E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f530a-itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4. Operating Modes

The C8051F52x/F52xA/F53x/F53xA devices have four operating modes: Active (Normal), Idle, Suspend, and Stop. Active mode occurs during normal operation when the oscillator and peripherals are active. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Suspend and Stop mode, the CPU is halted, all interrupts and timers are inactive, and the internal oscillator is stopped. The various operating modes are described in Table 1.3 below:

Table 1.3. O	perating	Modes	Summary
--------------	----------	-------	---------

		Properties	Power Consumption	How Entered?	How Exited?
Active		SYSCLK active	Full	_	—
		CPU active (accessing Flash)			
	-	Peripherals active or inactive depending on user settings			
Idle		SYSCLK active	Less than Full	IDLE	Any enabled interrupt
	-	CPU inactive (not accessing Flash)		(PCON.0)	or device reset
	-	Peripherals active or inactive depending on user settings			
Suspend		Internal oscillator inactive	Low	SUSPEND	Port 0 event match
		If SYSCLK is derived from the		(OSCICN.5)	Port 1 event match
		internal oscillator, the peripherals			Comparator 0 enabled
		and the CIP-51 will be stopped			and output is logic 0
Stop		SYSCLK inactive	Very low	STOP	Device Reset
	-	CPU inactive (not accessing Flash)		(PCON.1)	
		Digital peripherals inactive; analog peripherals active or inactive depending on user settings			

See Section "8.3. Power Management Modes" on page 89 for Idle and Stop mode details. See Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information on Suspend mode.

Table 2.4. Temperature Sensor Electrical Characteristics

 V_{DD} = 2.1 V, V_{REF} = 1.5 V (REFSL=0), -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units					
Linearity ¹		—	0.1		°C					
Gain ¹		_	3.33	_	mV/°C					
Gain Error ²		_	±100	_	μV/°C					
Offset ¹	Temp = 0 °C		890	_	mV					
Offset Error ²	Temp = 0 °C		±15		mV					
Tracking Time		12		_	μs					
Power Supply Current		_	17	_	μA					
Notes: 1 Includes ADC offset gain a	Notes:									

Includes ADC offset, gain, and linearity variations.
 Performance and standard deviation from the mean

2. Represents one standard deviation from the mean.

Table 2.5. Voltage Reference Electrical Characteristics

 $V_{DD} = 2.1 \text{ V}; -40 \text{ to } +125 \text{ °C}$ unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units			
Internal Reference (REFBE = 1)								
Output Voltage	$I_{DD} \approx$ 1 mA; No load on VREF pin and all other GPIO pins.							
	25 °C ambient (REFLV = 0) 25 °C ambient (REFLV = 1), V _{DD} = 2.6 V	1.45 2.15	1.5 2.2	1.55 2.25	V			
V _{REF} Short-Circuit Current			2.5		mA			
V _{REF} Temperature Coefficient			33		ppm/°C			
Load Regulation	Load = 0 to 200 µA to GND	—	10	—	ppm/µA			
V _{REF} Turn-on Time 1	4.7 μF, 0.1 μF bypass		21		ms			
V _{REF} Turn-on Time 2	0.1 μF bypass		230		μs			
Power Supply Rejection			2.1		mV/V			
External Reference (REFBE =	= 0)							
Input Voltage Range		0	—	V _{DD}	V			
Input Current	Sample Rate = 200 ksps; V _{REF} = 1.5 V		2.4		μA			
Bias Generators								
ADC Bias Generator	BIASE = 1	—	22		μA			
Power Consumption (Internal)			35		μA			

Table 2.11. Internal Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified; Using factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units
Oscillator Frequency ¹	$\frac{\text{IFCN} = 111\text{b}}{\text{VDD} \ge \text{VREGMIN}^2}$	24.5 - 0.5%	24.5 ³	24.5 + 0.5%	MHz
	IFCN = 111b VDD < VREGMIN ²	24.5 – 1.0%	24.5 ³	24.5 + 1.0%	
	Oscillator On OSCICN[7:6] = 11b		800	1100	μA
	Oscillator Suspend OSCICN[7:6] = 00b ZTCEN = 1				
	T = 25 °C		67	_ '	μA
Oscillator Supply Current	T = 85 °C		77	_ '	μA
(from V _{DD})	T = 125 °C		117	300	μA
	Oscillator Suspend OSCICN[7:6] = 00b ZTCEN = 0				
	T = 25 °C		2	_ '	μA
	T = 85 °C		3	_ '	μA
	T = 125 °C		50	_ '	μA
Wake-Up Time From Sus- pend	$OSCICN[7:6] = 00b$ $ZTCEN = 0^{4}$	—	_	1	μs
	OSCICN[7:6] = 00b ZTCEN = 1	—	5		Instruction Cycles
Power Supply Sensitivity	Constant Temperature		0.10		%/V
Temperature Sensitivity ⁵	Constant Supply		ĺ		
	TC ₁		5.0	_ '	ppm/°C
	TC ₂		-0.65	_ '	ppm/°C ²

Notes:

1. See Section "11.2.1. VDD Monitor Thresholds and Minimum VDD" on page 108 for minimum V_{DD} requirements.

- VREGMIN is the minimum output of the voltage regulator for its low setting (REG0CN: REG0MD = 0b). See Table 2.6, "Voltage Regulator Electrical Specifications," on page 30.
- 3. This is the average frequency across the operating temperature range.
- 4. See "20.7. Internal Oscillator Suspend Mode" on page 212 for ZTCEN setting in older silicon revisions.
- 5. Use temperature coefficients TC_1 and TC_2 to calculate the new internal oscillator frequency using the following equation:

$$f(T) = f0 x (1 + TC_1 x (T - T0) + TC_2 x (T - T0)^2)$$

where f0 is the internal oscillator frequency at 25 °C and T0 is 25 °C.

Name	Pin Nur	nbers	Туре	Description
	'F53xA 'F53x-C	'F53x		
P1.0/	13	13	D I/O or A In	Port 1.0. See Port I/O Section for a complete description.
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. Section "14. Oscillators" on page 135.
P0.7/	14	14	D I/O or	Port 0.7. See Port I/O Section for a complete description.
XTAL1			A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Oscillator Section.
P0.6/	15	15	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.
C2D			D I/O	Bi-directional data signal for the C2 Debug Interface.
P0.5/RX*	16	—	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.
P0.5	—	16	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.
P0.4/TX*	17		D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.4/RX*	—	17	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.3	18		D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
P0.3/TX*	—	18	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
P0.2	19	19	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.
P0.1	20	20	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.
Note: Please	refer to Se	ection "2	20. Device S	Specific Behavior" on page 210.

Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20) (Continued)

4.4.1. Calculating the Gain Value

The ADC0 selectable gain feature is controlled by 13 bits in three registers. ADC0GNH contains the 8 upper bits of the gain value and ADC0GNL contains the 4 lower bits of the gain value. The final GAINADD bit (ADC0GNA.0) controls an optional extra 1/64 (0.016) of gain that can be added in addition to the ADC0GNH and ADC0GNL gain. The ADC0GNA.0 bit is set to 1 after a power-on reset.

The equivalent gain for the ADC0GNH, ADC0GNL and ADC0GNA registers is:

$$gain = \left(\frac{GAIN}{4096}\right) + GAINADD \times \left(\frac{1}{64}\right)$$

Equation 4.2. Equivalent Gain from the ADC0GNH and ADC0GNL Registers

Where:

GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4] *GAINADD* is the value of the GAINADD bit (ADC0GNA.0) *gain* is the equivalent gain value from 0 to 1.016

For example, if ADC0GNH = 0xFC, ADC0GNL = 0x00, and GAINADD = '1', GAIN = 0xFC0 = 4032, and the resulting equation is:

$$gain = \left(\frac{4032}{4096}\right) + 1 \times \left(\frac{1}{64}\right) = 0.984 + 0.016 = 1.0$$

The table below equates values in the ADC0GNH, ADC0GNL, and ADC0GNA registers to the equivalent gain using this equation.

ADC0GNH Value	ADC0GNL Value	GAINADD Value	GAIN Value	Equivalent Gain
0xFC (default)	0x00 (default)	1 (default)	4032 + 64	1.0 (default)
0x7C	0x00	1	1984 + 64	0.5
0xBC	0x00	1	3008 + 64	0.75
0x3C	0x00	1	960 + 64	0.25
0xFF	0xF0	0	4095 + 0	~1.0
0xFF	0xF0	1	4095 + 64	1.016

For any desired gain value, the GAIN registers can be calculated by:

$$GAIN = \left(gain - GAINADD \times \left(\frac{1}{64}\right)\right) \times 4096$$

Equation 4.3. Calculating the ADC0GNH and ADC0GNL Values from the Desired Gain Where:

GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4] *GAINADD* is the value of the GAINADD bit (ADC0GNA.0) *gain* is the equivalent gain value from 0 to 1.016

When calculating the value of GAIN to load into the ADC0GNH and ADC0GNL registers, the GAINADD bit can be turned on or off to reach a value closer to the desired gain value.

SFR Definition 6.1. REG0CN: Regulator Control

	DAM	P	DAM	P	P		5	Deschilde
R/W	R/W	R	R/W	ĸ	R	ĸ	R	Reset Value
REGDIS	Reserved	—	REG0MD	—	—	—	DROPOUT	01010000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address:	0xC9
Bit7:	REGDIS: Vo	ltage Regu	lator Disabl	e Bit.				
	This bit disat	oles/enable	s the Voltag	e Regulato	r.			
	0: Voltage Re	egulator Er	abled.	, 0				
	1: Voltage Re	equlator Di	sabled.					
Bit6:	RESERVED	. Read = 1k	. Must write	ə 1b.				
Bit5:	UNUSED. R	ead = 0b. V	Vrite = don'i	t care.				
Bit4:	REGOMD: Vo	oltage Reg	ulator Mode	Select Bit.				
	This bit selec	cts the Volta	age Regulat	tor output vo	oltage.			
	0: Voltage Re	egulator ou	tout is 2.1 \	·. ·	5			
	1: Voltage Re	egulator ou	tput is 2.6 \	/ (default).				
Bits3-1	UNUSED R	ead = 000h	Write = dc	n't care				
Bit0	DROPOUT	Voltage Re	gulator Dro	nut Indicat	or Bit			
Bitt.	0: Voltage R	oulator is	not in drong		or Bit.			
	1: Voltage R	aulator is	in or noor d	ropout				
	i. voltage Re	eguiator is	in or near u	iopoul.				

Table 9.2. Special Function Registers (Continued)

Register	Address	Description	Page
OSCICN	0xB2	Internal Oscillator Control	137
OSCXCN	0xB1	External Oscillator Control	142
P0	0x80	Port 0 Latch	129
P0MASK	0xC7	Port 0 Mask	131
POMAT	0xD7	Port 0 Match	131
P0MDIN	0xF1	Port 0 Input Mode Configuration	129
P0MDOUT	0xA4	Port 0 Output Mode Configuration	130
P0SKIP	0xD4	Port 0 Skip	130
P1	0x90	Port 1 Latch	132
P1MASK	0xBF	Port 1 Mask	134
P1MAT	0xCF	Port 1 Match	134
P1MDIN	0xF2	Port 1 Input Mode Configuration	132
P1MDOUT	0xA5	Port 1 Output Mode Configuration	133
P1SKIP	0xD5	Port 1 Skip	133
PCA0CN	0xD8	PCA Control	206
PCA0CPH0	0xFC	PCA Capture 0 High	209
PCA0CPH1	0xEA	PCA Capture 1 High	209
PCA0CPH2	0xEC	PCA Capture 2 High	209
PCA0CPL0	0xFB	PCA Capture 0 Low	209
PCA0CPL1	0xE9	PCA Capture 1 Low	209
PCA0CPL2	0xEB	PCA Capture 2 Low	209
PCA0CPM0	0xDA	PCA Module 0 Mode	208
PCA0CPM1	0xDB	PCA Module 1 Mode	208
PCA0CPM2	0xDC	PCA Module 2 Mode	208
PCA0H	0xFA	PCA Counter High	209
PCA0L	0xF9	PCA Counter Low	209
PCA0MD	0xD9	PCA Mode	207
PCON	0x87	Power Control	91
PSCTL	0x8F	Program Store R/W Control	119
PSW	0xD0	Program Status Word	88

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

12.2.3. System Clock

- 1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in application note "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

The equation for determining the load capacitance for two capacitors is:

$$C_L = \frac{C_A \times C_B}{C_A + C_B} + C_S$$

Where:

 C_{A} and C_{B} are the capacitors connected to the crystal leads.

 C_S is the total stray capacitance of the PCB.

The stray capacitance for a typical layout where the crystal is as close as possible to the pins is 2–5 pF per pin.

If C_A and C_B are the same (C), then the equation becomes:

$$C_L = \frac{C}{2} + C_S$$

For example, a tuning-fork crystal of 32 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 14.1, Option 1. With a stray capacitance of 3 pF per pin (6 pF total), the 13 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.

Figure 14.2. 32 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

14.2.3. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 14.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

 $f = 1.23(10^3) / RC = 1.23(10^3) / [246 \times 50] = 0.1 MHz = 100 kHz$

Referring to the table in SFR Definition 14.4, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at a slightly increased external oscillator supply current.

14.2.4. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 14.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the frequency of oscillation and calculate the capacitance to be used from the equations below. Assume $V_{DD} = 2.1 \text{ V}$ and f = 75 kHz:

 $f = KF / (C \times V_{DD})$

0.075 MHz = KF / (C x 2.1)

Since the frequency of roughly 75 kHz is desired, select the K Factor from the table in SFR Definition 14.4 as KF = 7.7:

0.075 MHz = 7.7 / (C x 2.1)

C x 2.1 = 7.7 / 0.075 MHz

C = 102.6 / 2.0 pF = 51.3 pF

Therefore, the XFCN value to use in this example is 010b.

15.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown below.

Figure 15.3. UART Interconnect Diagram

15.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 15.4. 8-Bit UART Timing Diagram

16.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between a rising edge or a falling edge. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 16.5.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 16.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

16.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Definition 16.3. SPI0CKR: SPI0 Clock Rate

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xA2
Bits7–0: S	SCR7-SCR	0: SPI0 Clo	ck Rate.					
Т	hese bits d	etermine th	e frequency	of the SCK	output whe	en the SPI0	module is	configured
fo	or master m	ode operat	ion. The SC	CK clock fre	quency is a	divided ver	sion of the	system
С	lock, and is	given in the	e following	equation, w	here SYSC	LK is the sy	stem clock	c frequency
a	ind SPI0CK	R is the 8-b	oit value hel	d in the SPI	OCKR regis	ster.		
		C.	VOOLV					
	freek	=	YSCLK					
	JSCK	$2 \times (SP)$	PIOCKR +	1)				
fo	or 0 <= SPI	0CKR <= 2	55					
Example: If	SYSCLK =	2 MHz and	SPI0CKR	= 0x04,				
		200000	0					
	f_{SCK} =	$=\frac{200000}{2\times(4)}$	$\frac{1}{1}$					
		2 × (4 +	1)					
	f –	200247						
	J_{SCK} –	200K112,						

SFR Definition 17.3. LINCF Control Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
LINEN	MODE	ABAUD						00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	·
1							SFR Address:	0x95
Bit7: Bit6: Bit5:	LINEN: LIN 0: LIN0 is dis 1: LIN0 is en MODE: LIN 0: LIN0 oper 1: LIN0 oper ABAUD: LIN 0: Manual ba 1: Automatic	Interface Er sabled. Mode Selec ates in Slav ates in Mas I Mode Auto aud rate sel baud rate s	nable bit etion ve mode. ster mode. omatic Baud ection is en selection is	d Rate Sele abled. enabled.	ction (slave	e mode on	ly).	

SFR Definition 17.14. LIN0ERR: LIN0 ERROR Register

R	R	R	R	R	R	R	R	Reset Value
			SYNCH	PRTY	TOUT	CHK	BITERR	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J
							Address	0x0A (indirect)
Bits7–5:	UNUSED. R	ead = 000b	b. Write = do	on't care.				
Bit4:	SYNCH: Syr	ith the SV		(slave mod	le only).			
	1: Edges of t	HIN THE STI		nas been c	letected.	m toloranoc		
Bit3	PRTY Parity	/ Error Bit (slave mode					
Bito.	0: No parity	error has b	een detecte	d.				
	1: A parity er	ror has bee	en detected					
Bit2:	TOUT: Time	out Error Bi	t.					
	0: A timeout	error has n	ot been det	ected.				
	1: A timeout	error has b	een detecte	ed. This erro	or is detecte	ed wheneve	r one of the	following
	conditions is	met:		_				
	•The master	is expectin	g data from	a slave and	d the slave	does not re	spond.	
	• I he slave is	s expecting	data but no	data is trar	ISMITTED ON	the bus.		
	•A frame is r	tion does n	within the n	TACK bit (L				1 7) until the
	end of th	ne reception	of the first	byte after t	he identifier			
Bit1:	CHK: Check	sum Error	Bit.	byto altor t		•		
	0: Checksun	n error has	not been de	etected.				
	1: Checksun	n error has	been detec	ted.				
Bit0:	BITERR: Bit	Transmiss	ion Error Bit	t.				
	0: No error in	n transmiss	ion has bee	n detected.				
	1: The bit va	lue monitor	ed during tr	ansmission	is different	than the bi	t value sent.	

SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PRE	SCL[1:0]		l	_INMUL[4:0			DIV9	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							Address	: 0x0D (indirect)
Bit7-6:	PRESCL1-0	: LIN Baud	Rate Preso	caler Bits.				
	These bits a	re the baud	l rate presca	aler bits.				
Bit5–1:	LINMUL4–0	: LIN Baud	Rate Multip	lier Bits.				
	These bits a	re the baud	l rate multip	lier bits. The	ese bits are	not used in	n slave mode	э.
Bit0:	DIV9: LIN Ba	aud Rate D	ivider Most	Significant I	Bit.			
	The most sig	nificant bit	of the baud	rate divide	r. The 8 lea	st significan	nt bits are in	LIN0DIV.
	The valid rar	nge for the	divider is 20)0 to 511.				
		-						

SFR Definition 17.18. LIN0ID: LIN0 ID Register

18. Timers

Each MCU includes three counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit auto-reload timer for use with other device peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes	Timer 2 Modes
13-bit counter/timer	16 bit timer with auto relead
16-bit counter/timer	
8-bit counter/timer with auto-reload	
Two 8-bit counter/timers (Timer 0 only)	Two 8-bit timers with auto-reload

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M–T0M) and the Clock Scale bits (SCA1–SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 18.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it must be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

18.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (Section "10.4. Interrupt Register Descriptions" on page 100); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section 10.4). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

18.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "13.1. Priority Crossbar Decoder" on page 122 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is

SFR Definition 18.1. TCON: Timer Control

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit Addressable SFR Address: 0x88 Bit7: TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is auto- matically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is auto- matically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the cleared by software but is automatically cleared when the CPU vectors to the cleared by software but is automatically cleared when the CPU vectors to the cleared by software but is automatically cleared when the CPU vectors to the cleared by software but is automatically cleared when the CPU vectors to the cleared by software but is automatically cleared when the CPU vectors to the cleared by bit IN1PL in register IT01CF (see SFR Definition 10.5. "
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit Addressable SFR Address: 0x88 Bit7: TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is auto- matically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is auto- matically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 Overflow Hag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is auto- matically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Inter- rupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Con- figuration" on page 105). Bit2: IT1: Interrupt 1 Type Select. This bit external to report to the page the option of the to report to the page to thepage to the page to the page to thepage
 SFR Address: 0x88 Bit7: TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 Overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 as overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 as by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IF1: Interrupt 1 Type Select.
 Bit7: TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit7: TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 asabled. 1: Timer 0 asabled. 1: Timer 0 enabled. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors for the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit6: TR1: Timer 1 Run Control. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit6: TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 0: Timer 1 disabled. 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 1: Timer 1 enabled. Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit5: TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select. This bit acted the theorem for und INT0 is the protection in the protection in the protection in the protect.
 Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 1: Timer 0 has overflowed. Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 Bit4: TR0: Timer 0 Run Control. 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select. This hit calculate whether the configured INT0 is target will be addee at level exercision.
 0: Timer 0 disabled. 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 1: Timer 0 enabled. Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select. This bit colored whether the configured INT0 is active as defined by bit IN1PL in register.
 Bit3: IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select.
 rupt 1 service routine if IT1 = 1. When IT1 = 0, this flag is set to 1 when INT0 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select. This bit colored whether the configured INT0 is terrupt will be addee at level exection.
 defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105). Bit2: IT1: Interrupt 1 Type Select. This bit colored whether the configured INTO interrupt will be addee or level exection.
figuration" on page 105). Bit2 : IT1: Interrupt 1 Type Select. This bit colorts whether the configured INTO interrupt will be added or level occupition. INTO interrupt will be added or level occupition.
Bit2: IT1: Interrupt 1 Type Select.
configured active low or high by the IN1PL bit in the IT01CE register (see SER
Definition 10.5. "IT01CF: INT0/INT1 Configuration" on page 105).
0: INTO is level triggered.
1: INT0 is edge triggered.
Bit1: IE0: External Interrupt 0.
This had is set by hardware when an edge/level of type defined by ITU is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Inter-
rupt 0 service routine if $ITO = 1$. When $ITO = 0$, this flag is set to 1 when INTO is active as
defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. "IT01CF: INT0/INT1 Con-
figuration" on page 105).
Bit0: IT0: Interrupt 0 Type Select.
configured active low or high by the INOPL bit in register ITO1CE (see SER Definition 10.5
"IT01CF: INT0/INT1 Configuration" on page 105).
0: INTO is level triggered.
1: INT0 is edge triggered.

19.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 19.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com