E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f533-c-itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 13.13. P0SKIP: Port0 Skip	134
SFR Definition 13.14. P1MAT: Port1 Match	134
SFR Definition 13.15. P1MASK: Port1 Mask	
SFR Definition 14.1. OSCICN: Internal Oscillator Control	
SFR Definition 14.2. OSCICL: Internal Oscillator Calibration	138
SFR Definition 14.3. OSCIFIN: Internal Fine Oscillator Calibration	
SFR Definition 14.4. OSCXCN: External Oscillator Control	142
SFR Definition 14.5. CLKSEL: Clock Select	
SFR Definition 15.1. SCON0: Serial Port 0 Control	149
SFR Definition 15.2. SBUF0: Serial (UART0) Port Data Buffer	
SFR Definition 16.1. SPI0CFG: SPI0 Configuration	157
SFR Definition 16.2. SPI0CN: SPI0 Control	
SFR Definition 16.3. SPI0CKR: SPI0 Clock Rate	
SFR Definition 16.4. SPI0DAT: SPI0 Data	
SFR Definition 17.1. LINADDR: Indirect Address Register	
SFR Definition 17.2. LINDATA: LIN Data Register	
SFR Definition 17.3. LINCF Control Mode Register	
SFR Definition 17.4. LIN0DT1: LIN0 Data Byte 1	
SFR Definition 17.5. LIN0DT2: LIN0 Data Byte 2	
SFR Definition 17.6. LIN0DT3: LIN0 Data Byte 3	
SFR Definition 17.7. LIN0DT4: LIN0 Data Byte 4	
SFR Definition 17.8. LIN0DT5: LIN0 Data Byte 5	176
SFR Definition 17.9. LIN0DT6: LIN0 Data Byte 6	
SFR Definition 17.10. LIN0DT7: LIN0 Data Byte 7	
SFR Definition 17.11. LIN0DT8: LIN0 Data Byte 8	
SFR Definition 17.12. LIN0CTRL: LIN0 Control Register	
SFR Definition 17.13. LIN0ST: LIN0 STATUS Register	
SFR Definition 17.14. LIN0ERR: LIN0 ERROR Register	
SFR Definition 17.15. LINOSIZE: LINO Message Size Register	180
SFR Definition 17.16. LIN0DIV: LIN0 Divider Register	
SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register	
SFR Definition 17.18. LIN0ID: LIN0 ID Register	
SFR Definition 18.1. TCON: Timer Control	
SFR Definition 18.2. TMOD: Timer Mode	
SFR Definition 18.3. CKCON: Clock Control	
SFR Definition 18.4. TL0: Timer 0 Low Byte	
SFR Definition 18.5. TL1: Timer 1 Low Byte	
SFR Definition 18.6. TH0: Timer 0 High Byte	
SFR Definition 18.7. TH1: Timer 1 High Byte	
SFR Definition 18.8. TMR2CN: Timer 2 Control	
SFR Definition 18.9. TMR2RLL: Timer 2 Reload Register Low Byte	
SFR Definition 18.10. TMR2RLH: Timer 2 Reload Register High Byte	
SFR Definition 18.11. TMR2L: Timer 2 Low Byte	
SFR Definition 18.12. TMR2H Timer 2 High Byte	194
SFR Definition 19.1. PCA0CN: PCA Control	206

1.9. Port Input/Output

C8051F52x/F52xA/F53x/F53xA devices include up to 16 I/O pins. Port pins are organized as two bytewide ports. The port pins behave like typical 8051 ports with a few enhancements. Each port pin can be configured as a digital or analog I/O pin. Pins selected as digital I/O can be configured for push-pull or open-drain operation. The "weak pullups" that are fixed on typical 8051 devices may be globally disabled to save power.

The Digital Crossbar allows mapping of internal digital system resources to port I/O pins. On-chip counter/timers, serial buses, hardware interrupts, and other digital signals can be configured to appear on the port pins using the Crossbar control registers. This allows the user to select the exact mix of general-purpose port I/O, digital, and analog resources needed for the application.

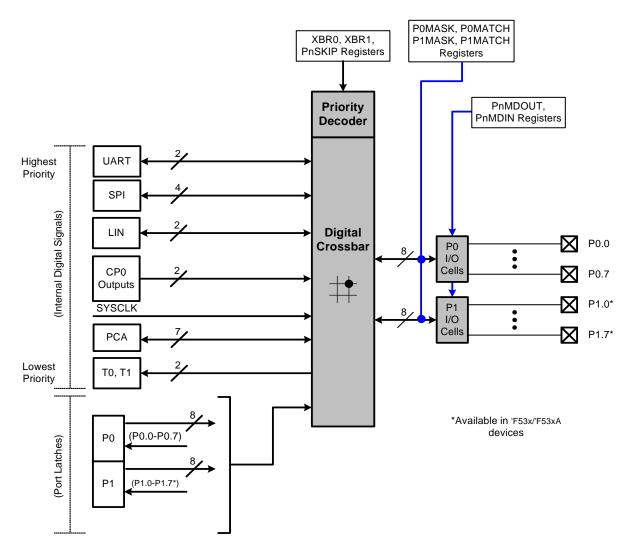


Figure 1.9. Port I/O Functional Block Diagram

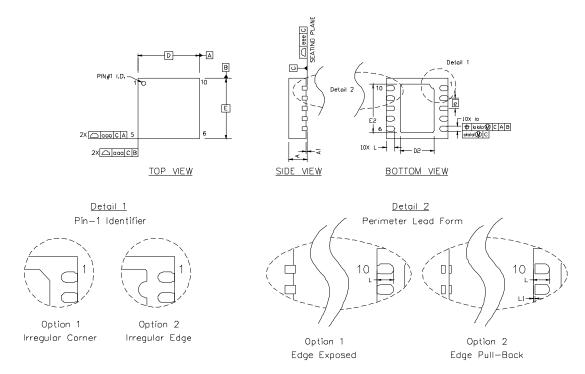


Figure 3.2. DFN-10 Package Diagram

Dimension	Min	Nom	Max			
Α	0.80	0.90	1.00			
A1	0.00	0.02	0.05			
b	0.18	0.25	0.30			
D	3.00 BSC.					
D2	1.50	1.65	1.80			
е	0.50 BSC.					
E	3.00 BSC.					
E2	2.23	2.38	2.53			
L	0.30	0.40	0.50			
L1	0.00	—	0.15			
aaa	—	—	0.15			
bbb	—	— — 0.15				
ddd	—	—	0.05			
eee		—	0.08			

Table 3.2. DFN-10 Package Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to JEDEC outline MO-220, variation VEED except for custom features D2, E2, and L, which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

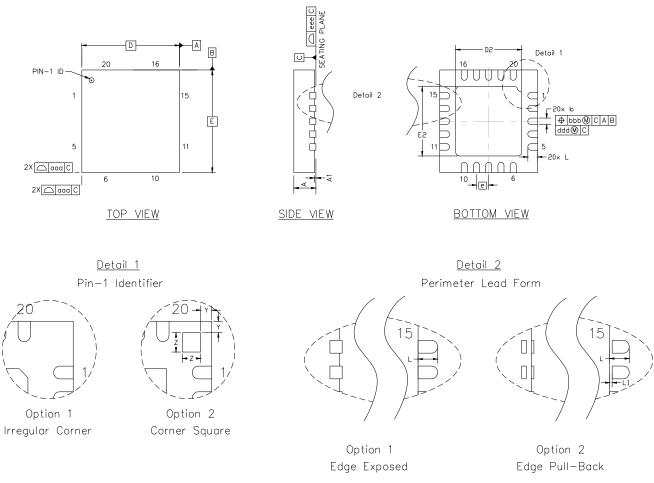


Figure 3.8. QFN-20 Package Diagram*

*Note: The Package Dimensions are given in Table 3.8, "QFN-20 Package Diagram Dimensions," on page 49.

Co	nvert Start —	≻													
				Pre-Tracking Mode											
(Time		F	S1	S2] .	[S12	S13	F					
ł	ADC0 State					Con	ver	t							
	AD0INT Flag														
				F	Post-Tr	acki	ng d	or Dua	Il-Track	ing Mc	odes (A	D0TK =	= '0	0')	
ſ	Time		F	S1	S2	F	F	S1	S2]	S12	S13	F		
\langle	ADC0 State			Tra	ack					Convei	rt				
Ĺ	AD0INT Flag														
			Ke	y]	Equal	to c	one	period	of FCL	_K.					

F

Sn

Each Sn is equal to one period of the SAR clock.

Figure 4.4. 12-Bit ADC Tracking Mode Example

10.5. External Interrupts

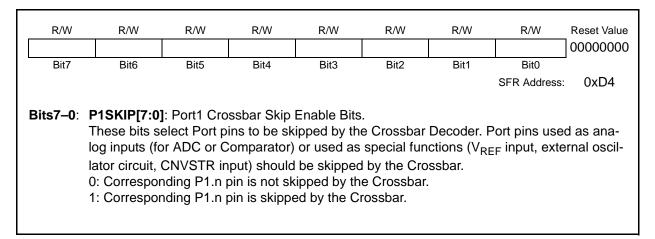
The INTO and INTO external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INTO Polarity) and IN1PL (INTO Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "18.1. Timer 0 and Timer 1" on page 182) select level or edge sensitive. The table below lists the possible configurations.

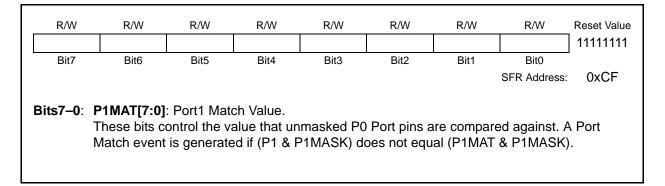
IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

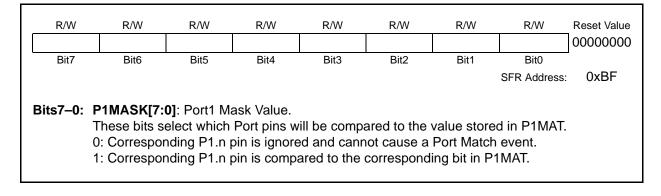
IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INTO and INTO are assigned to Port pins as defined in the ITO1CF register (see SFR Definition 10.5). Note that INTO and INTO Port pin assignments are independent of any Crossbar assignments. INTO and INTO will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INTO and/or INTO, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBRO (see Section "13.1. Priority Crossbar Decoder" on page 122 for complete details on configuring the Crossbar).

In the typical configuration, the external interrupt pins should be skipped in the crossbar and configured as open-drain with the pin latch set to 1. See Section "13. Port Input/Output" on page 120 for more information.


IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT0 external interrupts, respectively. If an INT0 or INT0 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.


FR Defi	nition 10.5. IT01C	F: INT0/INT1 Configurat	ion				
R/W	R/W R/W	R/W R/W F	/W R/W R/W Reset Value				
IN1PL	IN1SL2 IN1SL ²	I IN1SLO IN0PL IN0	SL2 INOSL1 INOSL0 00000001				
Bit7	Bit6 Bit5	Bit4 Bit3 E	it2 Bit1 Bit0				
			SFR Address: 0xE4				
Note: Refer	to SFR Definition 18.1. "To	CON: Timer Control" on page 186 for I	NT0/1 edge- or level-sensitive interrupt selection.				
Bit 7:	IN1PL: INTO Polarity						
	0: INTO input is active 1: INTO input is active						
Bits 6–4:	IN1SL2–0: INTO Port						
			. Note that this pin assignment is inde-				
			ned Port pin without disturbing the				
			ne Crossbar. The Crossbar will not				
			o skip the selected pin (accomplished by				
	-	sponding bit in register POSKIF	'). 				
	IN1SL2-0	INT1 Port Pin					
	000	P0.0					
	001	P0.1					
	010	P0.2					
	011	P0.3					
	100	P0.4					
	101	P0.5					
	110	P0.6*					
	111	P0.7*					
	Note: Available in the	C80151F53x/C8051F53xA parts.					
Bit 3:	INOPL: INTO Polarity		_				
	0: INTO interrupt is ac						
	1: INTO interrupt is ac						
Bits 2–0:	INTOSL2-0: INTO Po		Note that this pin assignment is inde-				
			and Port pin without disturbing the				
			ne Crossbar. The Crossbar will not				
	e 1		o skip the selected pin (accomplished by				
	setting to 1 the corres	sponding bit in register P0SKIF	2).				
	IN0SL2-0	INT0 Port Pin					
	000	P0.0	7				
	001	P0.1	7				
	010	P0.2					
	011	P0.3	7				
	100	P0.4					
	101	P0.5	1				
	110	P0.6*					
	111	P0.7*	1				
	Note: Available in the	C80151F53x/C8051F53xA parts.					


SFR Definition 13.13. P0SKIP: Port0 Skip

SFR Definition 13.14. P1MAT: Port1 Match

SFR Definition 13.15. P1MASK: Port1 Mask

16.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 16.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 16.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

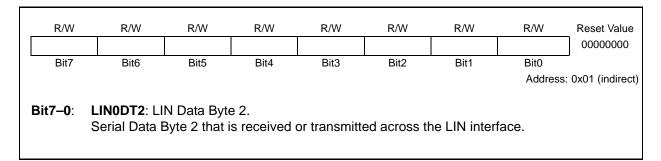
4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 16.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

SFR Definition 16.1. SPI0CFG: SPI0 Configuration

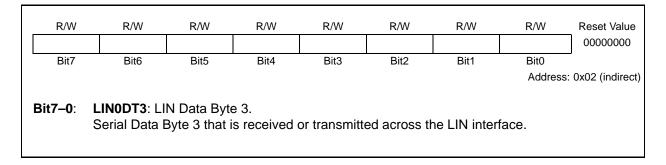
R	R/W	R/W	R/W	R	R	R	R	Reset Value	
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		SFR Address: 0xA1							
Bit 7:	SPIBSY: SP		• /						
D:4 C.	This bit is se MSTEN: Ma			transfer is	in progress	(Master or	Slave Mode	e).	
Bit 6:	0: Disable m			n clava mod	0				
	1: Enable ma				е.				
Bit 5:	CKPHA: SP			s a master.					
Dit J.	This bit cont			ise					
	0: Data cent								
	1: Data cent				d.*				
Bit 4:	CKPOL: SP								
	This bit cont			arity.					
	0: SCK line I	ow in idle s	tate.						
	1: SCK line h	high in idle s	state.						
Bit 3:	SLVSEL: Sla	ave Selecte	d Flag (rea	d only).					
	This bit is se	•				•			
	is cleared to								
	instantaneou					ed version of	of the pin in	put.	
Bit 2:	NSSIN: NSS			•	• /				
	This bit mim				•	the NSS po	ort pin at the	e time that	
-	the register i		•	•					
Bit 1:	SRMT: Shift								
	This bit will b							•	
	and there is								
	receive buffe the transmit				byte is trai	isiened to t	ne sniit regi	ster nom	
	NOTE: SRM								
Bit 0:	RXBMT: Red				Mode read	l only)			
Dit V.	This bit will b						nd contains	no new	
	information.								
	this bit will re			lon availabl				boomroad	
	NOTE: RXB	0		r Mode.					
ote: See T	able 16.1 for ti	ming parame	eters.						
		• •							

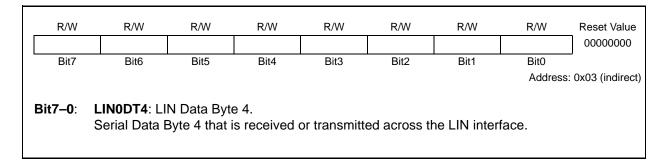
SFR Definition 16.2. SPI0CN: SPI0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value		
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable		
							SFR Addres			
Bit7:	SPIF : SPI0 Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled,									
	setting this b	•					•			
	automatically									
Bit6:	WCOL: Write	e Collision	Flag.							
	This bit is se attempted w	-	•	· •		• •				
	occurs, the v									
	bit is not aut	omatically o	cleared by h	•						
Bit5:	MODF: Mod	•				0 ::::::::::::::::::::::::::::::::::::				
	This bit is se collision is de									
	matically cle	•				/				
Bit4:	RXOVRN: R		U (• /					
	This bit is se fer still holds	•		· •		• •				
	shifted into t									
	be cleared b	y software.	-				•			
Bits3-2:	NSSMD1-N				madaa.					
	Selects betw (See Section		•	•		e 153 and \$	Section "16	.3. SPI0		
	Slave Mode			•						
	00: 3-Wire S									
	01: 4-Wire S 1x: 4-Wire S									
	assume the			o signal is	mapped do t	anoutputn				
Bit1:	TXBMT: Tra									
	This bit will b data in the tr									
	indicating the				-					
Bit0:	SPIEN: SPIC) Enable.								
	This bit enab		s the SPI.							
	0: SPI disabl 1: SPI enabl									



SFR Definition 17.3. LINCF Control Mode Register


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
LINEN	MODE	ABAUD						00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	, ,		
							SFR Address:	0x95		
Bit7:	LINEN: LIN		nable bit							
	0: LINO is di									
-	1: LIN0 is er									
Bit6:	MODE: LIN									
	0: LIN0 oper									
	1: LIN0 oper	rates in Mas	ter mode.							
Bit5:	ABAUD: LIN	Mode Auto	omatic Bau	d Rate Sele	ction (slave	e mode or	nly).			
		ABAUD: LIN Mode Automatic Baud Rate Selection (slave mode only). 0: Manual baud rate selection is enabled.								
	1. Automatic	1: Automatic baud rate selection is enabled.								


SFR Definition 17.5. LIN0DT2: LIN0 Data Byte 2

SFR Definition 17.6. LIN0DT3: LIN0 Data Byte 3

SFR Definition 17.7. LIN0DT4: LIN0 Data Byte 4

SFR Definition 17.13. LIN0ST: LIN0 STATUS Register

R	R	R	R	R/W	R	R	R	Reset Value	
ACTIVE	IDLTOUT	ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_	
							Address	: 0x09 (indirect)	
Bit7:	ACTIVE: LIN Bus Activity Bit.								
	0: No transm								
5.40	1: Transmiss								
Bit6:	IDLTOUT: B		•		only).				
	0: The bus h				oconde bu	t the bus is n	at vot in Sl	oon modo	
Bit5:	ABORT: Abo						or yer in Si	eep mode.	
Dito.						topped. This	bit is reset	to 0 after	
						ding transmis			
						st transmissi		STOP bit	
	(LIN0CTRL.	,							
Bit4:	DTREQ: Dat								
	0: Data ident								
D:40.	1: Data ident			J.					
Bit3:	LININT: Inter			hit is cloars	d by cottin	g RSTINT (L		2)	
	1: There is a				su by setting	g KSTINT (L)	
Bit2:	ERROR: Co								
					ed by setti	ng RSTERR	(LIN0CTR	L.2)	
	1: An error h					C	·	,	
Bit1:	WAKEUP: V	•							
						een received	ł.		
D'40	1: A wakeup				been recei	ived.			
Bit0:	DONE: Tran				haan atarta	d This hit is	alcored at	the start of	
	a transmissi		in progress	or nas not	Deen starte	ed. This bit is	cleared at	the start of	
	1: The current		sion is com	nlete					

18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

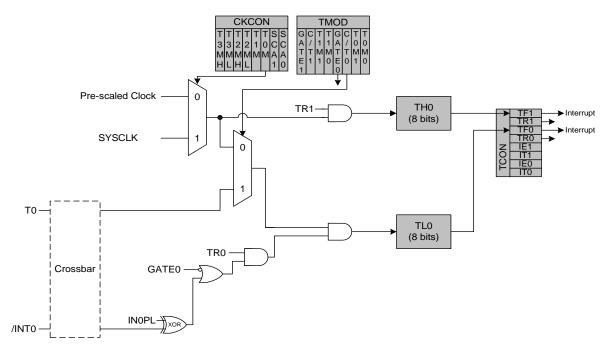


Figure 18.3. T0 Mode 3 Block Diagram

18.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 18.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

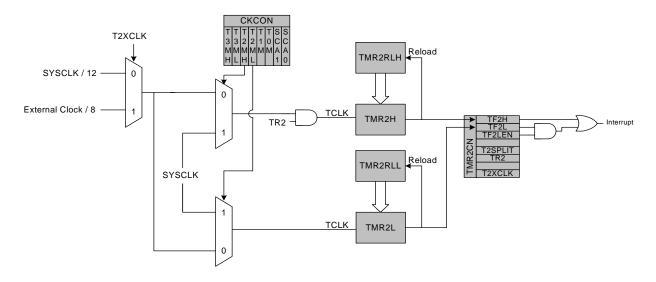


Figure 18.5. Timer 2 8-Bit Mode Block Diagram

19. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "13.1. Priority Cross-bar Decoder" on page 122 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of three modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "19.2. Capture/Compare Modules" on page 197). The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 19.1.

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section "19.3. Watchdog Timer Mode" on page 203 for details.

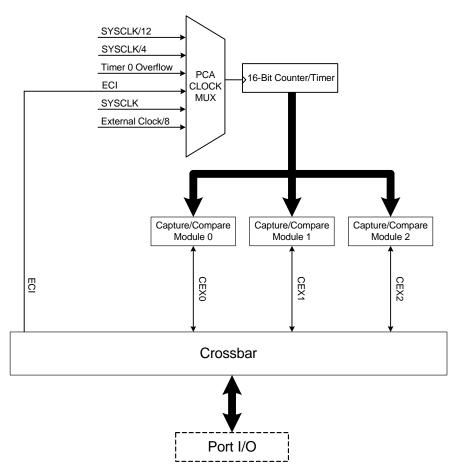


Figure 19.1. PCA Block Diagram

19.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

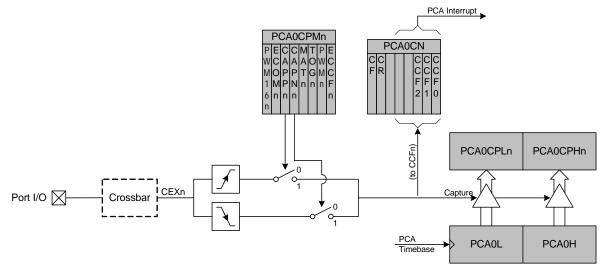
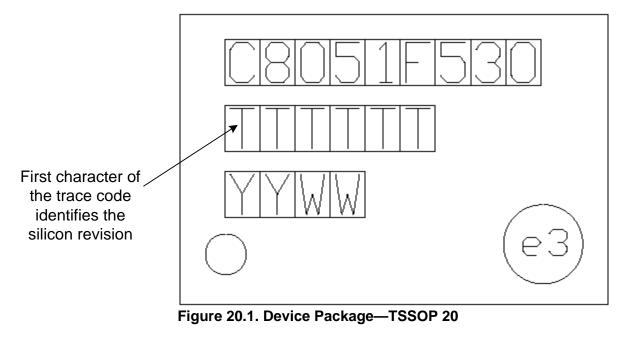


Figure 19.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.


20. Device Specific Behavior

This chapter contains behavioral differences between the silicon revisions of C8051F52x/52xA/F53x/53xA devices.

These differences do not affect the functionality or performance of most systems and are described below.

20.1. Device Identification

The Part Number Identifier on the top side of the device package can be used for decoding device information. The first character of the trace code identifies the silicon revision. On C8051F52x-C/53x-C devices, the trace code (second line on the TSSOP-20 and DFN-10 packages; third line on the QFN-20 package) will begin with the letter "C". The "A" suffix at the end of the part number such as "C8051F530A" is only present on Revision B devices. All other revisions do not include this suffix. Figures 20.1, 20.2, and 20.3 show how to find the part number on the top side of the device package.

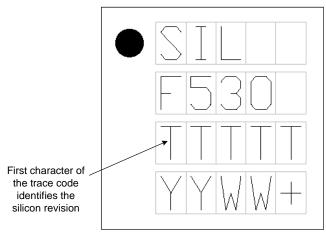


Figure 20.2. Device Package—QFN 20

- Replaced minimum VDD value for Flash write/erase operations in Table 2.9 on page 33 with references to the V_{RST-HIGH} theshold specified in Table 2.8 on page 32.
- Removed Output Low Voltage values for condition 'V_{REGIN} = 1.8 V' from Table 2.10, "Port I/O DC Electrical Characteristics," on page 33.
- Corrected minor typo ("IFCN = 111b") in Table 2.11, "Internal Oscillator Electrical Characteristics," on page 34.
- Removed the typical value and added the maximum value for the 'Wake-up Time From Suspend' specification with the 'ZTCEN = 0' condition in Table 2.11, "Internal Oscillator Electrical Characteristics," on page 34.
- Added Internal Oscillator Supply current values at specific temperatures for conditions 'ZTCEN = 1' and 'ZTCEN = 0' in Table 2.11, "Internal Oscillator Electrical Characteristics," on page 34. Also updated the table name to clarify that the specifications apply to the internal oscillator.
- Updated Section "1.1. Ordering Information" on page 14 and Table 1.1 with new C8051F52x-C/F53x-C part numbers.
- Updated Table 1.2, "Product Selection Guide (Not Recommended for New Designs)," on page 15 to include C8051F52xA/F53xA part numbers.
- Updated Figure 1.1, Figure 1.2, Figure 1.3, and Figure 1.4 titles to clarify applicable silicon revisions.
- Added figure references to pinout diagrams (Figure 3.1, Figure 3.4, and Figure 3.7) and updated labels to clarify applicable part numbers.
- Updated Table 3.1, Table 3.4, and Table 3.7 to indicate pinouts applicable to C8051F52x-C/F53x-C devices.
- Added note in Section "6. Voltage Regulator (REG0)" on page 74 to indicate the need for bypass capacitors for voltage regulator stability.
- Updated Figure 11.1 on Page 106 and text in Section "11.1. Power-On Reset" on page 107 and Section "11.2. Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)" on page 108 to describe the new level-sensitive V_{DD} monitor (VDDMON1).
- Updated SFR Definition 11.1. "VDDMON: VDD Monitor Control" on page 109 to include the VDM1EN bit (bit 4) that controls the new level-sensitive V_{DD} monitor (VDDMON1).
- Added notes in Section 11.1 on page 107, Section 11.2 on page 108, and Section 11.3 on page 110 with references to relevant parts of Section "20. Device Specific Behavior" on page 210.
- Moved some notes related to VDD Monitor (VDDMON0) High Threshold setting (V_{RST-HIGH}) from Section 11.2 on page 108 to Section 20.5 on page 212 in Section "20. Device Specific Behavior".
- Added Section "11.2.1. VDD Monitor Thresholds and Minimum VDD" on page 108 to describe the recommendations for minimum V_{DD} as it relates to the V_{DD} monitor thresholds.
- Clarified text in Section "11.7. Flash Error Reset" on page 110.
- Clarified text in items 2, 3 and 4 in Section "12.2.1. V_{DD} Maintenance and the V_{DD} monitor" on page 115 to reference appropriate specification tables and specify "VDDMON0".

