

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f533-c-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19. Programmable Counter Array (PCA0)	195
19.1. PCA Counter/Timer	196
19.2. Capture/Compare Modules	197
19.2.1. Edge-triggered Capture Mode	198
19.2.2. Software Timer (Compare) Mode	199
19.2.3. High Speed Output Mode	200
19.2.4. Frequency Output Mode	201
19.2.5. 8-Bit Pulse Width Modulator Mode	202
19.2.6. 16-Bit Pulse Width Modulator Mode	203
19.3. Watchdog Timer Mode	203
19.3.1. Watchdog Timer Operation	204
19.3.2. Watchdog Timer Usage	205
19.4. Register Descriptions for PCA	206
20. Device Specific Behavior	210
20.1. Device Identification	210
20.2. Reset Pin Behavior	211
20.3. Reset Time Delay	211
20.4. VDD Monitors and VDD Ramp Time	211
20.5. VDD Monitor (VDDMON0) High Threshold Setting	212
20.6. Reset Low Time	212
20.7. Internal Oscillator Suspend Mode	212
20.8. UART Pins	213
20.9. LIN	213
20.9.1. Stop Bit Check	213
20.9.2. Synch Break and Synch Field Length Check	213
21. C2 Interface	214
21.1. C2 Interface Registers	214
21.2. C2 Pin Sharing	216
Document Change List	217
Contact Information	220

Table 2.7. Comparator Electrical Characteristics

 $V_{\text{REGIN}} = 2.7-5.25$ V, -40 to +125 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Conditions	Min	Тур	Max	Units
CP0+ - CP0- = 100 mV		780	_	ns
CP0+ - CP0- = -100 mV		980	_	ns
CP0+ - CP0- = 100 mV	_	850	—	ns
CP0+ - CP0- = -100 mV	_	1120	—	ns
CP0+ - CP0- = 100 mV	—	870	—	ns
CP0+ - CP0- = -100 mV		1310	—	ns
CP0+ - CP0- = 100 mV		1980	—	ns
CP0+ – CP0– = –100 mV		4770	—	ns
	—	3	9	mV/V
CP0HYP1-0 = 00	—	0.7	2	mV
CP0HYP1-0 = 01	2	5	10	mV
CP0HYP1-0 = 10	5	10	20	mV
CP0HYP1-0 = 11	13	20	40	mV
CP0HYN1-0 = 00		0.7	2	mV
CP0HYN1-0 = 01	2	5	10	mV
CP0HYN1-0 = 10	5	10	20	mV
CP0HYN1-0 = 11	13	20	40	mV
	-0.25	_	V _{DD} + 0.25	V
	—	4	—	pF
	—	0.5	—	nA
	-15		15	mV
		1.5	—	kΩ
	_	0.2	4	mV/V
		2.3	_	μs
Mode 0		6	30	μA
Mode 1		3	15	μA
Mode 2		2	7.5	μA
Mode 3		03	3.8	uА
	Conditions CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 00 CP0HYP1-0 = 01 CP0HYP1-0 = 10 CP0HYN1-0 = 01 CP0HYN1-0 = 10 CP0HYN1-0 = 11 CP0HYN1-0 = 11 Mode 0 Mode 1 Mode 2 Mede 2	Conditions Min CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0HYP1-0 = 00 CP0HYP1-0 = 01 2 CP0HYN1-0 = 01 2 CP0HYN1-0 = 01 2 CP0HYN1-0 = 10 5 CP0HYN1-0 = 11 13 -0.25 Mode 0 Mode 1 Mode 2	Conditions Min Typ CP0+ - CP0- = 100 mV 780 CP0+ - CP0- = -100 mV 980 CP0+ - CP0- = 100 mV 850 CP0+ - CP0- = -100 mV 1120 CP0+ - CP0- = -100 mV 870 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = -100 mV 1310 CP0+ - CP0- = -100 mV 1310 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 4770 3 CP0HYP1-0 = 0 CP0HYP1-0 = 00 0.7 CP0HYP1-0 = 11 13 20 CP0HYN1-0 = 10 5 10 CP0HYN1-0 = 11 13 20 CP0HYN1-0 = 11 13 20 4 CP0HYN1-0 = 11 13 20 1.5 CP0HYN1-0 = 11 13 20 1.5 CP0HYN1-0 =	Conditions Min Typ Max CP0+ - CP0- = 100 mV - 780 - CP0+ - CP0- = -100 mV - 980 - CP0+ - CP0- = 100 mV - 850 - CP0+ - CP0- = 100 mV - 1120 - CP0+ - CP0- = 100 mV - 1310 - CP0+ - CP0- = 100 mV - 1310 - CP0+ - CP0- = -100 mV - 1310 - CP0+ - CP0- = -100 mV - 1980 - CP0+ - CP0- = -100 mV - 1980 - CP0+ - CP0- = -100 mV - 4770 - - 3 9 CP0+ - CP0- = -100 mV - 4770 - - 0.7 2 10 CP0HYP1-0 = 00 - 0.7 2 10 CP0HYN1-0 = 01 2 5 10 20 CP0HYN1-0 = 01 2 5 10 20 CP0HYN1-0 = 11

1. Vcm is the common-mode voltage on CP0+ and CP0-.

2. Guaranteed by design and/or characterization.

3. Pinout and Package Definitions

Figure 3.1. DFN-10 Pinout Diagram (Top View)

Name	Pin Nur	nbers	Туре	Description						
	ʻF53xA ʻF53x-C	'F53x								
V _{REGIN}	7	7		On-Chip Voltage Regulator Input.						
P1.7	8	8	D I/O or A In	Port 1.7. See Port I/O Section for a complete description.						
P1.6	9	9	D I/O or A In	Port 1.6. See Port I/O Section for a complete description.						
P1.5	10	10	D I/O or A In	Port 1.5. See Port I/O Section for a complete description.						
P1.4	11	11	D I/O or A In	Port 1.4. See Port I/O Section for a complete description.						
P1.3	12	12	D I/O or A In	Port 1.3. See Port I/O Section for a complete description.						
P1.2/	13	13	D I/O or A In	Port 1.2. See Port I/O Section for a complete description.						
CNVSTR			D In	External Converter start input for the ADC0, see Section "4. 12- Bit ADC (ADC0)" on page 52 for a complete description.						
P1.1	14	14	D I/O or A In	Port 1.1. See Port I/O Section for a complete description.						
P1.0/	15	15	D I/O or A In	Port 1.0. See Port I/O Section for a complete description.						
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "14. Oscillators" on page 135.						
P0.7/	16	16	D I/O or A In	Port 0.7. See Port I/O Section for a complete description.						
XTAL1			A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. Section "14. Oscillators" on page 135.						
P0.6/	17	17	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.						
C2D			D I/O	Bi-directional data signal for the C2 Debug Interface.						
P0.5/RX*	18	—	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.						
P0.5	_	18	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.						
*Note: Please	e refer to S	ection "	20. Device	Specific Behavior" on page 210.						

Table 3.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20) (Continued)

Name	Pin Numbers		Туре	Description				
	'F53xA 'F53x-C	'F53x						
P1.0/	13	13	D I/O or A In	Port 1.0. See Port I/O Section for a complete description.				
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. Section "14. Oscillators" on page 135.				
P0.7/	14	14	D I/O or	Port 0.7. See Port I/O Section for a complete description.				
XTAL1			A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Oscillator Section.				
P0.6/	15	15	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.				
C2D			D I/O	Bi-directional data signal for the C2 Debug Interface.				
P0.5/RX*	16	—	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.				
P0.5	—	16	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.				
P0.4/TX*	17		D I/O or A In	Port 0.4. See Port I/O Section for a complete description.				
P0.4/RX*	—	17	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.				
P0.3	18		D I/O or A In	Port 0.3. See Port I/O Section for a complete description.				
P0.3/TX*	—	18	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.				
P0.2	19	19	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.				
P0.1	20	20	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.				
Note: Please	refer to Se	ection "2	20. Device S	Specific Behavior" on page 210.				

Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20) (Continued)

SFR	Definition	7.3.	CPT0MD:	Comparator0	Mode Selection
-----	------------	------	---------	-------------	----------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
Reserve	d —	CP0RIE	CP0FIE	_		CP0MD1	CP0MD0	00000010					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit3 Bit2		Bit0	SFR Address:					
								0x9D					
Bit7:	RESERVED. Read = 0b. Must write 0b.												
Bit6:	UNUSED . Read = 0b. Write = don't care.												
Bit5:	CPORIE: Comparator Rising-Edge Interrupt Enable.												
	0: Compara	tor rising-ec	lge interrupt	disabled.									
DitA	1: Compara	tor rising-ed	ige interrupt	enabled.	abla								
DIL4.	0: Comparat	tor falling_o	dilling-Euge dae interrun	t disabled	lable.								
	1: Compara	tor falling-ed	dge interrup dge interrup	t enabled.									
	Note: It is ne	ecessarv to	enable both	CP0xIE an	d the corre	spondent E	CPx bit loca	ated in EIE1					
	SFR.	····, ··				-1							
D:4-2 2.	2: UNUSED. Read = 00b. Write = don't care.												
DIISS-Z.	UNUSED. R	lead = 00b.	Write = don	i't care.									
Bits1–0:	CP0MD1-C	Read = 00b. P0MD0 : Co	Write = don mparator0 I	i't care. Mode Selec	t								
Bits1–0:	CP0MD1–C These bits s	tead = 00b. P0MD0 : Co elect the re	Write = don omparator0 I sponse time	i't care. Mode Selec e for Compa	t rator0.								
Bits1–0:	CPOMD1–C These bits s	Read = 00b. P0MD0 : Co elect the re	Write = don omparator0 I sponse time	i't care. Mode Selec e for Compa	t rator0.								
Bits1–0:	CP0MD1–C These bits s	Read = 00b. P0MD0 : Co elect the re CP0MD1	Write = dor omparator0 I sponse time CP0MD0	i't care. Mode Selec for Compa CP0 Fall	t rator0. ing Edge I	Response	7						
Bits1–0:	CPOMD1–C These bits s	Read = 00b. P0MD0 : Cc elect the re CP0MD1	Write = don omparator0 I sponse time CP0MD0	i't care. Mode Selec for Compa CP0 Fall	t rator0. ing Edge Time (TYF	Response P)							
Bits1–0:	CPOMD1–C These bits s Mode	Read = 00b. P0MD0 : Cc elect the re CP0MD1 0	Write = don omparator0 I sponse time CP0MD0	i't care. Mode Selec for Compa CP0 Fall Faste	t rator0. ing Edge Time (TYF st Respons	Response 2) se Time							
Bits1–0:	CPOMD1-C These bits s Mode	Read = 00b. P0MD0 : Co elect the re CP0MD1 0 0	Write = don omparator0 I sponse time CP0MD0 0 1	i't care. Mode Selec for Compa CP0 Fall Faste	t rator0. ling Edge I Time (TYF st Respons	Response P) se Time							
Bits1–0:	CPOMD1-C These bits s Mode	Read = 00b. P0MD0 : Cc elect the re CP0MD1 0 0 1	Write = don omparator0 I sponse time CP0MD0 0 1 0	i't care. Mode Selec for Compa CP0 Fall Faste	t rator0. ing Edge Time (TYF st Respons	Response ?) se Time							
Bits1–0:	UNUSED. RCP0MD1-CThese bits sMode0123	Read = 00b. P0MD0 : Cc elect the re CP0MD1 0 0 1 1	Write = don omparator0 I sponse time CP0MD0 0 1 0 1	i't care. Mode Selec for Compa CP0 Fall Faste Lowest	t rator0. ing Edge Time (TYF st Respons Power Cor	Response ?) se Time							
Bits1–0:	Mode 0 1 2 3	Read = 00b. P0MD0 : Co elect the re CP0MD1 0 0 1 1	Write = don omparator0 I sponse time CP0MD0 0 1 0 1	i't care. Mode Selec e for Compa CP0 Fall Faste Lowest	t rator0. ing Edge Time (TYF st Respons 	Response) se Time isumption							
Bits1–0:	Mode 0 1 2 3	Read = 00b. P0MD0 : Co elect the re CP0MD1 0 0 1 1 1 Edge resp	Write = don omparator0 I sponse time CP0MD0 0 1 0 1 0 1	i't care. Mode Selec for Compa CP0 Fall Faste Lowest are approxi	t rator0. ing Edge Time (TYF st Respons Power Cor mately dou	Response ?) se Time asumption ble the Falli	ng Edge re	esponse					
Bits1–0:	UNUSED. R CP0MD1-C These bits s Mode 0 1 2 3 Note: Rising times.	Read = 00b. P0MD0 : Cc elect the re CP0MD1 0 0 1 1 Edge resp	Write = don omparator0 I sponse time CP0MD0 0 1 0 1 0 1 0 0	i't care. Mode Selec for Compa CP0 Fall Faste Lowest are approxi	t rator0. ing Edge Time (TYF st Respons <u></u> Power Cor mately dou	Response) se Time isumption ble the Falli	ng Edge re	esponse					

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire (C2) interface. Note that the re-programmable Flash can also be read and written a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Laboratories, Inc. and third party vendors. Silicon Laboratories provides an integrated development environment (IDE) including editor, evaluation compiler, assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the on-chip debug logic to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

8.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

8.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 8.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

11.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}. An additional delay (T_{PORDelay}) occurs before the device is released from reset. The V_{RST} threshold and T_{PORDelay} are specified in Table 2.8, "Reset Electrical Characteristics," on page 32. Figure 11.2 plots the power-on and V_{DD} monitor reset timing.

Note: Please refer to Section "20.4. VDD Monitors and VDD Ramp Time" on page 211 for definition of V_{RST} and V_{DD} ramp time in older silicon revisions A and B.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The contents of internal data memory should be assumed to be undefined after a power-on reset. Both the V_{DD} monitors (VDDMON0 and VDDMON1) are enabled following a power-on reset.

Figure 11.2. Power-On and V_{DD} Monitor Reset Timing

SFR Definition 11.2. RSTSRC: Reset Source

R/W	R	R/W	R/W	R	R/W	R/W	R	Reset Value				
	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1				
	SFR Address											
Note: So	ftware should	avoid read	modify write	te instructio	ns when wri	ting values	to RSTSRC).				
Bit7:	UNUSED. R	ead = 1, W	rite = don't	care.								
Bit6:	FERROR: FI	lash Error II	ndicator.									
	0: Source of	last reset w	as not a Floop	asn read/w	nte/erase er	ror.						
Rit5		mparator	Rosot Eng	hle and Flag								
Ditj.	0. Read: Sol	urce of last	reset was i	not Compar	g. ator0							
	Write: Co	mparator0 i	s not a res	et source.								
	1: Read: So	urce of last	reset was (Comparator	0.							
	Write: Co	mparator0 i	s a reset so	ource (activ	e-low).							
Bit4:	SWRSF: Sof	ftware Rese	et Force an	d Flag.								
	0: Read: So	urce of last	reset was i	not a write t	o the SWRS	SF bit.						
	Write: No	Effect.				•.						
	1: Read: Sol	urce of last	reset was a	a write to th	e SWRSF b	it.						
Dit2.		rces a syste	mor Posot	Flog								
DILJ.	0. Source of	last reset w	iner Reser	riay. /DT timeout								
	1: Source of	last reset w	/as a WDT	timeout.	•							
Bit2:	MCDRSF: M	lissing Cloc	k Detector	Flag.								
	0: Read: So	urce of last	reset was i	not a Missin	g Clock Det	ector timed	out.					
	Write: Mis	ssing Clock	Detector d	isabled.	-							
	1: Read: So	urce of last	reset was a	a Missing C	lock Detecto	or timeout.						
	Write: Mis	ssing Clock	Detector e	nabled; trig	gers a reset	if a missing	g clock cond	ition is				
D:44	detected.											
BITT	This bit is so	ver-On Res t anytime a	et Force ar	nd Flag. rocot occurr	N/riting thi	e hit opable	oc/dicables t	ho V				
	monitor ()/DI				writing 1 t	s bit enduit	efore the V	moni				
	Definition 11	20 and stai	bilized may	y cause a s	ystem rese	t. See regi	ster vDDIvic	IN (SFR				
	0. Read. Las	. i) st reset was	not a now	er-on or Vp	- monitor re	set						
		\sim monitor ()) is not a re-	set source							
	1. Read: Las	D monitor ($n \text{ or } V_{n}$	onitor reset:	all other re	set flags inc	lotormi-				
	noto			n or v DD m	Jintor reset,		set hags inc					
		n monitor ()) is a reset o	source							
Bit0 [.]		V Pin Reset	Flag	, 10 & 10001 \								
Bito.	0: Source of	last reset w	as not RS	T pin.								
	1: Source of	last reset w	as RST pi	າ.								

12.2. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of V_{DD} , system clock frequency, or temperature. This accidental execution of Flash modi-fying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

The following guidelines are recommended for any system which contains routines which write or erase Flash from code.

12.2.1. V_{DD} Maintenance and the V_{DD} monitor

- 1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
- Make certain that the maximum V_{DD} ramp time specification (if applicable) is met. See Section 20.4 on page 211 for more details on V_{DD} ramp time. If th<u>e sy</u>stem cannot meet this ramp time specification, then add an external V_{DD} brownout circuit to the RST pin of th<u>e</u> device that holds the device in reset until V_{DD} reaches the minimum specified V_{DD} and re-asserts RST if V_{DD} drops belowthat level. V_{DD} (min) is specified in Table 2.2 on page 26.
- 3. Enable the on-chip V_{DD} monitor (VDDMON0) and enable it as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For C-based systems, this will involve modifying the startup code added by the C compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the V_{DD} monitor (VDDMON0) and enabling it as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware", available from the Silicon Laboratories web site.
- 4. As an added precaution, explicitly enable the V_{DD} monitor (VDDMON0) and enable the V_{DD} monitor as a reset source inside the functions that write and erase Flash memory. The V_{DD} monitor enable instructions should be placed just after the instruction to set PSWE to a 1, but before the Flash write or erase operation instruction.
- Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0x02" is correct. "RSTSRC |= 0x02" is incorrect.
- 6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a 1. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

12.2.2. PSWE Maintenance

- 1. Reduce the number of places in code where the PSWE bit (PSCTL.0) is set to a 1. There should be exactly one routine in code that sets PSWE to a 1 to write Flash bytes and one routine in code that sets PSWE and PSEE both to a 1 to erase Flash pages.
- Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates and loop variable maintenance outside the "PSWE = 1;... PSWE = 0;" area. Code examples showing this can be found in "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories web site.
- 3. Disable interrupts prior to setting PSWE to a 1 and leave them disabled until after PSWE has been reset to '0'. Any interrupts posted during the Flash write or erase operation will be serviced in priority order after the Flash operation has been completed and interrupts have been re-enabled by software.
- Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.

SFR Definition 12.1. PSCTL: Program Store R/W Control

R	R	R	R	R	R	R/W	R/W	Reset Value
		_				PSEE	PSWE	00000000
Bit	7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1
							SFR Address:	0x8F
Bits7- Bit1: Bit0:	2: UNUSED: F PSEE: Prog Setting this to be erased Flash memo tion address 0: Flash pro 1: Flash pro PSWE: Prog Setting this write instruct 0: Writes to 1: Writes to memory.	Read = 0000 ram Store E bit (in comb d. If this bit i ory using the sed by the M gram memo gram Memo gram Store V bit allows w tion. The FI Flash progr Flash progr	000b, Write Frase Enabl ination with s logic 1 an MOVX instru- ory erasure Write Enabl riting a byte ash locatior am memory am memory	= don't care e PSWE) allo d Flash writ truction will oction. The v disabled. e of data to t n should be v disabled. v enabled; th	es an entir es are enak erase the e ralue of the he Flash pr erased befor ne MOVX w	e page of F bled (PSWE entire page data byte v ogram mer ore writing o vrite instruc	lash prograr E is logic 1), that contains vritten does nory using th data. tion targets l	n memory a write to s the loca- not matter. ne MOVX Flash
Note: S	See Section "12.1 requirements	. Programmir for flash eras	ig The Flash se and write	Memory" on operations.	page 113 for	minimum V	_{DD} and tempe	erature

SFR Definition 12.2. FLKEY: Flash Lock and Key

(F52x/F52xA) for the external CNVSTR signal, and any selected ADC or comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 13.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP); Figure 13.4 shows the Crossbar Decoder priority with the XTAL1 (P1.0) and XTAL2 (P1.1) pins skipped (P1SKIP = 0x03).

Important Note on UART Pins: On C8051F52xA/F52x-C/F53xA/F53x-C devices, the UART pins must be skipped if the UART is enabled in order for peripherals to appear on port pins beyond the UART on the crossbar. For example, with the SPI and UART enabled on the crossbar with the SPI on P1.0-P1.3, the UART pins must be skipped using P0SKIP for the SPI pins to appear correctly.

				Ρ	0				P1							
SF Signals TSSOP 20 and QFN 20	REF							ral1	FAL2		VVSTR					
PIN I/O	<u>د</u> ۱۷	1	2	3	4	5	6	×	× 0	1	2	3	4	5	6	7
TX0	Ŭ	•	-	Ŭ			Ŭ	Ē	Ť		- C80	51E5	3xA	/F5:	3x-0	;
RX0												de	evice	es		
ТХО																
RX0			I								C80	51F	53x	devi	ces	
ѕск																
MISO																
MOSI																
NSS*																
LIN-TX																
LIN-RX																
CP0																
CP0A																
/SYSCLK																
CEX0																
CEX1																
CEX2																
ECI																
то																
T1																
	0	0 P(0 DSK	0 IP[0	0 :7] =	0 = 0x	0 80	1	1	0 P′	0 1SK	0 IP[0:	0 :7] =	0 : 0x	0 01	0

Port pin potentially assignable to peripheral

SF Signals	Special Function Signals are not assigned by the crossbar.
	When these signals are enabled, the Crossbar must be manually configured
	to skip their corresponding port pins.

Note: 4-Wire SPI Only.

Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped (TSSOP 20 and QFN 20)

17.1. Software Interface with the LIN Peripheral

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LIN0 Control Mode (LIN0CF) register. The other LIN registers are accessed indirectly through the two SFRs LIN0 Address (LINADDR) and LIN0 Data (LINDATA). The LINADDR register selects which LIN register is targeted by reads/writes of the LINDATA register. The full list of indirectly-accessible LIN register is given in Table 17.4 on page 174.

17.2. LIN Interface Setup and Operation

The hardware based LIN peripheral allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the peripheral is to define the basic characteristics of the node:

- Mode—Master or Slave
- Baud Rate—Either defined manually or using the autobaud feature (slave mode only).
- Checksum Type—Select between classic or enhanced checksum, both of which are implemented in hardware.

17.2.1. Mode Definition

Following the LIN specification, the peripheral implements both the Slave and Master operating modes in hardware. The mode is configured using the MODE bit (LIN0CF.6).

17.2.2. Baud Rate Options: Manual or Autobaud

The LIN peripheral can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LIN0CF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

17.2.3. Baud Rate Calculations—Manual Mode

The baud rate used by the peripheral is a function of the System Clock (SYSCLK) and the bit-timing Registers according to the following equation:

$$baud_rate = \frac{SYSCLK}{2^{(prescaler + 1)} \times divider \times (multiplier + 1)}$$

The prescaler, divider and multiplier factors are part of the LIN0DIV and LIN0MUL registers and can assume values in the following range:

SFR Definition 17.3. LINCF Control Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
LINEN	MODE	ABAUD						00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	·		
1							SFR Address:	0x95		
Bit7: Bit6: Bit5:	LINEN: LIN Interface Enable bit 0: LINO is disabled. 1: LINO is enabled. MODE: LIN Mode Selection 0: LINO operates in Slave mode. 1: LINO operates in Master mode. ABAUD: LIN Mode Automatic Baud Rate Selection (slave mode only). 0: Manual baud rate selection is enabled. 1: Automatic baud rate selection is enabled.									

SFR Definition 17.8. LIN0DT5: LIN0 Data Byte 5

SFR Definition 17.9. LIN0DT6: LIN0 Data Byte 6

SFR Definition 17.10. LIN0DT7: LIN0 Data Byte 7

SFR Definition 17.11. LIN0DT8: LIN0 Data Byte 8

SFR Definition 17.13. LIN0ST: LIN0 STATUS Register

R	R	R	R	R/W	R	R	R	Reset Value		
ACTIVE	IDLTOUT	ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J		
							Address:	0x09 (indirect)		
Bit7:	ACTIVE: LIN	Bus Activi	ty Bit.							
	0: No transmission activity detected on the LIN bus.									
	1: Transmission activity detected on the LIN bus.									
Bit6:	IDLTOUT: Bus Idle Timeout Bit (slave mode only).									
	0: The bus has not been idle for four seconds.									
Bit5.	1: No bus activity has been detected for four seconds, but the bus is not yet in Sleep mode.									
DILJ.		nt transmis	sion has no	t heen inter	runted or st	onned This	hit is reset	to 0 after		
	receiving a SYNCH BREAK that does not interrupt a pending transmission									
	1. New SYNCH BREAK detected before the end of the last transmission or the STOP bit									
	(LIN0CTRL.	7) has beer	n set.							
Bit4:	DTREQ: Dat	a Request	bit (slave n	node only).						
	0: Data ident	tifier has no	t been rece	eived.						
	1: Data ident	tifier has be	en received	d.						
Bit3:	LININT: Inter	rrupt Reque	est bit.					、		
	0: An interrupt is not pending. This bit is cleared by setting RSTINT (LINOCTRL.3)									
Bi+2.	T: There is a	penaing Li	NU Interrup	ι.						
DILZ.	ERRUR . Communication Error Bit. 0: No error has been detected. This bit is cleared by setting PSTERP (LINOCTPL 2)							2)		
	1: An error h	as been de	tected.	5 511 15 61641	cu by Setti	IS NOTENIN				
Bit1:	WAKEUP: V	Vakeup Bit.								
	0: A wakeup	signal is no	ot being trai	nsmitted an	d has not b	een received	d.			
	1: A wakeup	signal is be	eing transm	itted or has	been recei	ved.				
Bit0:	DONE: Tran	smission C	omplete Bit							
	0: A transmis	ssion is not	in progress	or has not	been starte	d. This bit is	cleared at t	the start of		
	a transmissio	on.								
	1: The curre	nt transmis	sion is com	plete.						

19.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 19.5. PCA Software Timer Mode Diagram

19.2.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. The duty cycle for 16-Bit PWM Mode is given by Equation 19.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

$$DutyCycle = \frac{(65536 - PCA0CPn)}{65536}$$

Equation 19.3. 16-Bit PWM Duty Cycle

Using Equation 19.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

19.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 2. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 2 operates as a watchdog timer (WDT). The Module 2 high byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.

SFR Definition 19.4. PCA0L: PCA Counter/Timer Low Byte

SFR Definition 19.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 19.6. PCA0CPLn: PCA Capture Module Low Byte

SFR Definition 19.7. PCA0CPHn: PCA Capture Module High Byte

Revision 1.2 to 1.3

- Updated "System Overview" on page 13 with a voltage range specification for the internal oscillator.
- Updated Table 2.11 on page 34 with new conditions for the internal oscillator accuracy. The internal
 oscillator accuracy is dependent on the operating voltage range.
- Updated Section 2 to remove the internal oscillator curve across temperature diagram.
- Updated Figure "4.5 12-Bit ADC Burst Mode Example with Repeat Count Set to 4" on page 58 with new timing diagram when using CNVSTR pin.
- Updated SFR Definition 5.1 (REF0CN) with oscillator suspend requirement for ZTCEN.
- Updated SFR Definition 6.1 (REG0CN) with a new definition for Bit 6. The bit 6 reset value is 1b and must be written to 1b.
- Updated Section "8.3.3. Suspend Mode" on page 90 with note regarding ZTCEN.
- Updated Section "17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)" on page 164 with a voltage range specification for the internal oscillator.

Revision 1.3 to 1.4

- Added 'AEC-Q100' qualification information on page 1.
- Changed page headers throughout the document from 'C8051F52x/F52xA/F53x/F53xA' to 'C8051F52x/53x'.
- Updated supply voltage to "2.0 to 5.25 V" on page 1 and in Section 1 on page 13.
- Corrected reference to development kit (C8051F530DK) in Section "1.2.4. On-Chip Debug Circuitry" on page 18.
- Updated minimum Supply Input Voltage (V_{REGIN}) for C8051F52x-C/F53x-C devices in Table 2.2 on page 26 and Table 2.6 on page 30.
- Updated digital supply current (I_{DD} and Idle I_{DD}) typical values for condition 'Clock = 25 MHz' in Table 2.2 on page 26.
- Updated I_{DD} Frequency Sensitivity and Idle I_{DD} Frequency Sensitivity values in Table 2.2 on page 26; removed Figure 2.1 and Figure 2.2 that used to provide the same frequency sensitivity slopes. Also removed IDD Supply Sensitivity and Idle IDD Supply Sensitivity typical values.
- Added Digital Supply Current (Stop or Suspend Mode) values at multiple temperatures Table 2.2 on page 26.
- Added a note in Table 2.3, "ADC0 Electrical Characteristics," on page 28 with reference to Section "4.4. Selectable Gain" on page 60; also added note to indicate that additional tracking time may be necessary if VDD is less than the minimum specified VDD.
- Split off temperature sensor specifications from Table 2.3 into a separate table Table 2.4; Updated temperature sensor gain and added supply current values.
- Added temperature condition for Bias Current specification in Table 2.6 on page 30.
- Updated Comparator Input Offset Voltage values in Table 2.7 on page 31.
- Updated VDD Monitor (VDDMON0) Low Threshold (V_{RST-LOW}) minimum value for C8051F52xA/F52x-C/F53xA/F53x-C devices in Table 2.8 on page 32.
- Updated VDD Monitor (VDDMON0) supply current values in Table 2.8 on page 32.
- Added specifications for the new level-sensitive VDD monitor (VDDMON1) to Table 2.8, "Reset Electrical Characteristics," on page 32 and also added notes to clarify the applicable V_{RST} theshold level.
- Added note in Table 2.9, "Flash Electrical Characteristics," on page 33 to describe the minimum flash programming temperature for –I (Industrial Grade) devices; Also added the same note and references to it in Section "12.1. Programming The Flash Memory" on page 113, Section "12.3. Non-volatile Data Storage" on page 117, and in SFR Definition 12.1 (PSCTL).

