E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f533-c-it

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.2.2. External Crystal Example	139
14.2.3. External RC Example	141
14.2.4. External Capacitor Example	141
14.3. System Clock Selection	143
15. UART0	
15.1. Enhanced Baud Rate Generation	
15.2. Operational Modes	
15.2.1. 8-Bit UART	
15.2.2. 9-Bit UART	
15.3. Multiprocessor Communications	
16. Enhanced Serial Peripheral Interface (SPI0)	
16.1. Signal Descriptions	152
16.1.1. Master Out, Slave In (MOSI)	
16.1.2. Master In, Slave Out (MISO)	
16.1.3. Serial Clock (SCK)	
16.1.4. Slave Select (NSS)	
16.2. SPI0 Master Mode Operation	
16.3. SPI0 Slave Mode Operation	
16.4. SPI0 Interrupt Sources	
16.5. Serial Clock Timing	
16.6. SPI Special Function Registers	
17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)	
17.1. Software Interface with the LIN Peripheral	
17.2. LIN Interface Setup and Operation	
17.2.1. Mode Definition	
17.2.2. Baud Rate Options: Manual or Autobaud	
17.2.3. Baud Rate Calculations—Manual Mode	
17.2.4. Baud Rate Calculations—Automatic Mode	
17.3. LIN Master Mode Operation	
17.4. LIN Slave Mode Operation	
17.5. Sleep Mode and Wake-Up	
17.6. Error Detection and Handling	
17.7. LIN Registers	
17.7.1. LIN Direct Access SFR Registers Definition	
17.7.2. LIN Indirect Access SFR Registers Definition	
18. Timers	
18.1. Timer 0 and Timer 1	
18.1.1. Mode 0: 13-bit Counter/Timer	
18.1.2. Mode 1: 16-bit Counter/Timer	
18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload	
18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	
18.2. Timer 2	
18.2.1. 16-bit Timer with Auto-Reload	
18.2.2. 8-bit Timers with Auto-Reload	101
18.2.3. External Capture Mode	

Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10) 124
Figure 13.6. Crossbar Priority Decoder with Some Pins Skipped (DFN 10) 125
Figure 14.1. Oscillator Diagram 135
Figure 14.2. 32 kHz External Crystal Example 140
Figure 15.1. UART0 Block Diagram 144
Figure 15.2. UART0 Baud Rate Logic 145
Figure 15.3. UART Interconnect Diagram 146
Figure 15.4. 8-Bit UART Timing Diagram 146
Figure 15.5. 9-Bit UART Timing Diagram 147
Figure 15.6. UART Multi-Processor Mode Interconnect Diagram
Figure 16.1. SPI Block Diagram 151
Figure 16.2. Multiple-Master Mode Connection Diagram 154
Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram
Figure 16.4. 4-Wire Single Master and Slave Mode Connection Diagram
Figure 16.5. Data/Clock Timing Relationship
Figure 16.6. SPI Master Timing (CKPHA = 0)
Figure 16.7. SPI Master Timing (CKPHA = 1)
Figure 16.8. SPI Slave Timing (CKPHA = 0)
Figure 16.9. SPI Slave Timing (CKPHA = 1)
Figure 17.1. LIN Block Diagram
Figure 18.1. T0 Mode 0 Block Diagram
Figure 18.2. T0 Mode 2 Block Diagram
Figure 18.3. T0 Mode 3 Block Diagram
Figure 18.4. Timer 2 16-Bit Mode Block Diagram
Figure 18.5. Timer 2 8-Bit Mode Block Diagram
Figure 18.6. Timer 2 Capture Mode Block Diagram
Figure 19.1. PCA Block Diagram
Figure 19.2. PCA Counter/Timer Block Diagram
Figure 19.3. PCA Interrupt Block Diagram
Figure 19.4. PCA Capture Mode Diagram
Figure 19.5. PCA Software Timer Mode Diagram
Figure 19.6. PCA High-Speed Output Mode Diagram
Figure 19.7. PCA Frequency Output Mode
Figure 19.8. PCA 8-Bit PWM Mode Diagram
Figure 19.9. PCA 16-Bit PWM Mode
Figure 19.10. PCA Module 2 with Watchdog Timer Enabled
Figure 20.1. Device Package—TSSOP 20
Figure 20.2. Device Package—QFN 20
Figure 20.3. Device Package—DFN 10
Figure 21.1. Typical C2 Pin Sharing 216

List of Tables

Table 1.1. Product Selection Guide (Recommended for New Designs)	14
Table 1.2. Product Selection Guide (Not Recommended for New Designs)	
Table 1.3. Operating Modes Summary	
Table 2.1. Absolute Maximum Ratings	
Table 2.2. Global DC Electrical Characteristics	
Table 2.3. ADC0 Electrical Characteristics	
Table 2.4. Temperature Sensor Electrical Characteristics	
Table 2.5. Voltage Reference Electrical Characteristics	
Table 2.6. Voltage Regulator Electrical Specifications	
Table 2.7. Comparator Electrical Characteristics	
Table 2.8. Reset Electrical Characteristics	
Table 2.9. Flash Electrical Characteristics	
Table 2.10. Port I/O DC Electrical Characteristics	
Table 2.11. Internal Oscillator Electrical Characteristics	
Table 3.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10)	
Table 3.2. DFN-10 Package Diagram Dimensions	
Table 3.3. DFN-10 Landing Diagram Dimensions	
Table 3.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20)	
Table 3.5. TSSOP-20 Package Diagram Dimensions	
Table 3.6. TSSOP-20 Landing Diagram Dimensions	
Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20)	
Table 3.8. QFN-20 Package Diagram Dimensions	49
Table 3.9. QFN-20 Landing Diagram Dimensions	51
Table 8.1. CIP-51 Instruction Set Summary	83
Table 9.1. Special Function Register (SFR) Memory Map	94
Table 9.2. Special Function Registers	
Table 10.1. Interrupt Summary	99
Table 12.1. Flash Security Summary 1	
Table 15.1. Timer Settings for Standard Baud Rates	
Using the Internal Oscillator 1	50
Table 16.1. SPI Slave Timing Parameters 1	63
Table 17.1. Baud-Rate Calculation Variable Ranges 1	66
Table 17.2. Manual Baud Rate Parameters Examples 1	67
Table 17.3. Autobaud Parameters Examples 1	68
Table 17.4. LIN Registers* (Indirectly Addressable) 1	74
Table 19.1. PCA Timebase Input Options 1	196
Table 19.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 1	97
Table 19.3. Watchdog Timer Timeout Intervals1 2	205

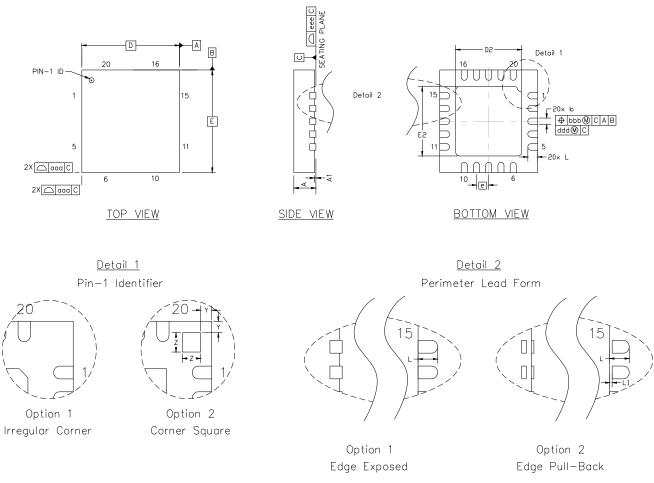


Figure 3.8. QFN-20 Package Diagram*

*Note: The Package Dimensions are given in Table 3.8, "QFN-20 Package Diagram Dimensions," on page 49.

5. Voltage Reference

The Voltage reference MUX on C8051F52x/F52xA/F53x/F53xA devices is configurable to use an externally connected voltage reference, the internal reference voltage generator, or the V_{DD} power supply voltage (see Figure 5.1). The REFSL bit in the Reference Control register (REF0CN) selects the reference source. For an external source or the internal reference applied to the V_{REF} pin, REFSL should be set to 0. To use V_{DD} as the reference source, REFSL should be set to 1.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and internal oscillators. This bit is forced to logic 1 when any of the aforementioned peripherals are enabled. The bias generator may be enabled manually by writing a 1 to the BIASE bit in register REFOCN; see SFR Definition 5.1 for REFOCN register details. The electrical specifications for the voltage reference circuit are given in Table 2.5 on page 29.

The internal voltage reference circuit consists of a temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The output voltage is selectable between 1.5 V and 2.2 V. The internal voltage reference can be driven out on the V_{REF} pin by setting the REFBE bit in register REF0CN to a 1 (see Figure 5.1). The load seen by the V_{REF} pin must draw less than 200 µA to GND. When using the internal voltage reference, bypass capacitors of 0.1 µF and 4.7 µF are recommended from the V_{REF} pin to GND. If the internal reference is not used, the REFBE bit should be cleared to 0. Electrical specifications for the internal voltage reference are given in Table 2.5 on page 29.

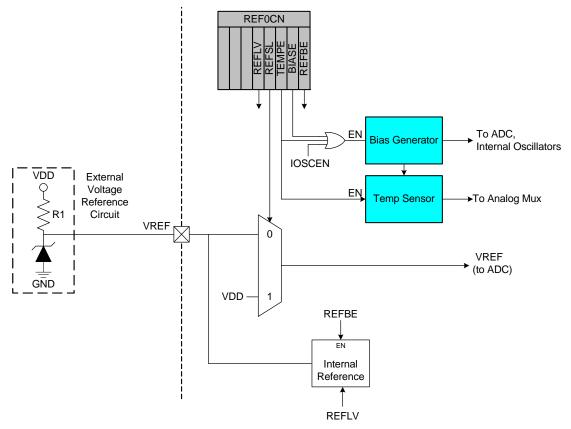


Figure 5.1. Voltage Reference Functional Block Diagram

Important Note About the V_{REF} Pin: Port pin P0.0 is used as the external V_{REF} input and as an output for the internal V_{REF}. When using either an external voltage reference or the internal reference circuitry, P0.0 should be configured as an analog pin, and skipped by the Digital Crossbar. To configure P0.0 as an analog pin, clear Bit 0 in register P0MDIN to 0. To configure the Crossbar to skip P0.0, set Bit 0 in register P0SKIP to 1. Refer to Section "13. Port Input/Output" on page 120 for complete Port I/O configuration details.

The TEMPE bit in register REF0CN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
Reserve		ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE	1 00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address	
								0xD1	
Bits7-6:	RESERVED	. Read = 00)b. Must wr	ite 00b.					
Bit5:	ZTCEN : Zero-TempCo Bias Enable Bit*.								
	0: ZeroTC Bi				ed when ne	eded.			
	1: ZeroTC Bi								
Bit4:	REFLV: Volta	•							
	This bit selec		•		internal vol	tage referei	nce.		
	0: Internal vo	•							
D '/0	1: Internal vo	-							
Bit3:	REFSL: Volt	•							
	This bit selec				ige referenc	ce.			
	0: V _{REF} pin ι		-	nce.					
	1: V _{DD} used								
Bit2:	TEMPE: Ten								
	0: Internal Te	•							
D'44	1: Internal Te	•			D'1				
Bit1:	BIASE: Inter	•				uhan naalo	ام		
	0: Internal A				y enabled v	vnen neede	ea.		
Bit0:	1: Internal A REFBE: Inte	•							
DILU.	0: Internal R								
	1: Internal R				voltage refe	ronco drivo	n on the V.	nin	
	r. memariki			a. memai	ionaye iele				
*Note: Se	e Section "20.7	Internal O	cillator Susr	end Mode" o	n nage 212 f	or a note rel	ated to the 7	TCEN hit in	
1010.00	older silicon re		onator ousp		11 page 2121				

SFR Definition 5.1. REF0CN: Reference Control

7. Comparator

C8051F52x/F52xA/F53x/F53xA devices include one on-chip programmable voltage comparator. The Comparator is shown in Figure 7.1.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0), or an asynchronous "raw" output (CP0A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP or SUS-PEND mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "13.2. Port I/O Initialization" on page 126). The Comparator may also be used as a reset source (see Section "11.5. Comparator Reset" on page 110).

The Comparator inputs are selected in the CPT0MX register (SFR Definition 7.2). The CMX0P3–CMX0P0 bits select the Comparator0 positive input; the CMX0N3–CMX0N0 bits select the Comparator0 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register and configured to be skipped by the Crossbar (for details on Port configuration, see Section "13.3. General Purpose Port I/O" on page 128).

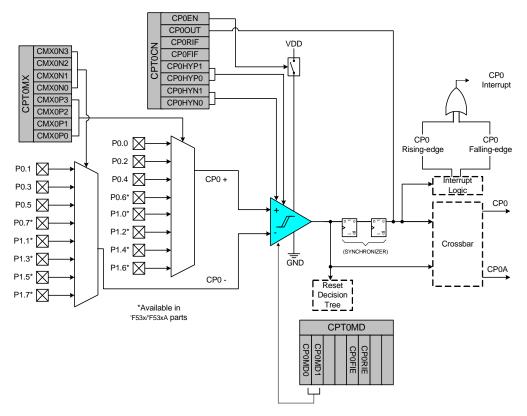


Figure 7.1. Comparator Functional Block Diagram

The Comparator output can be polled in software, used as an interrupt source, internal oscillator suspend awakening source and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP or SUSPEND mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to

Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 2.7 on page 31.

SFR Definition 7.1. CPT0CN: Comparator0 Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0x9B	
Bit7:	CP0EN: Comparator0 Enable Bit.								
		0: Comparator0 Disabled.							
	1: Comparat								
Bit6:	CPOOUT: Co	•	•	ate Flag.					
	0: Voltage or								
D.16	1: Voltage or								
Bit5:	CPORIF: Col	•		•	ainaa thia fl	og woo loot	alaarad		
	0: No Comparat				since this h	ag was last	cleared.		
Bit4:	CP0FIF: Cor	-	-						
Bit4.	0: No Compa				d since this f	lad was last	cleared		
	1: Comparat					lag had lad	cicalcal		
Bits3-2:	CP0HYP1-0				is Control Bi	ts.			
	00: Positive								
	01: Positive	Hysteresis	= 5 mV.						
	10: Positive	Hysteresis	= 10 mV.						
	11: Positive								
Bits1–0:	CP0HYN1-0	•	•		sis Control E	Bits.			
	00: Negative	•							
	01: Negative								
	10: Negative								
	11: Negative	Hysteresis	= 20 mV.						

11.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the RST pin is unaffected by this reset.

12. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface or by software using the MOVX write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operations is not required. Code execution is stalled during Flash write/erase operations. Refer to Table 2.9 on page 33 for complete Flash memory electrical characteristics.

12.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "21. C2 Interface" on page 214.

To protect the integrity of Flash contents, the V_{DD} monitor must be enabled to the higher setting (VDMLVL = '1') and selected as a reset source if software contains routines which erase or write Flash memory. If the V_{DD} monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset. See Section "11.2. Power-Fail Reset / VDD Monitors (VDDMON0 and VDD-MON1)" on page 108 for more information regarding the VDD monitor and the high threshold setting.

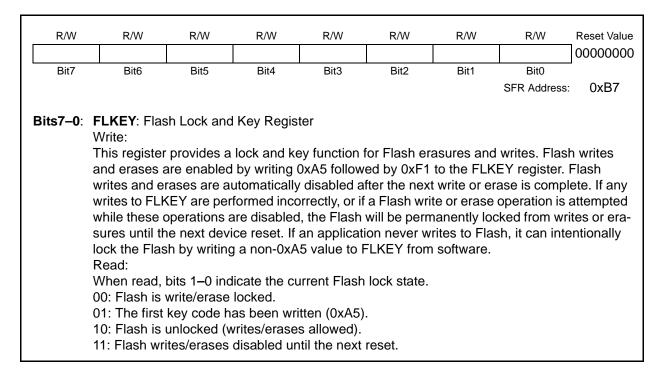
The V_{DD} monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for reenabling the V_{DD} monitor and configuring the V_{DD} monitor as a reset source is shown below:

- 1. Enable the V_{DD} monitor (VDMEN bit in VDDMON = 1).
- Wait for the V_{DD} monitor to stabilize (see Table 2.8 on page 32 for the V_{DD} Monitor turn-on time). Note: This delay should be omitted if software contains routines which write or erase Flash memory.
- 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = 1).

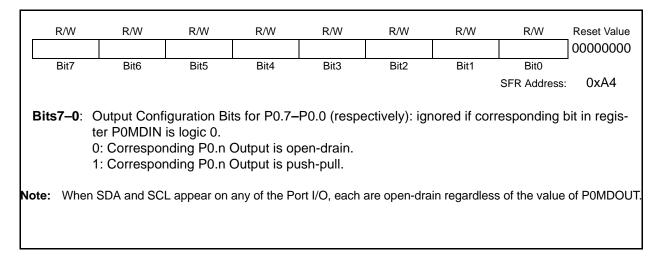
Note: 8-bit MOVX instructions cannot be used to erase or write to Flash memory at addresses higher than 0x00FF.

Important Note: For -I (industrial Grade) parts, flash should be programmed (erase/write) at a minimum temperature of 0 °C for reliable flash operation across the entire temperature range of -40 to +125 °C. This minimum programming temperature does not apply to -A (Automotive Grade) parts.

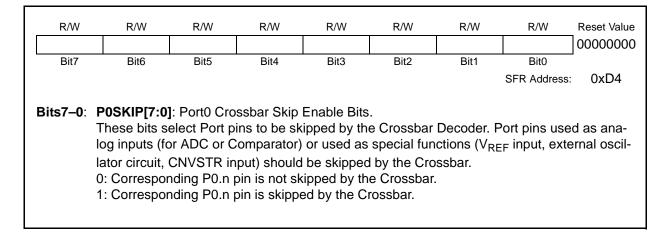
12.1.1. Flash Lock and Key Functions


Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 12.2.

SFR Definition 12.1. PSCTL: Program Store R/W Control


R	R	R	R	R	R	R/W	R/W	Reset Value	
—	—	—	—	—	_	PSEE	PSWE	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
							SFR Address	s: 0x8F	
Bits7–2: Bit1:	Setting this bit (in combination with PSWE) allows an entire page of Flash program memory								
	to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the loca- tion addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.								
Bit0:	 PSWE: Program Store Write Enable Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory. 								
Note: See	Section "12.1. requirements		-	-	page 113 for	⁻ minimum V _I	_{DD} and temp	erature	

SFR Definition 12.2. FLKEY: Flash Lock and Key



SFR Definition 13.5. P0MDOUT: Port0 Output Mode

SFR Definition 13.6. P0SKIP: Port0 Skip

SFR Definition 15.1. SCON0: Serial Port 0 Control R/W R/W R/W Reset Value R R/W R/W R/W R/W SOMODE RI0 01000000 -MCE0 REN0 TB80 **RB80** TI0 Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Addressable SFR Address: 0x98 Bit7: SOMODE: Serial Port 0 Operation Mode. This bit selects the UART0 Operation Mode. 0: 8-bit UART with Variable Baud Rate. 1: 9-bit UART with Variable Baud Rate. Bit6: **UNUSED**. Read = 1b. Write = don't care. Bit5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. SOMODE = 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RIO will only be activated if stop bit is logic level 1. S0MODE = 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: **REN0:** Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th data bit in Mode 1. Bit1: TIO: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 8bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software. Bit0: RIO: Receive Interrupt Flag. Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software.

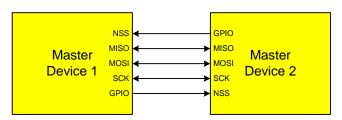


Figure 16.2. Multiple-Master Mode Connection Diagram

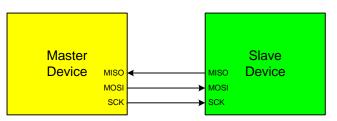
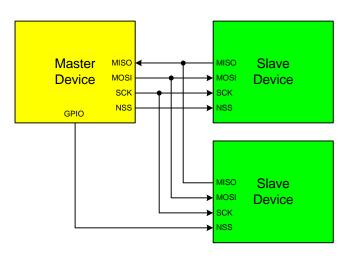
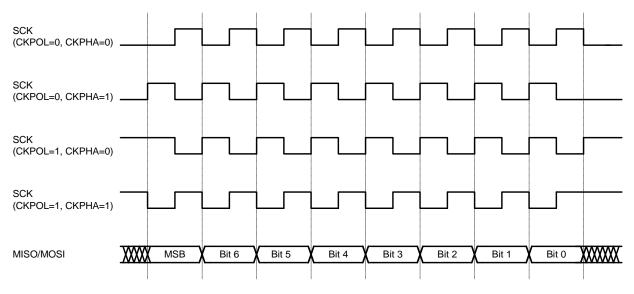



Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram

16.3. SPI0 Slave Mode Operation


When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted into the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

16.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between a rising edge or a falling edge. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 16.5.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 16.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

16.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

17.1. Software Interface with the LIN Peripheral

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LIN0 Control Mode (LIN0CF) register. The other LIN registers are accessed indirectly through the two SFRs LIN0 Address (LINADDR) and LIN0 Data (LINDATA). The LINADDR register selects which LIN register is targeted by reads/writes of the LINDATA register. The full list of indirectly-accessible LIN register is given in Table 17.4 on page 174.

17.2. LIN Interface Setup and Operation

The hardware based LIN peripheral allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the peripheral is to define the basic characteristics of the node:

- Mode—Master or Slave
- Baud Rate—Either defined manually or using the autobaud feature (slave mode only).
- Checksum Type—Select between classic or enhanced checksum, both of which are implemented in hardware.

17.2.1. Mode Definition

Following the LIN specification, the peripheral implements both the Slave and Master operating modes in hardware. The mode is configured using the MODE bit (LIN0CF.6).

17.2.2. Baud Rate Options: Manual or Autobaud

The LIN peripheral can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LIN0CF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

17.2.3. Baud Rate Calculations—Manual Mode

The baud rate used by the peripheral is a function of the System Clock (SYSCLK) and the bit-timing Registers according to the following equation:

$$baud_rate = \frac{SYSCLK}{2^{(prescaler + 1)} \times divider \times (multiplier + 1)}$$

The prescaler, divider and multiplier factors are part of the LIN0DIV and LIN0MUL registers and can assume values in the following range:

18.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see Section "10.5. External Interrupts" on page 104 for details on the external input signals INT0 and INT0).

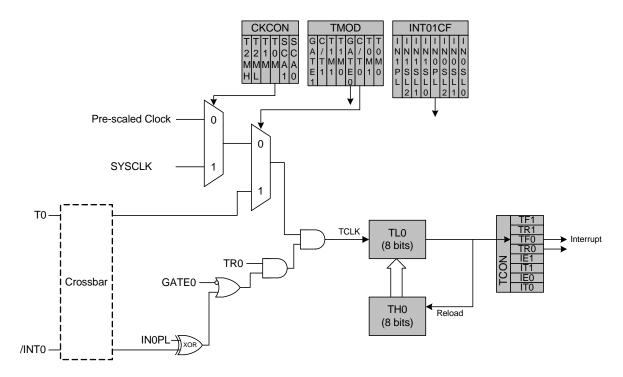


Figure 18.2. T0 Mode 2 Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	0000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Address:	0x89		
	GATE1 : Timer 1 Gate Control. 0: Timer 1 enabled when TR1 = 1 irrespective of $\overline{INT0}$ logic level.									
	1: Timer 1	enabled or	nly when TR1	= 1 AND INT	0 is active	as defined		•		
	C/T1 : Cou		finition 10.5. 1 Select	TIUICE. IN		Shinguration	i on page to	5).		
			mer 1 increme	ented by cloo	ck defined b	by T1M bit	(CKCON.4).			
			Timer 1 increi					iput pin		
	(T1).									
			1 Mode Select							
	These bits	select the	Timer 1 opera	ation mode.						
	T1M1	T1M0		Mode	;					
	0	0	Mode 0: 13-bi	it counter/tin	ner					
	0 1 Mode 1: 16-bit counter/timer									
	•	I	Node 1: 16-bi	it counter/tin	ner					
	1		Mode 1: 16-bit Mode 2: 8-bit			-reload				
	-	0		counter/time		o-reload				
D:40.	1	0 1	Mode 2: 8-bit Mode 3: Time	counter/time		o-reload				
	1 1 GATE0: T	0 1 mer 0 Gate	Mode 2: 8-bit Mode 3: Time e Control.	counter/time r 1 inactive	er with auto					
	GATE0 : T 0: Timer 0	0 1 mer 0 Gate enabled w	Mode 2: 8-bit Mode 3: Time e Control. hen TR0 = 1 i	counter/time r 1 inactive rrespective	er with auto	ic level.	by bit IN0PL	in register		
	1 1 0: Timer 0 1: Timer 0	0 1 mer 0 Gate enabled w enabled or	Mode 2: 8-bit Mode 3: Time e Control.	counter/time r 1 inactive rrespective = 1 AND INT	er with auto of INTO log T0 is active	ic level. as defined				
Bit2:	GATE0 : T 0: Timer 0 1: Timer 0 IT01CF (s C/T0 : Cou	0 1 mer 0 Gate enabled w enabled or ee SFR De nter/Timer	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select.	counter/time r 1 inactive rrespective = 1 AND INT "IT01CF: IN	er with auto of INTO log TO is active TO/INT1 Co	ic level. as defined onfiguratior	n" on page 10			
Bit2:	GATE0 : T 0: Timer 0 1: Timer 0 IT01CF (s C/T0 : Cou 0: Timer F	0 1 enabled w enabled or ee SFR De nter/Timer unction: Ti	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select. mer 0 increme	counter/time r 1 inactive rrespective = 1 AND INT "IT01CF: IN ented by cloo	er with auto of INTO log TO is active TO/INT1 Co ck defined b	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2:	GATE0 : T 0: Timer 0 1: Timer 0 IT01CF (s C/T0 : Cou 0: Timer F 1: Counter	0 1 enabled w enabled or ee SFR De nter/Timer unction: Ti	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select.	counter/time r 1 inactive rrespective = 1 AND INT "IT01CF: IN ented by cloo	er with auto of INTO log TO is active TO/INT1 Co ck defined b	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2:	GATE0 : T 0: Timer 0 1: Timer 0 IT01CF (s C/T0 : Cou 0: Timer F 1: Counter (T0).	0 1 mer 0 Gate enabled w enabled or ee SFR De nter/Timer unction: Ti Function: Ti	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 in hy when TR0 efinition 10.5. Select. mer 0 increme Timer 0 increme	counter/time r 1 inactive = 1 AND INT "IT01CF: IN ented by cloomented by h	er with auto of INTO log TO is active TO/INT1 Co ck defined b	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2: Bits1–0:	GATE0 : T 0: Timer 0 1: Timer 0 IT01CF (s C/T0 : Cou 0: Timer F 1: Counter (T0). T0M1–T0	0 1 mer 0 Gate enabled w enabled or ee SFR De nter/Timer unction: Ti Function: Ti	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select. mer 0 increme	counter/time r 1 inactive = 1 AND INT "IT01CF: IN ented by cloo mented by h	er with auto of INTO log TO is active TO/INT1 Co ck defined b	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2: Bits1–0:	GATE0 : T 0: Timer 0 1: Timer 0 IT01CF (s C/T0 : Cou 0: Timer F 1: Counter (T0). T0M1–T0	0 1 mer 0 Gate enabled or ee SFR De nter/Timer unction: Ti Function: M0 : Timer (select the	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select. mer 0 increme Timer 0 increme	counter/time r 1 inactive = 1 AND INT "IT01CF: IN ented by cloo mented by h t. ation mode.	er with auto of INTO log TO is active TO/INT1 Co ck defined k igh-to-low t	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2: Bits1–0:	1 1 0: Timer 0 1: Timer 0 101CF (s C/T0: Cou 0: Timer F 1: Counter (T0). TOM1-TOI These bits	0 1 mer 0 Gate enabled or ee SFR De nter/Timer unction: Ti Function: W0: Timer (select the T0M0	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select. mer 0 increme Timer 0 increme D Mode Select Timer 0 opera	counter/time r 1 inactive = 1 AND INT "IT01CF: IN ented by cloo mented by h t. ation mode.	er with auto of INTO log TO is active TO/INT1 Co ck defined to igh-to-low to e	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2: Bits1–0:	1 1 0: Timer 0 1: Timer 0 IT01CF (s C/T0: Courd 0: Timer F 1: Counter (T0). TOM1-TOI These bits	0 1 mer 0 Gate enabled w enabled or ee SFR De nter/Timer unction: Ti Function: Ti Select the TOM0 0	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 efinition 10.5. Select. mer 0 increme Timer 0 increme D Mode Select Timer 0 opera	counter/time r 1 inactive = 1 AND INT "IT01CF: IN ented by cloo mented by h t. ation mode. Mode it counter/tim	er with auto	ic level. as defined onfiguration by TOM bit	" on page 10 (CKCON.3).	5).		
Bit2: Bits1–0:	1 1 0: Timer 0 1: Timer 0 1T01CF (s C/T0: Could 0: Timer F 1: Counter (T0). TOM1-T0I These bits T0M1 0	0 1 mer 0 Gate enabled or ee SFR De nter/Timer unction: Ti Function: Select the TOM0 0 1	Mode 2: 8-bit Mode 3: Time e Control. then TR0 = 1 i hly when TR0 finition 10.5. Select. mer 0 increme Timer 0 increme D Mode Select Timer 0 opera	counter/time r 1 inactive = 1 AND INT "IT01CF: IN ented by cloo mented by h t. ation mode. Mode it counter/tim	er with auto	ic level. as defined onfiguration by TOM bit transitions o	" on page 10 (CKCON.3).	5).		

19. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "13.1. Priority Cross-bar Decoder" on page 122 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of three modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "19.2. Capture/Compare Modules" on page 197). The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 19.1.

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section "19.3. Watchdog Timer Mode" on page 203 for details.

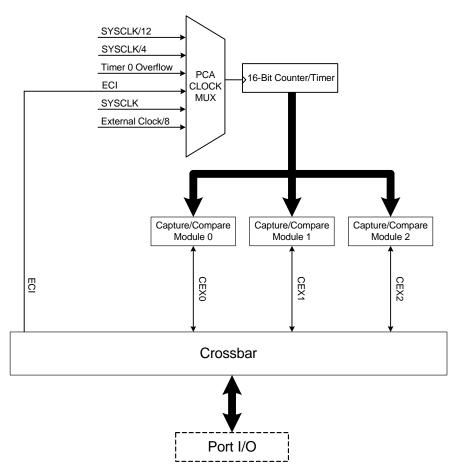
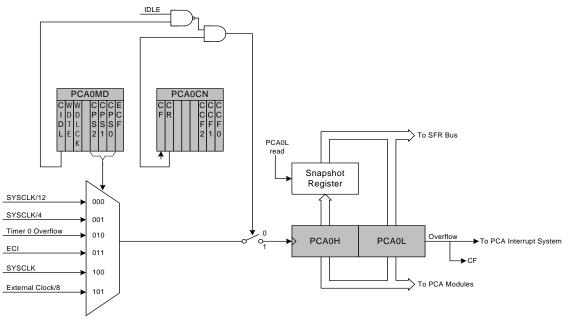


Figure 19.1. PCA Block Diagram

19.1. PCA Counter/Timer


The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. **Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.** Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 19.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1). Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8*

Table 19.1. PCA Timebase Input Options

Note: External clock divided by 8 is synchronized with the system clock.

