |  |
| 8.    | The recommende     | d card reflow profile is per the | e JEDEC/IPC J-STD-       |  |  |  |  |  |
|       | 020 specification  | for Small Body Components.       |                          |  |  |  |  |  |



#### 4.3.6. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion.

Figure 4.6 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 4.1. When measuring the Temperature Sensor output, use the settling time specified in Table 2.3 on page 28. See Table 2.3 on page 28 for ADC0 minimum settling time requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

#### **Equation 4.1. ADC0 Settling Time Requirements**

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 $R_{TOTAL}$  is the sum of the AMUX0 resistance and any external source resistance.

*n* is the ADC resolution in bits (12).



Figure 4.6. ADC0 Equivalent Input Circuits

#### 4.4. Selectable Gain

ADC0 on the C8051F52x/52xA/53x/53xA family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.

For example, three analog sources to be measured have full-scale outputs of 5.0 V, 4.0 V, and 3.0 V, respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting signal one (5.0 V full-scale), a gain value of 0.44 (5 V full scale \* 0.44 = 2.2 V full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V. Likewise, a gain value of 0.55 (4 V full scale \* 0.55 = 2.2 V full scale) for the second source and 0.73 (3 V full scale \* 0.73 = 2.2 V full scale) for the third source provide full-scale ADCO measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.



Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 2.7 on page 31.

#### SFR Definition 7.1. CPT0CN: Comparator0 Control

| R/W      | R                                | R/W                             | R/W                        | R/W          | R/W           | R/W         | R/W        | Reset Value  |  |  |  |  |
|----------|----------------------------------|---------------------------------|----------------------------|--------------|---------------|-------------|------------|--------------|--|--|--|--|
| CP0EN    | CPOOUT                           | CPORIF                          | CP0FIF                     | CP0HYP1      | CP0HYP0       | CP0HYN1     | CP0HYN0    | 00000000     |  |  |  |  |
| Bit7     | Bit6                             | Bit5                            | Bit4                       | Bit3         | Bit2          | Bit1        | Bit0       | SFR Address: |  |  |  |  |
|          |                                  |                                 |                            |              |               |             |            | 0x9B         |  |  |  |  |
|          |                                  |                                 |                            |              |               |             |            |              |  |  |  |  |
| Bit7:    | CP0EN: Comparator0 Enable Bit.   |                                 |                            |              |               |             |            |              |  |  |  |  |
|          | 0: Comparat                      | or0 Disable                     | ed.                        |              |               |             |            |              |  |  |  |  |
|          | 1: Comparat                      | or0 Enable                      | d.                         |              |               |             |            |              |  |  |  |  |
| Bit6:    | CPOOUT: Co                       | omparator0                      | Output Sta                 | te Flag.     |               |             |            |              |  |  |  |  |
|          | 0: Voltage or                    | n CP0+ < C                      | P0–.                       |              |               |             |            |              |  |  |  |  |
|          | 1: Voltage or                    | ר CP0+ > C                      | P0–.                       |              |               |             |            |              |  |  |  |  |
| Bit5:    | CPORIF: Col                      | mparator0 I                     | Rising-Edg                 | e Flag.      |               |             |            |              |  |  |  |  |
|          | 0: No Compa                      | arator0 Risi                    | ng Edge ha                 | as occurred  | since this fl | ag was last | cleared.   |              |  |  |  |  |
| D:44.    | 1: Comparat                      | oru Rising I                    | Edge nas o<br>Folling Edg  | ccurrea.     |               |             |            |              |  |  |  |  |
| BIT4:    | CPUFIF: COR                      | nparatoru F                     | -alling-Eug<br>ina Edao b  | e Flag.      | ainaa thia f  |             | talaarad   |              |  |  |  |  |
|          | 1: Comparat                      | aratoro Fall<br>or0 Falling-    | Edge bas (                 | as occurred  | Since this i  | iay was ias | t cleared. |              |  |  |  |  |
| Bits3_2  | CP0HYP1_0                        | Comparat                        | Luye has t<br>tor0 Positiv | o Hystorosi  | Control Bi    | te          |            |              |  |  |  |  |
| Dito 2.  | 00 <sup>.</sup> Positive         | Hvsteresis                      | Disabled                   | e riyatereat |               |             |            |              |  |  |  |  |
|          | 01: Positive                     | Hvsteresis                      | = 5  mV.                   |              |               |             |            |              |  |  |  |  |
|          | 10: Positive                     | Hysteresis                      | = 10 mV.                   |              |               |             |            |              |  |  |  |  |
|          | 11: Positive I                   | Hysteresis ⊧                    | = 20 mV.                   |              |               |             |            |              |  |  |  |  |
| Bits1-0: | CP0HYN1-0                        | ): Compara                      | tor0 Negati                | ve Hysteres  | is Control E  | Bits.       |            |              |  |  |  |  |
|          | 00: Negative                     | Hysteresis                      | Disabled.                  | -            |               |             |            |              |  |  |  |  |
|          | 01: Negative                     | 01: Negative Hysteresis = 5 mV. |                            |              |               |             |            |              |  |  |  |  |
|          | 10: Negative Hysteresis = 10 mV. |                                 |                            |              |               |             |            |              |  |  |  |  |
|          | 11: Negative                     | Hysteresis                      | = 20 mV.                   |              |               |             |            |              |  |  |  |  |
|          |                                  |                                 |                            |              |               |             |            |              |  |  |  |  |



#### 9.2. Data Memory

The C8051F52x/F52xA/F53x/F53xAincludes 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFRs) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory organization of the C8051F52x/F53x/F53x/F53xA.

#### 9.3. General Purpose Registers

The lower 32 bytes of data memory (locations 0x00 through 0x1F) may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 8.4. PSW: Program Status Word). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

#### 9.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51<sup>™</sup> assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

#### 9.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

#### 9.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional



#### Table 9.2. Special Function Registers (Continued)

| Register | Address | Description                       | Page |
|----------|---------|-----------------------------------|------|
| REF0CN   | 0xD1    | Voltage Reference Control         | 73   |
| REG0CN   | 0xC9    | Voltage Regulator Control         | 75   |
| RSTSRC   | 0xEF    | Reset Source Configuration/Status | 112  |
| SBUF0    | 0x99    | UART0 Data Buffer                 | 150  |
| SCON0    | 0x98    | UART0 Control                     | 149  |
| SP       | 0x81    | Stack Pointer                     | 87   |
| SPI0CFG  | 0xA1    | SPI Configuration                 | 157  |
| SPI0CKR  | 0xA2    | SPI Clock Rate Control            | 159  |
| SPI0CN   | 0xF8    | SPI Control                       | 158  |
| SPI0DAT  | 0xA3    | SPI Data                          | 160  |
| TCON     | 0x88    | Timer/Counter Control             | 186  |
| TH0      | 0x8C    | Timer/Counter 0 High              | 189  |
| TH1      | 0x8D    | Timer/Counter 1 High              | 189  |
| TL0      | 0x8A    | Timer/Counter 0 Low               | 189  |
| TL1      | 0x8B    | Timer/Counter 1 Low               | 189  |
| TMOD     | 0x89    | Timer/Counter Mode                | 187  |
| TMR2CN   | 0xC8    | Timer/Counter 2 Control           | 193  |
| TMR2H    | 0xCD    | Timer/Counter 2 High              | 194  |
| TMR2L    | 0xCC    | Timer/Counter 2 Low               | 194  |
| TMR2RLH  | 0xCB    | Timer/Counter 2 Reload High       | 194  |
| TMR2RLL  | 0xCA    | Timer/Counter 2 Reload Low        | 194  |
| VDDMON   | 0xFF    | V <sub>DD</sub> Monitor Control   | 109  |
| XBR0     | 0xE1    | Port I/O Crossbar Control 0       | 127  |
| XBR1     | 0xE2    | Port I/O Crossbar Control 1       | 128  |

SFRs are listed in alphabetical order. All undefined SFR locations are reserved



#### SFR Definition 10.2. IP: Interrupt Priority R/W R/W R/W R/W R/W R/W Reset Value R R/W PT2 PS0 -PSPI0 PT1 PX1 PT0 PX0 10000000 Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Addressable SFR Address: 0xB8 Bit7: **UNUSED**. Read = 1b: Write = don't care. Bit6: PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control. This bit sets the priority of the SPI0 interrupt. 0: SPI0 interrupt set to low priority level. 1: SPI0 interrupt set to high priority level. Bit5: PT2: Timer 2 Interrupt Priority Control. This bit sets the priority of the Timer 2 interrupt. 0: Timer 2 interrupt set to low priority level. 1: Timer 2 interrupt set to high priority level. Bit4: **PS0**: UARTO Interrupt Priority Control. This bit sets the priority of the UART0 interrupt. 0: UART0 interrupt set to low priority level. 1: UART0 interrupt set to high priority level. Bit3: PT1: Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupt. 0: Timer 1 interrupt set to low priority level. 1: Timer 1 interrupt set to high priority level. Bit2: **PX1**: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 1. 0: INT1 interrupt set to low priority level. 1: INT1 interrupt set to high priority level. PT0: Timer 0 Interrupt Priority Control. Bit1: This bit sets the priority of the Timer 0 interrupt. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level. Bit0: **PX0**: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 0. 0: INT0 interrupt set to low priority level. 1: INT0 interrupt set to high priority level.



### SFR Definition 10.4. EIP1: Extended Interrupt Priority 1

| R/W          | R/W                                                | R/W           | R/W            | R/W            | R/W                | R/W          | R/W    | Reset Value |  |  |  |
|--------------|----------------------------------------------------|---------------|----------------|----------------|--------------------|--------------|--------|-------------|--|--|--|
| PMAT         | PREG0                                              | PLIN          | PCPR           | PCPF           | PPAC0              | PREG0        | PWADC0 | 00000000    |  |  |  |
| Bit7         | Bit6                                               | Bit5          | Bit4           | Bit3           | Bit2               | Bit1         | Bit0   | <b>_</b>    |  |  |  |
|              | SFR Address:                                       |               |                |                |                    |              |        |             |  |  |  |
|              |                                                    |               |                |                |                    |              |        |             |  |  |  |
| Bit7:        | PMAT. Port I                                       | Match Inter   | rupt Priority  | Control.       |                    |              |        |             |  |  |  |
|              | This bit sets                                      | the priority  | of the Port    | Match inter    | rupt.              |              |        |             |  |  |  |
|              | 0: Port Match interrupt set to low priority level. |               |                |                |                    |              |        |             |  |  |  |
| <b>D</b> '40 | 1: Port Matcl                                      | n interrupt s | set to high p  | priority level |                    |              |        |             |  |  |  |
| Bito:        | This hit acto                                      | age Regula    | ator Interrup  |                | ontrol.            |              |        |             |  |  |  |
|              | 0: Voltage R                                       | aulator int   |                | low priority   | u lovol            |              |        |             |  |  |  |
|              | 1: Voltage R                                       | equilator int | errunt set to  | high priori    | tv level           |              |        |             |  |  |  |
| Bit5:        | PLIN: LIN In                                       | terrupt Prio  | rity Control.  |                | ly loven           |              |        |             |  |  |  |
|              | This bit sets                                      | the priority  | of the CP0     | interrupt.     |                    |              |        |             |  |  |  |
|              | 0: LIN interru                                     | pt set to lo  | w priority le  | vel.           |                    |              |        |             |  |  |  |
|              | 1: LIN interru                                     | ipt set to hi | gh priority le | evel.          |                    |              |        |             |  |  |  |
| Bit4:        | PCPR: Com                                          | parator Ris   | ing Edge In    | terrupt Prio   | rity Control.      |              |        |             |  |  |  |
|              | This bit sets                                      | the priority  | of the Risin   | ig Edge Co     | mparator int       | errupt.      |        |             |  |  |  |
|              | 0: Comparat                                        | or interrupt  | set to low p   | priority level |                    |              |        |             |  |  |  |
| Bit2         | PCPE: Com                                          | or interrupt  | set to nign    | priority leve  | el.<br>ity Control |              |        |             |  |  |  |
| DILJ.        | This bit sets                                      | the priority  | of the Fallir  | na Edae Co     | mparator in        | terrunt      |        |             |  |  |  |
|              | 0: Comparat                                        | or interrupt  | set to low p   | priority level |                    | ton up ti    |        |             |  |  |  |
|              | 1: Comparat                                        | or interrupt  | set to high    | priority leve  | el.                |              |        |             |  |  |  |
| Bit2:        | PPAC0: Prog                                        | grammable     | Counter Ar     | ray (PCA0)     | Interrupt P        | riority Cont | rol.   |             |  |  |  |
|              | This bit sets                                      | the priority  | of the PCA     | 0 interrupt.   |                    |              |        |             |  |  |  |
|              | 0: PCA0 inte                                       | rrupt set to  | low priority   | level.         |                    |              |        |             |  |  |  |
| D:44         | 1: PCA0 inte                                       | rrupt set to  | high priorit   | y level.       |                    |              |        |             |  |  |  |
| BIT          | This hit acto                                      | U Convers     |                | ete Interrupi  | Priority Co        | ntrol.       |        |             |  |  |  |
|              |                                                    | wersion Co    | on the ADC     | orrunt set to  | Iow priority       |              |        |             |  |  |  |
|              | 1: ADC0 Cor                                        | version Co    | mplete inte    | errupt set to  | high priority      | / level.     |        |             |  |  |  |
| Bit0:        | PWADC0: A                                          | DC0 Windo     | w Compari      | son Interrur   | ot Priority C      | ontrol.      |        |             |  |  |  |
|              | This bit sets                                      | the priority  | of the ADC     | 0 Window (     | Comparison         | interrupt.   |        |             |  |  |  |
|              | 0: ADC0 Wir                                        | ndow Comp     | arison inter   | rupt set to I  | ow priority I      | evel.        |        |             |  |  |  |
|              | 1: ADC0 Wir                                        | ndow Comp     | arison inter   | rupt set to I  | high priority      | level.       |        |             |  |  |  |
|              |                                                    |               |                |                |                    |              |        |             |  |  |  |



#### 11.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 2.8 on page 32 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

#### **11.4. Missing Clock Detector Reset**

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than 100  $\mu$ s, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

#### 11.5. Comparator Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset.

#### 11.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "19.3. Watchdog Timer Mode" on page 203; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to 1. The state of the RST pin is unaffected by this reset.

#### 11.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a MOVX write operation targets an address above the Lock Byte address.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above the Lock Byte address.
- A program read is attempted above user code space. This occurs when user code attempts to branch to an address above the Lock Byte address.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "12.4. Security Options" on page 117).
- A Flash write or erase is attempted while the V<sub>DD</sub> Monitor (VDDMON0) is disabled or not set to its high threshold setting.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the  $\overrightarrow{RST}$  pin is unaffected by this reset.



**Note:** Please refer to Section "20.6. Reset Low Time" on page 212 for restrictions on reset low time in older silicon revisions A and B.

#### 11.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the RST pin is unaffected by this reset.



| SF Signals DFN10 | RF   |        | ral1     | FAL2  |         | VSTR          |                                 |
|------------------|------|--------|----------|-------|---------|---------------|---------------------------------|
|                  | 5    | 1      | × 2      | × ~   | Л       | <u>บ</u><br>5 |                                 |
|                  |      |        | 2        | J     | 4       |               | C8051E52x //E52x-C              |
| RXO              | 1    |        |          |       |         |               | devices                         |
| TXO              |      |        |          |       |         |               |                                 |
| RXO              |      |        |          |       |         | 1             | C8051F52x devices               |
| SCK              |      |        |          |       |         |               |                                 |
| MISO             |      |        | T        |       |         |               |                                 |
| MOSI             |      |        |          |       |         |               |                                 |
| NSS*             | 1    |        |          |       |         |               |                                 |
|                  |      |        |          |       |         |               |                                 |
|                  |      |        | ĩ        |       |         |               |                                 |
|                  |      |        |          |       |         |               |                                 |
| CP0A             |      |        |          |       |         |               |                                 |
| /SYSCLK          |      |        |          |       |         |               |                                 |
| CEX0             | -    |        |          |       |         |               |                                 |
| CEX1             |      |        |          |       |         |               |                                 |
| CEX2             |      |        |          |       |         |               |                                 |
| ECI              |      |        |          |       |         |               |                                 |
| ТО               |      |        |          |       |         |               |                                 |
| T1               |      |        |          |       |         |               |                                 |
|                  | 0    |        |          | 0     | <u></u> | <u></u>       | 1                               |
|                  |      | P      | 0<br>0SK |       | :51     | U             |                                 |
|                  | Por  | rt pii | n po     | tenti | ally    | ass           | ignable to peripheral           |
| SF Signals       | Spe  | ecia   | l Fu     | nctic | on S    | igna          | als are not assigned by the cro |
|                  | Wh   | nen t  | thes     | e sig | gnals   | s are         | e enabled, the Crossbar must    |
|                  | to s | skip   | thei     | ir co | rres    | pond          | ding port pins.                 |

Note: 4-Wire SPI Only.

#### Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)



**Important Note:** The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1–NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

### 13.2. Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- 4. Assign Port pins to desired peripherals using the XBRn registers.
- 5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 13.4 for the PnMDIN register details.

Important Note: Port 0 and Port 1 pins are 5.25 V tolerant across the operating range of V<sub>REGIN</sub>.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. When the WEAKPUD bit in XBR1 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 and for pins configured for analog input mode to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. **Port output drivers** are disabled while the Crossbar is disabled.



### SFR Definition 13.11. P1MDOUT: Port1 Output Mode



### SFR Definition 13.12. P1SKIP: Port1 Skip





#### 15.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).



Figure 15.6. UART Multi-Processor Mode Interconnect Diagram



### 17.3. LIN Master Mode Operation

The master node is responsible for the scheduling of messages and sends the header of each frame, containing the SYNCH BREAK FIELD, SYNCH FIELD and IDENTIFIER FIELD. The steps to schedule a message transmission or reception are listed below.

- 1. Load the 6-bit Identifier into the LIN0ID register.
- Load the data length into the LINOSIZE register. Set the value to the number of data bytes or "1111b" if the data length should be decoded from the identifier. Also, set the checksum type, classic or enhanced, in the same LINOSIZE register.
- 3. Set the data direction by setting the TXRX bit (LIN0CTRL.5). Set the bit to 1 to perform a master transmit operation, or set the bit to 0 to perform a master receive operation.
- 4. If performing a master transmit operation, load the data bytes to transmit into the data buffer (LIN0DT1 to LIN0DT8).
- Set the STREQ bit (LIN0CTRL.0) to start the message transfer. The LIN peripheral will schedule the message frame and request an interrupt if the message transfer is successfully completed or if an error has occurred.

This code segment shows the procedure to schedule a message in a transmission operation:

```
LINADDR = 0x08;// Point to LIN0CTRL
LINDATA |= 0x20;// Select to transmit data
LINADDR = 0x0E;// Point to LIN0ID
LINDATA = 0x11;// Load the ID, in this example 0x11
LINADDR = 0x0B;// Point to LIN0SIZE
LINDATA = ( LINDATA & 0xF0 ) | 0x08; // Load the size with 8
LINADDR = 0x00;// Point to Data buffer first byte
for (i=0; i<8; i++)
{
    LINDATA = i + 0x41;// Load the buffer with `A', `B', ...
    LINADDR++;// Increment the address to the next buffer
}
LINADDR = 0x08;// Point to LIN0CTRL
LINDATA = 0x01;// Start Request
```

The application should perform the following steps when an interrupt is requested.

- 1. Check the DONE bit (LIN0ST.0) and the ERROR bit (LIN0ST.2).
- 2. If performing a master receive operation and the transfer was successful, read the received data from the data buffer.
- 3. If the transfer was not successful, check the error register to determine the kind of error. Further error handling has to be done by the application.
- 4. Set the RSTINT (LIN0CTRL.3) and RSTERR bits (LIN0CTRL.2) to reset the interrupt request and the error flags.



#### 17.7.2. LIN Indirect Access SFR Registers Definition

| Name     | Address | Bit7    | Bit6                         | Bit5     | Bit4     | Bit3    | Bit2   | Bit1   | Bit0     |  |  |  |  |  |
|----------|---------|---------|------------------------------|----------|----------|---------|--------|--------|----------|--|--|--|--|--|
| LIN0DT1  | 0x00    |         | DATA1[7:0]                   |          |          |         |        |        |          |  |  |  |  |  |
| LIN0DT2  | 0x01    |         | DATA2[7:0]                   |          |          |         |        |        |          |  |  |  |  |  |
| LIN0DT3  | 0x02    |         | DATA3[7:0]                   |          |          |         |        |        |          |  |  |  |  |  |
| LIN0DT4  | 0x03    |         |                              |          | DATA     | 4[7:0]  |        |        |          |  |  |  |  |  |
| LIN0DT5  | 0x04    |         |                              |          | DATA     | 5[7:0]  |        |        |          |  |  |  |  |  |
| LIN0DT6  | 0x05    |         |                              |          | DATA     | 6[7:0]  |        |        |          |  |  |  |  |  |
| LIN0DT7  | 0x06    |         |                              |          | DATA     | 7[7:0]  |        |        |          |  |  |  |  |  |
| LIN0DT8  | 0x07    |         |                              |          | DATA     | 8[7:0]  |        |        |          |  |  |  |  |  |
| LIN0CTRL | 0x08    | STOP(s) | SLEEP(s)                     | TXRX     | DTACK(s) | RSTINT  | RSTERR | WUPREQ | STREQ(m) |  |  |  |  |  |
| LIN0ST   | 0x09    | ACTIVE  | IDLTOUT                      | ABORT(s) | DTREQ(s) | LININT  | ERROR  | WAKEUP | DONE     |  |  |  |  |  |
| LIN0ERR  | 0x0A    |         |                              |          | SYNCH(s) | PRTY(s) | TOUT   | СНК    | BITERR   |  |  |  |  |  |
| LIN0SIZE | 0x0B    | ENHCHK  | ENHCHK LINSIZE[3:0]          |          |          |         |        |        |          |  |  |  |  |  |
| LIN0DIV  | 0x0C    |         | DIVLSB[7:0]                  |          |          |         |        |        |          |  |  |  |  |  |
| LINOMUL  | 0x0D    | PRES    | PRESCL[1:0] LINMUL[4:0] DIV9 |          |          |         |        |        |          |  |  |  |  |  |
| LIN0ID   | 0x0E    |         |                              |          |          | ID      | [5:0]  |        |          |  |  |  |  |  |

Table 17.4. LIN Registers\* (Indirectly Addressable)

\*These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.

#### SFR Definition 17.4. LIN0DT1: LIN0 Data Byte 1





#### SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register

| R/W     | R/W                                            | R/W          | R/W           | R/W            | R/W          | R/W           | R/W            | Reset Value       |  |
|---------|------------------------------------------------|--------------|---------------|----------------|--------------|---------------|----------------|-------------------|--|
| PRE     | SCL[1:0]                                       |              | l             | _INMUL[4:0     |              |               | DIV9           | 00000000          |  |
| Bit7    | Bit6                                           | Bit5         | Bit4          | Bit3           | Bit2         | Bit1          | Bit0           | -                 |  |
|         |                                                |              |               |                |              |               | Address        | : 0x0D (indirect) |  |
|         |                                                |              |               |                |              |               |                |                   |  |
| Bit7-6: | PRESCL1-0                                      | : LIN Baud   | Rate Preso    | caler Bits.    |              |               |                |                   |  |
|         | These bits a                                   | re the baud  | l rate presca | aler bits.     |              |               |                |                   |  |
| Bit5–1: | LINMUL4–0                                      | : LIN Baud   | Rate Multip   | lier Bits.     |              |               |                |                   |  |
|         | These bits a                                   | re the baud  | l rate multip | lier bits. The | ese bits are | not used in   | n slave mode   | э.                |  |
| Bit0:   | DIV9: LIN Ba                                   | aud Rate D   | ivider Most   | Significant I  | Bit.         |               |                |                   |  |
|         | The most sig                                   | nificant bit | of the baud   | rate divide    | r. The 8 lea | st significan | nt bits are in | LIN0DIV.          |  |
|         | The valid range for the divider is 200 to 511. |              |               |                |              |               |                |                   |  |
|         |                                                | -            |               |                |              |               |                |                   |  |
|         |                                                |              |               |                |              |               |                |                   |  |

#### SFR Definition 17.18. LIN0ID: LIN0 ID Register





#### 18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.



Figure 18.3. T0 Mode 3 Block Diagram





#### Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

#### **Trademark Information**

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

### http://www.silabs.com