

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f533a-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.1. C8051F53xA/F53x-C Block Diagram	. 16
Figure 1.2. C8051F52xA/F52x-C Block Diagram	. 16
Figure 1.3. C8051F53x Block Diagram (Silicon Revision A)	. 17
Figure 1.4. C8051F52x Block Diagram (Silicon Revision A)	. 17
Figure 1.5. Development/In-System Debug Diagram	
Figure 1.6. Memory Map	
Figure 1.7. 12-Bit ADC Block Diagram	. 22
Figure 1.8. Comparator Block Diagram	
Figure 1.9. Port I/O Functional Block Diagram	
Figure 3.1. DFN-10 Pinout Diagram (Top View)	. 35
Figure 3.2. DFN-10 Package Diagram	
Figure 3.3. DFN-10 Landing Diagram	. 39
Figure 3.4. TSSOP-20 Pinout Diagram (Top View)	. 40
Figure 3.5. TSSOP-20 Package Diagram	
Figure 3.6. TSSOP-20 Landing Diagram	. 44
Figure 3.7. QFN-20 Pinout Diagram (Top View)	. 45
Figure 3.8. QFN-20 Package Diagram*	
Figure 3.9. QFN-20 Landing Diagram*	. 50
Figure 4.1. ADC0 Functional Block Diagram	
Figure 4.2. Typical Temperature Sensor Transfer Function	. 53
Figure 4.3. ADC0 Tracking Modes	
Figure 4.4. 12-Bit ADC Tracking Mode Example	
Figure 4.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4	. 58
Figure 4.6. ADC0 Equivalent Input Circuits	. 60
Figure 4.7. ADC Window Compare Example:	
Right-Justified Single-Ended Data	. 71
Figure 4.8. ADC Window Compare Example:	
Left-Justified Single-Ended Data	
Figure 5.1. Voltage Reference Functional Block Diagram	
Figure 6.1. External Capacitors for Voltage Regulator Input/Output	
Figure 7.1. Comparator Functional Block Diagram	
Figure 7.2. Comparator Hysteresis Plot	. 77
Figure 8.1. CIP-51 Block Diagram	
Figure 9.1. Memory Map	
Figure 11.1. Reset Sources	
Figure 11.2. Power-On and V _{DD} Monitor Reset Timing	
Figure 12.1. Flash Program Memory Map	117
Figure 13.1. Port I/O Functional Block Diagram	
Figure 13.2. Port I/O Cell Block Diagram	121
Figure 13.3. Crossbar Priority Decoder with No Pins Skipped	
(TSSOP 20 and QFN 20)	122
Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped	
(TSSOP 20 and QFN 20)	123

Table 2.7. Comparator Electrical Characteristics

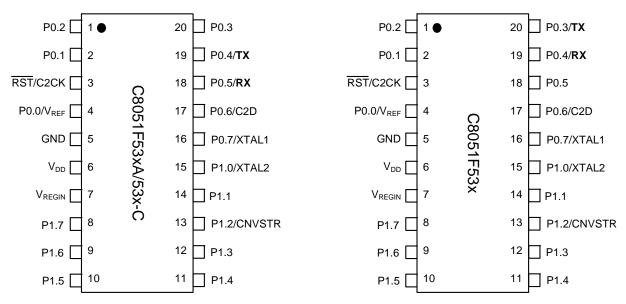
 $V_{\text{REGIN}} = 2.7-5.25$ V, -40 to +125 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ - CP0- = 100 mV		780	—	ns
Mode 0, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV		980	_	ns
Response Time:	CP0+ - CP0- = 100 mV		850	_	ns
Mode 1, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV	—	1120	—	ns
Response Time:	CP0+ - CP0- = 100 mV	—	870	—	ns
Mode 2, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV		1310	—	ns
Response Time:	CP0+ - CP0- = 100 mV		1980	—	ns
Mode 3, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV		4770	—	ns
Common-Mode Rejection Ratio			3	9	mV/V
Positive Hysteresis 1	CP0HYP1-0 = 00		0.7	2	mV
Positive Hysteresis 2	CP0HYP1-0 = 01	2	5	10	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	5	10	20	mV
Positive Hysteresis 4	CP0HYP1-0 = 11	13	20	40	mV
Negative Hysteresis 1	CP0HYN1-0 = 00		0.7	2	mV
Negative Hysteresis 2	CP0HYN1-0 = 01	2	5	10	mV
Negative Hysteresis 3	CP0HYN1-0 = 10	5	10	20	mV
Negative Hysteresis 4	CP0HYN1-0 = 11	13	20	40	mV
Inverting or Non-Inverting Input Voltage Range ²		-0.25		V _{DD} + 0.25	V
Input Capacitance ²		—	4	—	pF
Input Bias Current			0.5	—	nA
Input Offset Voltage		-15	—	15	mV
Input Impedance			1.5	_	kΩ
Power Supply					
Power Supply Rejection ²		_	0.2	4	mV/V
Power-up Time		— —	2.3	—	μs
	Mode 0	— —	6	30	μA
Supply Current at DC	Mode 1		3	15	μA
Supply Current at DC	Mode 2	— —	2	7.5	μA
	Mode 3		0.3	3.8	μA

1. Vcm is the common-mode voltage on CP0+ and CP0-.

2. Guaranteed by design and/or characterization.


Table 2.8. Reset Electrical Characteristics

-40 to +125 °C unless otherwise specified.

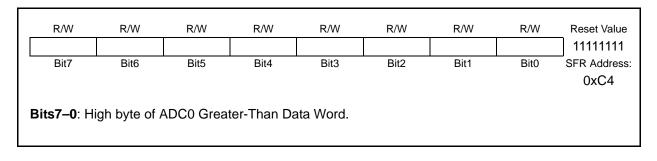
Parameter	Conditions	Min	Тур	Мах	Units
RST Output Low Voltage	I _{OL} = 8.5 mA, V _{DD} = 2.1 V	_	_	0.8	V
RST Input High Voltage		0.7 x V _{REGIN}			V
RST Input Low Voltage				0.3 x V _{REGIN}	V
RST Input Pullup Impedance	$V_{\text{REGIN}} = 1.8 \text{ V}$ $V_{\text{REGIN}} = 2.7 \text{ V}$ $V_{\text{REGIN}} = 3.3 \text{ V}$ $V_{\text{REGIN}} = 5 \text{ V}$		330 160 130 80		kΩ kΩ kΩ kΩ
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	100	350	650	μs
Reset Time Delay (T _{PORDelay}) ¹	Delay between release of any reset source and code execution at loca- tion 0x0000			350	μs
Minimum RST Low Time to Generate a System Reset		10	_	_	μs
V _{DD} Monitor (VDDMON0)				•	
Low Threshold (V _{RST-LOW}) ^{1,2,3}	C8051F52x/53x C8051F52xA/53xA C8051F52x-C/53x-C	1.8 1.65 1.65	1.9 1.75 1.75	2.0 1.8 1.8	V V V
High Threshold (V _{RST-HIGH}) ³	C8051F52x/53x C8051F52xA/53xA C8051F52x-C/53x-C	2.1 2.25 2.25	2.2 2.3 2.3	2.3 2.4 2.45	V V V
Turn-on Time		_	83		μs
Supply Current	V _{DD} = 2.1 V	_	1	2	μA
Level-Sensitive V _{DD} Monitor (VDDMC	DN1) ¹			•	
Threshold (V _{RST1}) ^{1,2,3}	C8051F52x-C/53x-C	1.6	1.75	1.9	V
Supply Current	C8051F52x-C/53x-C		3	6	μA
Notes: 1. Refer to Section "20. Device Specific	Behavior" on page 210.				

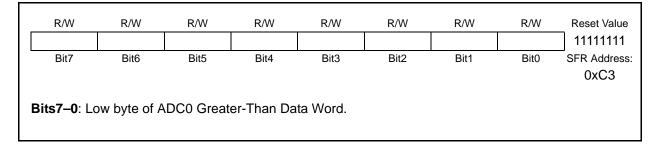
- Refer to Section "20. Device Specific Behavior" on page 210.
 The POR threshold (V_{RST}) is V_{RST-LOW} or V_{RST1}, whichever is higher.
 The V_{RST} threshold for power fail / brownout is the higher of VDDMON0 and VDDMON1 thresholds, if both are enabled.

Table 3.4. Pin Definitions for the C8051F53x and C805153xA	(TSSOP 20)
	(10001 20)

Name	Pin Numbers		Туре	Description
	'F53xA 'F53x-C			
P0.2	1	1	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.
P0.1	2	2	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.
RST/ C2CK	3	3	D I/O D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least the minimum RST low time to generate a system reset, as defined in Table 2.8 on page 32. A 1 k Ω pullup to V_{REGIN} is recommended. See Reset Sources Section for a com- plete description.
				Clock signal for the C2 Debug Interface.
P0.0/	4	4	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.
V_{REF}			A O or D In	External V _{REF} Input. See V _{REF} Section.
GND	5	5		Ground.
V _{DD}	6	6		Core Supply Voltage.
	e refer to S	ection "	20. Device	Specific Behavior" on page 210.

Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20)


Name	Pin Nun	nbers	Туре	Description
	ʻF53xA ʻF53x-C	'F53x		
RST/ C2CK	1	1	D I/O D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor An external source can initiate a system reset by driving this pin low for at least the minimum RST low time to generate a system reset, as defined in Table 2.8 on page 32. A 1 k Ω pullup to V_{REGIN} is recommended. See Reset Sources Section for a com plete description.
				Clock signal for the C2 Debug Interface.
P0.0/	2	2	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.
V_{REF}			A O or D In	External V _{REF} Input. See V _{REF} Section.
GND	3	3		Ground.
V _{DD}	4	4		Core Supply Voltage.
V _{REGIN}	5	5		On-Chip Voltage Regulator Input.
P1.7	6	6	D I/O or A In	Port 1.7. See Port I/O Section for a complete description.
P1.6	7	7	D I/O or A In	Port 1.6. See Port I/O Section for a complete description.
P1.5	8	8	D I/O or A In	Port 1.5. See Port I/O Section for a complete description.
P1.4	9	9	D I/O or A In	Port 1.4. See Port I/O Section for a complete description.
P1.3	10	10	D I/O or A In	Port 1.3. See Port I/O Section for a complete description.
P1.2/	11	11	D I/O or A In	Port 1.2. See Port I/O Section for a complete description.
CNVSTR			D In	External Converter start input for the ADC0, see Section "4. 12- Bit ADC (ADC0)" on page 52 for a complete description.
P1.1	12	12	D I/O or A In	Port 1.1. See Port I/O Section for a complete description.


4.5. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 4.10. ADC0GTH: ADC0 Greater-Than Data High Byte

SFR Definition 4.11. ADC0GTL: ADC0 Greater-Than Data Low Byte

10.4. Interrupt Register Descriptions

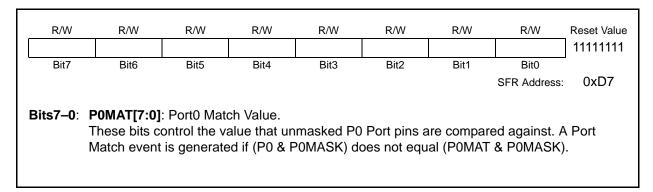
The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 10.1. IE: Interrupt Enable

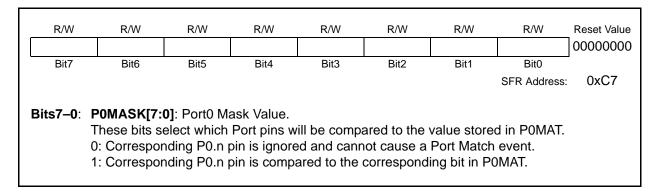
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
								Addressable
							SFR Addres	s: 0xA8
Bit7:	EA: Global I	nterrunt En	able					
Biti .	This bit glob			ll interrupts	. It override:	s the individ	dual interru	pt mask set-
	tings.							
	0: Disable al	l interrupt s	ources.					
	1: Enable ea		•			•		
Bit6:	ESPI0: Enat		•	· ·	<i>,</i> .			
	This bit sets		•	10 interrupts	S.			
	0: Disable al				_			
D:45	1: Enable int			ated by SPI	J.			
Bit5:	ET2: Enable		•	or 2 intorru	nt			
	This bit sets 0: Disable Ti				pı.			
	1: Enable int			ated by the	TE2L or TE	2H flags		
Bit4:	ES0: Enable		•			Li i nago.		
2	This bit sets			RT0 interru	pt.			
	0: Disable U		•		r ·			
	1: Enable UA	ART0 interr	upt.					
Bit3:	ET1: Enable	Timer 1 Int	errupt.					
	This bit sets		•	ner 1 interru	pt.			
	0: Disable al							
-	1: Enable int			ated by the	TF1 flag.			
Bit2:	EX1: Enable		•	1				
	This bit sets			ernal interri	JPt 1.			
	0: Disable ex 1: Enable ex		•	te				
Bit1:	ETO: Enable			ιο.				
Ditt.	This bit sets		•	ner 0 interru	nt			
	0: Disable al		•		pu			
	1: Enable int		•	ated by the	TF0 flag.			
Bit0:	EX0: Enable				U			
	This bit sets	the maskin	g of the ext	ernal interro	upt 0.			
	0: Disable ex		•					
	1: Enable ex	tern interru	pt 0 reques	ts.				

SFR Definition 10.4. EIP1: Extended Interrupt Priority 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PMAT	PREG0	PLIN	PCPR	PCPF	PPAC0	PREG0	PWADC0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address:	0xF6
Bit7:	PMAT. Port M							
	This bit sets				rupt.			
	0: Port Match							
Bit6:	1: Port Match		• •					
5110	PREG0: Volt	0 0						
	This bit sets 0: Voltage Re			• •	•			
	1: Voltage Re	•	•	•				
Bit5:	PLIN: LIN Int	•	•	• •	ty level.			
Bito.	This bit sets	•						
	0: LIN interru							
	1: LIN interru							
Bit4:	PCPR: Com				ritv Control.			
	This bit sets							
	0: Comparate							
	1: Comparate	or interrupt	set to high	priority leve	el.			
Bit3:	PCPF: Comp	parator falli	ng Edge Int	errupt Prior	ity Control.			
	This bit sets	the priority	of the Fallin	ng Edge Co	mparator in	terrupt.		
	0: Comparate							
	1: Comparate							
Bit2:	PPAC0: Prog			• • •	Interrupt P	riority Cont	rol.	
	This bit sets							
	0: PCA0 inte							
	1: PCA0 inte							
Bit1:	PREGO: ADO							
	This bit sets				•	•		
	0: ADC0 Cor							
D:40.	1: ADC0 Cor			•	• • •			
Bit0:	PWADC0: A							
	This bit sets							
	0: ADC0 Win			•				
	1: ADC0 Win	noom comp	ansoninter	rupt set to	ingri priority	ievei.		

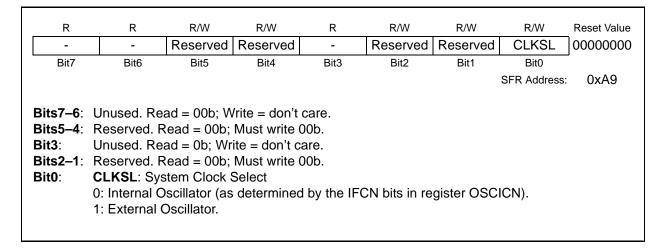


SFR Definition 11.2. RSTSRC: Reset Source


R/W	R	R/W	R/W	R	R/W	R/W	R Reset Value
	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							SFR Address: 0xEF
Note: So	oftware should	avoid read	modify wri	te instructio	ns when wri	ting values	to RSTSRC.
Bit7:	UNUSED. R	ead = 1 Wi	rite = don't	care			
Bit6:	FERROR: F			ouro.			
	0: Source of			lash read/w	rite/erase er	ror.	
	1: Source of	last reset w	as a Flash	read/write/	erase error.		
Bit5:	CORSEF: Co	•			-		
	0: Read: So			•	ator0.		
		mparator0 i			•		
	1: Read: So			comparator ource (activ			
Bit4:	SWRSF: Sol	•		· ·	e-10w).		
DRT.	0: Read: So			•	o the SWRS	F bit.	
	Write: No						
	1: Read: So	urce of last	reset was	a write to th	e SWRSF bi	it.	
		rces a syste					
Bit3:	WDTRSF: W						
	0: Source of				•		
Bit2:	1: Source of MCDRSF: M						
DILZ.	0: Read: So	-		-	a Clock Det	ector time	tuc
		ssing Clock			9 010011 001		541.
	1: Read: So	-			lock Detecto	or timeout.	
	Write: Mis	ssing Clock	Detector e	nabled; trig	gers a reset	if a missin	g clock condition is
	detected.		_				
Bit1:	PORSF: Pov				\\/		
							es/disables the V _{DD}
					-		efore the V _{DD} moni-
	Definition 11		mzeu ma	y cause a s	ystem rese	L See regi	ster VDDMON (SFR
	0: Read: Las	,	not a pow	er-on or V _D	monitor re	set.	
) is not a re	-		
						all other re	eset flags indetermi-
	nate.		•		,		č
	Write: V _D	D monitor (/DDMON0) is a reset :	source.		
Bit0:	PINRSF: HV	V Pin Reset	Flag.				
	0: Source of						
	1: Source of	last reset w	as RST pi	n.			

SFR Definition 13.7. P0MAT: Port0 Match

SFR Definition 13.8. P0MASK: Port0 Mask



14.3. System Clock Selection

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to 1 by hardware when the external oscillator is settled. **To avoid reading a false XTLVLD in crystal mode, the software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.** RC and C modes typically require no startup time.

The CLKSL bit in register CLKSEL selects which oscillator source is used as the system clock. CLKSL must be set to 1 for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when another oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator and external oscillator, as long as the selected clock source is enabled and has settled.

SFR Definition 14.5. CLKSEL: Clock Select

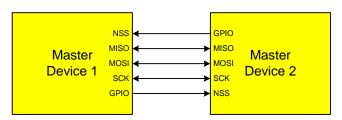


Figure 16.2. Multiple-Master Mode Connection Diagram

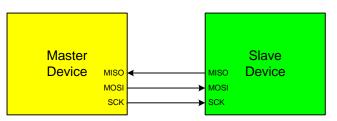
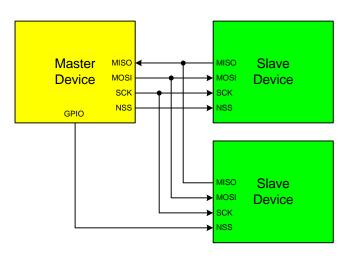



Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram

16.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted into the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

SFR Definition 16.3. SPI0CKR: SPI0 Clock Rate

544	D 444	5 444	5 444	544	544	D 444	D 444	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Address	0v A 2
							SFR Address	S. UXAZ
Bits7–0: S	SCR7-SCR	0: SPI0 Clo	ck Rate.					
	These bits d			of the SCK	Coutput whe	en the SPI0	module is	configured
	or master m							•
	clock, and is							
a	and SPIOCK	R is the 8-b	oit value hel	d in the SPI	0CKR regis	ster.		
	£	S	YSCLK					
	JSCK	$-\frac{1}{2 \times (SH)}$	$\frac{YSCLK}{PI0CKR +}$	1)				
		× ×		,				
f	or 0 <= SPI)CKR <= 2	55					
Example: I	f SYSCLK =	2 MHz and	d SPI0CKR	= 0x04,				
	C	200000	00					
	f_{SCK} =	$=\frac{200000}{2\times(4+)}$	1)					
			-)					
	$f_{SCV} =$	200 <i>kHz</i>						
	JOLV							

Parameter	Description	Min	Max	Units	
Master Mode	Timing* (See Figure 16.6 and Figure 16.7)		1	1	
т _{мскн}	SCK High Time	1 x T _{SYSCLK}	—	ns	
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	—	ns	
T _{MIS}	MISO Valid to SCK Sample Edge	20	—	ns	
т _{мін}	SCK Sample Edge to MISO Change	0	—	ns	
Slave Mode T	iming* (See Figure 16.8 and Figure 16.9)	·			
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	—	ns	
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}	—	ns	
T _{SEZ}	NSS Falling to MISO Valid	—	4 x T _{SYSCLK}	ns	
T _{SDZ}	NSS Rising to MISO High-Z	—	4 x T _{SYSCLK}	ns	
тскн	SCK High Time	5 x T _{SYSCLK}	—	ns	
T _{CKL}	SCK Low Time	5 x T _{SYSCLK}	—	ns	
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	—	ns	
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}	—	ns	
Т _{SOH}	SCK Shift Edge to MISO Change	-	4 x T _{SYSCLK}	ns	
The max Transmi	is equal to one period of the device system clock (SYS imum possible frequency of the SPI can be calculated ssion: SYSCLK/2 on: SYSCLK/10				

Table 16.1. SPI Slave Timing Parameters

SFR Definition 17.3. LINCF Control Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
LINEN	I MODE	ABAUD						0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	•			
							SFR Address:	0x95			
Bit7:	LINEN: LIN		nable bit								
	0: LIN0 is disabled. 1: LIN0 is enabled.										
-											
Bit6:	MODE: LIN Mode Selection										
	0: LIN0 operates in Slave mode.										
	1: LIN0 operates in Master mode.										
Bit5:	ABAUD: LIN Mode Automatic Baud Rate Selection (slave mode only).										
	0: Manual baud rate selection is enabled.										
	1: Automatic baud rate selection is enabled.										

SFR Definition 17.14. LIN0ERR: LIN0 ERROR Register

R	R	R	R	R	R	R	R	Reset Value			
ĸ	ĸ	ĸ	SYNCH	PRTY	TOUT	СНК	BITERR				
						-		00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	Address: 0x0A (indi										
Dito7 5	UNUSED. R	aad - 000k	$\sim M/rito - dc$	n't coro							
Bit4:	•••==	000			la anlu)						
DIL4.	SYNCH: Synchronization Error Bit (slave mode only). 0: No error with the SYNCH FIELD has been detected.										
	1: Edges of the SYNCH FIELD are outside of the maximum tolerance.										
Bit3:	PRTY : Parity Error Bit (slave mode only).										
Dito.	0: No parity error has been detected.										
	1: A parity error has been detected.										
Bit2:	TOUT: Time			•							
_	0: A timeout error has not been detected.										
	1: A timeout error has been detected. This error is detected whenever one of the fol conditions is met:										
	•The master is expecting data from a slave and the slave does not respond. •The slave is expecting data but no data is transmitted on the bus.										
	•A frame is not finished within the maximum frame length.										
	 The application does not set the DTACK bit (LIN0CTRL.4) or STOP bit (LIN0CTRL.7) us end of the reception of the first byte after the identifier. 										
Bit1:	CHK: Check	•		-							
	0: Checksum error has not been detected.										
	1: Checksun	n error has	been detect	ted.							
Bit0:	BITERR: Bit	Transmiss	ion Error Bit	t.							
	0: No error in	n transmiss	sion has bee	n detected							
	1: The bit va	lue monito	red during tr	ansmissior	is different	than the bit	t value sent.				
			-								

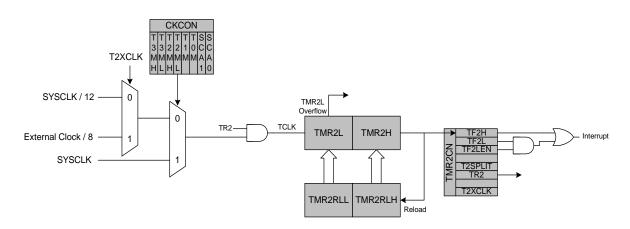
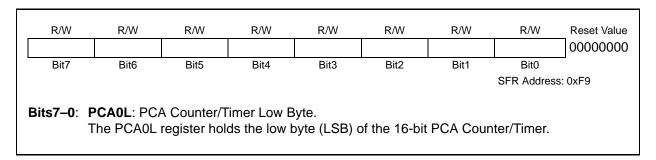
18.2. Timer 2

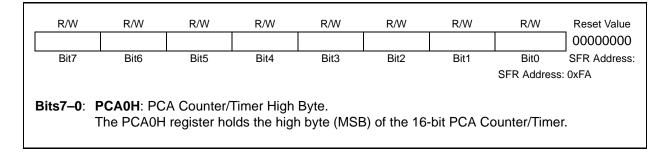
Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in Capture Mode to measure the RTC0 clock frequency or the External Oscillator clock frequency.

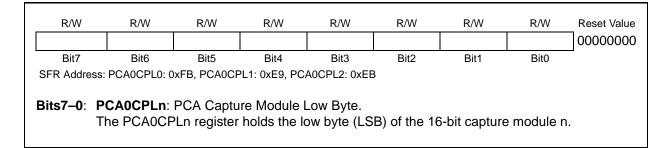
Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external oscillator source divided by 8 is synchronized with the system clock.

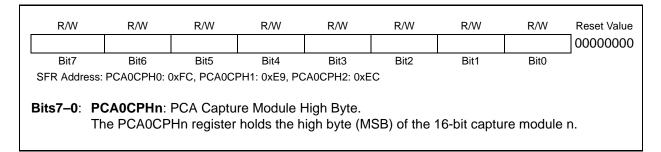
18.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 18.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.


Figure 18.4. Timer 2 16-Bit Mode Block Diagram


SFR Definition 19.4. PCA0L: PCA Counter/Timer Low Byte


SFR Definition 19.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 19.6. PCA0CPLn: PCA Capture Module Low Byte

SFR Definition 19.7. PCA0CPHn: PCA Capture Module High Byte

20.8. UART Pins

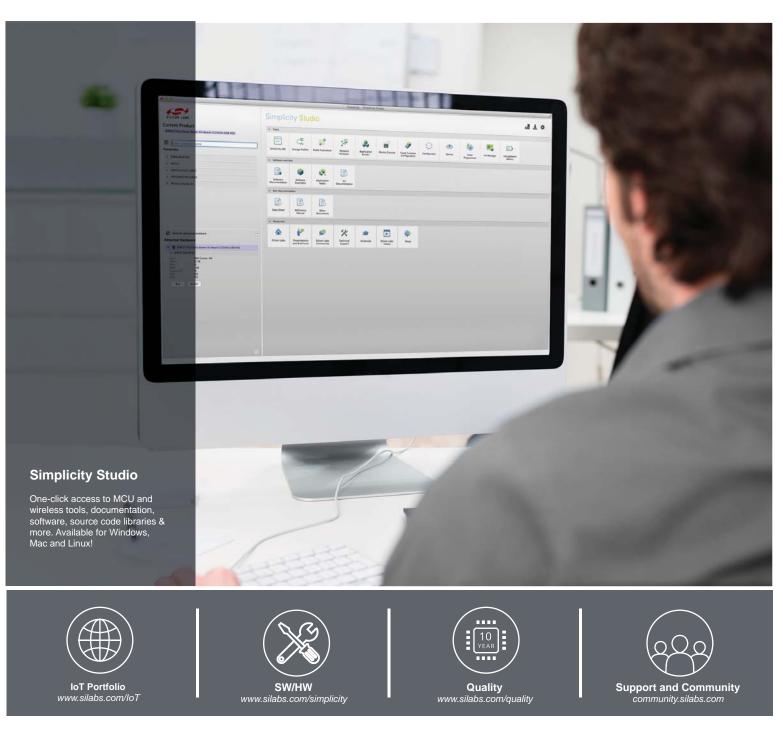
The location of the pins used by the serial UART interface differs between the silicon revisions of C8051F52x/52xA/F53x/F53xA devices.

On Revision A devices, the TX and RX pins used by the UART interface are mapped to the P0.3 (TX) and P0.4 (RX) pins. Beginning with Revision B devices, the TX and RX pins used by the UART interface are mapped to the P0.4 (TX) and P0.5 (RX) pins.

Important Note: On Revision B and newer devices, the UART pins must be skipped if the UART is enabled in order for peripherals to appear on port pins beyond the UART on the crossbar. For example, with the SPI and UART enabled on the crossbar with the SPI on P1.0-P1.3, the UART pins must be skipped using P0SKIP for the SPI pins to appear correctly.

20.9. LIN

The LIN peripheral behavior differs between the silicon revisions of C8051F52x/52xA/F53x/F53xA devices. The differences are:


20.9.1. Stop Bit Check

On Revision A devices, the stop bits of the fields in the LIN frame are not checked and no error is generated if the stop bits could not be sent or received correctly. On Revision B and Revision C devices, the stop bits are checked, and an error will be generated if the stop bit was not sent or received correctly.

20.9.2. Synch Break and Synch Field Length Check

On Revision A devices, the check of sync field length versus sync break length is incorrect. On Revision B and Revision C devices, the sync break length must be larger than 10 bit times (of the measured bit time) to enable the synchronization.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com