

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f533a-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4. Operating Modes

The C8051F52x/F52xA/F53x/F53xA devices have four operating modes: Active (Normal), Idle, Suspend, and Stop. Active mode occurs during normal operation when the oscillator and peripherals are active. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Suspend and Stop mode, the CPU is halted, all interrupts and timers are inactive, and the internal oscillator is stopped. The various operating modes are described in Table 1.3 below:

Table 1.3. C	perating	Modes	Summary
--------------	----------	-------	---------

		Properties	Power Consumption	How Entered?	How Exited?
Active		SYSCLK active	Full	_	—
	-	CPU active (accessing Flash)			
	•	Peripherals active or inactive depending on user settings			
Idle		SYSCLK active	Less than Full	IDLE	Any enabled interrupt
	•	CPU inactive (not accessing Flash)		(PCON.0)	or device reset
	•	Peripherals active or inactive depending on user settings			
Suspend		Internal oscillator inactive	Low	SUSPEND	Port 0 event match
		If SYSCLK is derived from the		(OSCICN.5)	Port 1 event match
		internal oscillator, the peripherals			Comparator 0 enabled
		and the CIP-51 will be stopped			and output is logic 0
Stop	•	SYSCLK inactive	Very low	STOP	Device Reset
	-	CPU inactive (not accessing Flash)		(PCON.1)	
		Digital peripherals inactive; analog peripherals active or inactive depending on user settings			

See Section "8.3. Power Management Modes" on page 89 for Idle and Stop mode details. See Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information on Suspend mode.

Table 2.8. Reset Electrical Characteristics

-40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I _{OL} = 8.5 mA, V _{DD} = 2.1 V	_	_	0.8	V
RST Input High Voltage		0.7 x V _{REGIN}			V
RST Input Low Voltage		_	_	0.3 x V _{REGIN}	V
RST Input Pullup Impedance	$V_{\text{REGIN}} = 1.8 \text{ V}$ $V_{\text{REGIN}} = 2.7 \text{ V}$ $V_{\text{REGIN}} = 3.3 \text{ V}$ $V_{\text{REGIN}} = 5 \text{ V}$	 	330 160 130 80	 	kΩ kΩ kΩ kΩ
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	100	350	650	μs
Reset Time Delay (T _{PORDelay}) ¹	Delay between release of any reset source and code execution at loca- tion 0x0000	_	_	350	μs
Minimum RST Low Time to Generate a System Reset		10	_		μs
V _{DD} Monitor (VDDMON0)					
Low Threshold (V _{RST-LOW}) ^{1,2,3}	C8051F52x/53x C8051F52xA/53xA C8051F52x-C/53x-C	1.8 1.65 1.65	1.9 1.75 1.75	2.0 1.8 1.8	V V V
High Threshold (V _{RST-HIGH}) ³	C8051F52x/53x C8051F52xA/53xA C8051F52x-C/53x-C	2.1 2.25 2.25	2.2 2.3 2.3	2.3 2.4 2.45	V V V
Turn-on Time			83	_	μs
Supply Current	V _{DD} = 2.1 V		1	2	μA
Level-Sensitive V _{DD} Monitor (VDDMC	N1) ¹				
Threshold (V _{RST1}) ^{1,2,3}	C8051F52x-C/53x-C	1.6	1.75	1.9	V
Supply Current	C8051F52x-C/53x-C		3	6	μA
Notes: 1 Poter to Section "20 Device Specific	Bobavier" on page 210				

- Refer to Section "20. Device Specific Behavior" on page 210.
 The POR threshold (V_{RST}) is V_{RST-LOW} or V_{RST1}, whichever is higher.
 The V_{RST} threshold for power fail / brownout is the higher of VDDMON0 and VDDMON1 thresholds, if both are enabled.

Name	Pin Nur	nbers	Туре	Description				
	'F53xA 'F53x-C	'F53x						
P1.0/	13	13	D I/O or A In	Port 1.0. See Port I/O Section for a complete description.				
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. Section "14. Oscillators" on page 135.				
P0.7/	14	14	D I/O or	Port 0.7. See Port I/O Section for a complete description.				
XTAL1			A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Oscillator Section.				
P0.6/	15	15	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.				
C2D			D I/O	Bi-directional data signal for the C2 Debug Interface.				
P0.5/RX*	16	—	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.				
P0.5	—	16	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.				
P0.4/TX*	17		D I/O or A In	Port 0.4. See Port I/O Section for a complete description.				
P0.4/RX*	—	17	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.				
P0.3	18		D I/O or A In	Port 0.3. See Port I/O Section for a complete description.				
P0.3/TX*	—	18	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.				
P0.2	19	19	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.				
P0.1	20	20	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.				
Note: Please	refer to Se	ection "2	20. Device S	Specific Behavior" on page 210.				

Table 3.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20) (Continued)

Figure 3.9. QFN-20 Landing Diagram*

Note: The Landing Dimensions are given in Table 3.9, "QFN-20 Landing Diagram Dimensions," on page 51.

4.3.6. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion.

Figure 4.6 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 4.1. When measuring the Temperature Sensor output, use the settling time specified in Table 2.3 on page 28. See Table 2.3 on page 28 for ADC0 minimum settling time requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 4.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (12).

Figure 4.6. ADC0 Equivalent Input Circuits

4.4. Selectable Gain

ADC0 on the C8051F52x/52xA/53x/53xA family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.

For example, three analog sources to be measured have full-scale outputs of 5.0 V, 4.0 V, and 3.0 V, respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting signal one (5.0 V full-scale), a gain value of 0.44 (5 V full scale * 0.44 = 2.2 V full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V. Likewise, a gain value of 0.55 (4 V full scale * 0.55 = 2.2 V full scale) for the second source and 0.73 (3 V full scale * 0.73 = 2.2 V full scale) for the third source provide full-scale ADCO measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.

SFR Definition 4.9. ADC0TK: ADC0 Tracking Mode Select

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	ADO	PWR		AD	MTC	AD	0TK	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bi	t addressable)	0xBA
Bits7–4:	ADOPWR3- For BURSTE ADC0 power For BURSTE ADC0 remai For BURSTE ADC0 enters after each co equation: ADOPWR	0 : ADC0 But EN = 0: r state contri- EN = 1 and EN = 1 and	urst Power-l rolled by AE AD0EN = 1 and does n AD0EN = 0 bw power sta signal. The $\frac{4p}{s} - 1$ or	Up Time. DOEN. ; iot enter the : ate as spec Power Up ti <i>Tstartup</i>	e very low positied in Table ified in Table ime is progra p = (AD0)	ower state. e 2.3 on pa ammed acc PWR + 1)2	ge 28 and i ording to th 200 <i>ns</i>	s enabled e following
Bits3–2: Bits1–0:	AD0TM1–0 : 00: Reserved 01: ADC0 is 10: ADC0 is 11: ADC0 is AD0TK1–0 : Post-Trackin 00: Post-Tra 01: Post-Tra 10: Post-Tra 11: Post-Tra	ADC0 Trac d. configured configured ADC0 Post g time is co cking time i cking time i cking time i cking time i	to Post-Tra to Pre-Trac to Dual-Tra t-Track Time ontrolled by is equal to 2 is equal to 4 is equal to 8 s equal to 1	Select Bits. cking Mode. cking Mode. cking Mode AD0TK as SAR clock SAR clock SAR clock SAR clock	e. (default). follows: cycles + 2 cycles + 2 cycles + 2 cycles + 2 k cycles + 2	FCLK cycle FCLK cycle FCLK cycle 2 FCLK cycl	95. 95. 95. Jes.	

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

NW NU NU<	D/\//	P/M	DAM			Þ۸۸/		D ///	Posot Volue
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									01110111
End End End End End Other Other <td>Bit7</td> <td>Bit6</td> <td>Bit5</td> <td>Rit4</td> <td>Bit3</td> <td>Bit2</td> <td>Bit1</td> <td>Bit0</td> <td>SFR Address</td>	Bit7	Bit6	Bit5	Rit4	Bit3	Bit2	Bit1	Bit0	SFR Address
One of the select which Port pin is used as the Comparator0 negative input. Eits7-4: CMXON3-CMXON2 CMXON1 CMXON0 Negative Input CMXON3 CMXON1 CMXON0 Negative Input OME OME CMXON3 CMXON1 CMXON0 Negative Input CMXON3 CMXON1 CMXON0 Negative Input OME OME OME OME CMXOP3 CMXOP1 CMXOP0 P1.5* OME OME SOME SOME CMXOP3 CMXOP0 COMPATED CMXOP3 CMXOP1 CMXOP0 Positive Input OME SIMS 1-0: CMXOP2 CMXOP1 CMXOP0 Positive Input CMXOP3 CMXOP1 CMXOP0 Positive Input OME CMXOP3 CMXOP1 CMXOP0 Positive Input OME CMXOP3 CMXOP1 CMXOP0 Positive Input OME DME OME DME CMXOP3 CMXOP1 CMXOP0 Positive Input 	Diti	Dito	Dito	BIT	Dito	DILL	Ditt	Bito	0x9F
Bits7-4: CMXON3-CMXON0: Comparator0 Negative Input MUX Select. These bits select which Port pin is used as the Comparator0 negative input CMXON3 CMXON2 CMXON1 CMXON0 Negative Input 0 0 0 P0.1 0 0 0 P0.1 0 0 0 P0.3 0 0 1 P0.3 0 0 1 P0.5 0 0 1 P0.7* 0 1 0 P1.1* 0 1 0 P1.5* 0 1 1 P1.7* 0 1 1 P1.5* 0 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMXOP3-CMXOP0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. Image: CMXOP2 CMXOP1 CMXOP0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. Image: CMXOP2 CMXOP1 CMXOP0 Positive Input P0.0 0 0 1 0 P0.0 0 0 1 0									0,01
These bits select which Port pin is used as the Comparator0 negative input. $\overline{(MX0N3)}$ $\overline{(MX0N1)}$ $\overline{(MX0N0)}$ Negative Input 0 0 0 1 P0.3 0 0 1 0 P0.5 0 0 1 1 P0.7* 0 1 0 P0.5 0 0 1 1 P0.7* 0 1 0 0 1.1 P0.7* 0 1 0 P1.1* 0 1 1 P1.3* 0 1 1 P1.7* 0 1 1 P1.7* 0 1 1 P1.7* 0 1 1 1 P1.7* 0 1 1 1 P1.7* 0 1 </td <td>Bits7-4:</td> <td>CMX0N3-0</td> <td>CMX0NO: (</td> <td>Comparato</td> <td>r0 Negative</td> <td>Input MUX Se</td> <td>lect.</td> <td></td> <td></td>	Bits7-4:	CMX0N3-0	CMX0NO: (Comparato	r0 Negative	Input MUX Se	lect.		
$\overline{(MX0N3)}$ $\overline{(MX0N2)}$ $\overline{(MX0N1)}$ $\overline{(MX0N0)}$ $\overline{Negative Input}$ 0001P0.30010P0.50011P0.7*0100P1.1*0101P1.3*0111P1.7*0111P1.7*Note: Available only on the C8051F53x/53xA devicesBits1-0:CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select.Bits1-0:CMX0P3-CMX0P2CMX0P1CMX0P0Positive Input0000P0.0001P0.2001P0.4001P0.4010P1.4*011P1.6*		These bits	select whic	ch Port pin	is used as	the Comparato	r0 negative	e input.	
CMXON3 CMXON2 CMXON1 CMXON0 Negative Input 0 0 0 0 P0.1 0 0 0 1 P0.3 0 0 1 0 P0.5 0 0 1 1 P0.7* 0 1 0 P1.1* 0 1 0 P1.5* 0 1 1 P1.5* 0 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. Xinters bits select which Port pin is used as the Comparator0 positive input. CMX0P3 CMX0P2 CMX0P1 CMX0P0 Positive Input 0 0 0 P0.0 P0.0 P0.0 P0.0 P0.0 P0.0 P0.4 P0.2 P0.4 P0.4 P0.4 P0.4 P0.4 P0.4 P0.4 P1.0* P1.4* P1.4* P1.4* P1.4* P1.4* P1.4* <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td></td<>							•	•	
0000P0.10001P0.30010P0.50011P0.7*0100P1.1*0101P1.3*0110P1.5*0111P1.7*0111P1.7*0111P1.7*0111P1.7*0111P1.7*011P0.0000Positive Input0000001P0.0001P0.40011010P1.0*010P1.0*010P1.0*011P1.2*011P1.6*		CMX0N3	CMX0N2	CMX0N1	CMX0N0	Negative Inp	ut		
0001P0.30010P0.50011P0.7*0100P1.1*0101P1.3*0110P1.5*0111P1.7*0111P1.7*0111P1.7*0111P1.7*0111P1.7*011P0.0Positive Input MUX Select.These bits select which Port pin is used as the Comparator0 positive input.		0	0	0	0	P0.1			
0 0 1 0 $P0.5$ 0 0 1 1 $P0.7^*$ 0 1 0 0 $P1.1^*$ 0 1 0 1 $P1.3^*$ 0 1 1 0 $P1.5^*$ 0 1 1 0 $P1.7^*$ Note: Available only on the C8051F53x/53xA devicesBits1-0:CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $\overline{MX0P3}$ CMX0P2CMX0P1CMX0P0 0 0 0 0 0 0 0 $P0.0$ 0 0 1 $P0.4$ 0 0 1 $P0.4$ 0 0 1 $P1.2^*$ 0 1 0 $P1.4^*$ 0 1 1 $P1.6^*$		0	0	0	1	P0.3			
0 0 1 1 $P0.7^*$ 0 1 0 0 $P1.1^*$ 0 1 0 1 $P1.3^*$ 0 1 1 0 $P1.5^*$ 0 1 1 1 $P1.7^*$ lote: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $O \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $		0	0	1	0	P0.5			
0 1 0 0 P1.1* 0 1 0 1 P1.3* 0 1 1 0 P1.5* 0 1 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. 0 0 0 P0.0 0 0 0 P0.0 0 0 1 P0.2 0 0 1 P0.4 0 0 1 P1.0* 0 1 0 P1.4* 0 1 0 P1.4* 0 1 1 P1.6*		0	0	1	1	P0.7*			
0 1 0 1 P1.3* 0 1 1 0 P1.5* 0 1 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. These bits select which Port pin is used as the Comparator0 positive input. $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $\overline{1}$		0	1	0	0	P1.1*			
0 1 1 0 P1.5* 0 1 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $\overline{\mathbf{CMX0P3}}$ $\overline{\mathbf{CMX0P2}}$ $\overline{\mathbf{CMX0P0}}$ $\overline{\mathbf{Positive Input}}$ $\overline{0}$ 0 $\overline{0$ $\overline{\mathbf{$		0	1	0	1	P1.3*			
0 1 1 P1.7* Note: Available only on the C8051F53x/53xA devices Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input. $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$		0	1	1	0	P1.5*			
Note: Available only on the C8051F53x/53xA devicesBits1–0: CMX0P3–CMX0P0: Comparator0 Positive Input MUX Select. These bits select which Port pin is used as the Comparator0 positive input.		0	1	1	1	P1.7*			
CMX0P3CMX0P2CMX0P1CMX0P0Positive Input0000P0.00001P0.20010P0.40011P0.6*0100P1.0*0101P1.2*0110P1.4*0111P1.6*	Bits1–0:	CMX0P3–0 These bits	CMX0P0: C select whic	Comparator	r0 Positive is used as	Input MUX Seletthe Comparato	ect. r0 positive	input.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CMX0P3	CMX0P2	CMX0P1	CMX0P0	Positive Inp	ut		
		0	0	0	0	P0.0			
		0	0	0	1	P0.2			
0 0 1 1 P0.6* 0 1 0 0 P1.0* 0 1 0 1 P1.2* 0 1 1 0 P1.4* 0 1 1 P1.6*		0	0	1	0	P0.4			
0 1 0 0 P1.0* 0 1 0 1 P1.2* 0 1 1 0 P1.4* 0 1 1 P1.6*		0	0	1	1	P0.6*			
0 1 0 1 P1.2* 0 1 1 0 P1.4* 0 1 1 1 P1.6*		0	1	0	0	P1.0*			
0 1 1 0 P1.4* 0 1 1 1 P1.6*		0	1	0	1	P1.2*			
0 1 1 1 P1.6*		0	1	1	0	P1.4*			
		0	1	1	1	P1.6*			
			•		•				

8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/F52xA/F53x/F53xA family has a superset of all the peripherals included with a standard 8051. See Section "1. System Overview" on page 13 for more information about the available peripherals. The CIP-51 includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 8.1 for a block diagram). The CIP-51 core includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput
- 256 Bytes of Internal RAM
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- Integrated Debug Logic
- Program and Data Memory Security

Figure 8.1. CIP-51 Block Diagram

SFR Definition 8.1. SP: Stack Pointer

SFR Definition 8.2. DPL: Data Pointer Low Byte

SFR Definition 8.3. DPH: Data Pointer High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Valu
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
							SFR Address	: 0xD0
Bit7:	CY: Carry	/ Flag.						
	This bit is	set when	the last arithmet	ic operatio	n resulted i	n a carry (a	addition) or a	a borrow
	(subtracti	on). It is cl	eared to 0 by all	other arith	metic opera	ations.	,	
it6:	AC: Auxil	iary Carry	Flag					
	This bit is	set when	the last arithmeti	c operatior	resulted in	a carry int	o (addition)	or a borro
	from (sub	traction) th	ne high order nib	ble. It is cle	eared to 0 b	by all other	arithmetic o	perations
it5:	F0: User	Flag 0.						
	This is a	bit-address	sable, general pu	urpose flag	for use une	der softwar	e control.	
its4–3:	RS1-RS): Register	Bank Select.					
	These bit	s select wi	nich register ban	k is used c	uring regis	ter accesse	es.	
	RS1	RS0	Register Bank	Addr	ess			
	RS1 0	RS0 0	Register Bank	Addr 0x00–0x0	ess 7			
	RS1 0 0	RS0 0 1	Register Bank 0 1	Addr 0x00–0x0 0x08–0x0	ess 7 F			
	RS1 0 0 1	RS0 0 1 0	Register Bank 0 1 2	Addr 0x00–0x0 0x08–0x0 0x10–0x1	ess 7 F 7			
	RS1 0 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
	RS1 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
sit2:	RS1 0 1 1 0 V: Over	RS0 0 1 0 1 flow Flag.	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
lit2:	RS1 0 1 1 OV: Over This bit is	RS0 0 1 0 1 flow Flag.	Register Bank 0 1 2 3 nder the followin	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst	ess 7 F 7 F ances:			
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o	Register Bank 0 1 2 3 nder the followin r SUBB instructio	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes	ess 7 F 7 F F ances: a sign-chai	nge overflo	w.	
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD • A MUL	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o nstruction	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes	ess 7 F 7 F ances: a sign-chai	nge overflo r than 255)	W.	
Sit2:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction istruction o	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-b	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu	ess 7 F 7 F ances: a sign-chai ilt is greate ndition.	nge overflo r than 255)	w.	
Bit2:	RS1 0 1 1 OV : Over This bit is • An ADD • A MUL • A DIV ir The OV b	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o instruction struction c it is cleare	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2:	RS1 0 1 1 0 V: Over This bit is • An ADD • A MUL i • A DIV ir The OV k cases.	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o instruction struction wit is cleare	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate ndition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
iit2: iit1:	RS1 0 1 1 0 V: Over This bit is • An ADD • A MUL • A DIV ir The OV b cases. F1: User This is a	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o instruction struction bit is cleare Flag 1.	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2: Sit1:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir The OV b cases. F1: User This is a DAPITY:	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o instruction struction bit is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 Inder the followin r SUBB instruction results in an over causes a divide-b d to 0 by the AD sable, general pute	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-char It is greate ndition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions e control.	in all oth
3it2: 3it1: 3it1:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir The OV b cases. F1: User This is a PARITY: This bit is	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o instruction struction istruction o it is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD sable, general pugation p. the sum of the exit	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC, urpose flag	ess 7 F 7 F 7 F ances: a sign-chai at sign-chai it is greate adition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions re control.	in all othe

8.3.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system.

8.3.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout period of 100 μ s.

8.3.3. Suspend Mode

The C8051F52x/F52xA/F53x/F53xA devices feature a low-power Suspend mode, which stops the internal oscillator until a wakening event occurs. See Section Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

Note: When entering Suspend mode, firmware must set the ZTCEN bit in REF0CN (SFR Definition 5.1).

13.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 13.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which will be assigned to pins P0.4 and P0.5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Note: 4-Wire SPI Only.

Figure 13.3. Crossbar Priority Decoder with No Pins Skipped (TSSOP 20 and QFN 20)

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P1.0 and/or P0.7 (F53x/F53xA) or P0.2 and/or P0.3 (F52x/F52xA) for the external oscillator, P0.0 for V_{REF}, P1.2 (F53x/F53xA) or P0.5

SFR Definition 14.1. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R	R/W	R/W	R/W	Reset Value			
IOSCEN	1 IOSCEN0	SUSPEND	IFRDY	_	IFCN2	IFCN1	IFCN0	11000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-			
							SFR Address	0xB2			
Bits7–6:	IOSCEN[1:0)]: Internal O	scillator Er	nable Bits.							
	00: Oscillato	r Disabled.									
	01: Reserved.										
	10. Reserve	u. r Enablad in	Normal M	odo and Dir	sobled in Si	ucpond Mo	do				
Bit5 [.]	SUSPEND	Internal Osci	Ilator Susr	end Enable	sableu in S	uspenu mu	ue.				
Bito.	Setting this b	bit to logic 1	places the	internal os	cillator in S	USPEND n	node. The ir	nternal oscil-			
	lator resume	es operation	when one	of the SUSI	PEND mod	e awakenir	ng events og	cur.			
Bit4:	IFRDY: Inter	nal Oscillato	r Frequenc	cy Ready F	lag.		0				
	0: Internal O	scillator is no	ot running	at program	med freque	ency.					
	1: Internal O	scillator is ru	inning at p	rogrammed	I frequency						
Bit3:	UNUSED. R	ead = 0b, W	rite = don't	care.							
Bits2–0:	IFCN2–0: In	ternal Oscilla	ator Freque	ency Contro	ol Bits.						
	000: SYSCL	K derived fro	om Internal	Oscillator	divided by	128 (defau	lt).				
		K derived fro	om Internal	Oscillator	divided by (64. 22					
	010. 51501	K derived fro	m Internal	Oscillator	divided by a	32. 16					
	100: SYSCI	K derived fro	om Internal	Oscillator	divided by	8					
	101: SYSCL	K derived fro	om Internal	l Oscillator	divided by 4	4.					
	110: SYSCL	K derived fro	m Internal	Oscillator	divided by 2	2.					
	111: SYSCL	K derived fro	m Internal	Oscillator of	divided by 1	1.					

15.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 15.6. UART Multi-Processor Mode Interconnect Diagram

The shift register contents are locked after the slave detects the first edge of SCK. Writes to SPI0DAT that occur after the first SCK edge will be held in the TX latch until the end of the current transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 16.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is not a way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 16.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

16.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note that all of the following interrupt bits must be cleared by software.

- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- 2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master in multimaster mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed while the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 16.7. SPI Master Timing (CKPHA = 1)

SFR Definition 17.12. LIN0CTRL: LIN0 Control Register

W	W	W	R/W	R/W	R/W	R/W	R/W	Reset Value
STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address:	0x08 (indirect)
Bit7:	STOP: Stop	Communic	ation Proce	ssing Bit (s	lave mode	only).		
	This bit is to	be set by th	ne applicatio	on to block	the process	sing of the LI	N Commun	ications
	until the next	t SYNCH B	REAK signa	al. It is used	I when the a	application is	handling a	data
	request inter	rupt and ca	nnot use th	e frame cor	itent with th	e received id	entitier (alv	ays reads
Bit6.	U). SI FED: Slow	an Mode W	arnina					
Ditto.	This bit is to	be set by th	ne applicati	on to warn t	he nerinhei	ral that a Slee	en Mode Fi	rame was
	received and	that the B	us is in slee	p mode or	if a Bus Idle	timeout inte	rrupt is rea	uested.
	The applicat	ion must re	set it when	a Wake-Up	interrupt is	requested.		
Bit5:	TXRX: Trans	smit/Receiv	e Selection	Bit.		·		
	This bit dete	rmines if the	e current fra	ame is a tra	nsmit frame	e or a receive	e frame.	
	0: Current fra	ame is a reo	ceive opera	tion.				
D ¹ /4	1: Current fra	ame is a tra	insmit opera	ation.	• `			
Bit4:	DTACK: Dat	a acknowle	dge bit (sla	ve mode o	nly).		ofor The b	
	Set to 1 alter	r nandling a	by the LIN	st interrupt	to acknowle	eage the tran	isier. The b	it will auto-
Bit3	RSTINT Inte	strunt Rese	t hit	Controller.				
Bito.	This bit alwa	vs reads as	s 0.					
	0: No effect.	,						
	1: Reset the	LININT bit	(LIN0ST.3).					
Bit2:	RSTERR: Er	rror Reset E	Bit.					
	This bit alwa	ys reads as	s 0.					
	0: No effect.		LINIOOT					
D:14	1: Reset the	error bits in	LINUST ar	Id LINUERI	۲.			
DITI.	Set to 1 to te	vake-up Re arminato slo	equest bit.	, sondina a	wakoun sid	nal The hit	will automa	utically be
	cleared to 0	by the LIN	controller	y senuing a	wakeup sig	griai. The bit		lically be
Bit0:	STREQ: Sta	rt Request	Bit (master	mode only	<i>(</i>).			
	1: Start a LIN	v transmiss	ion. This sh	ould be set	only after l	oading the id	entifier, dat	ta length
	and data buf	fer if neces	sary.		-	-		-
	The bit is res	set to 0 upo	n transmiss	ion comple	tion or erroi	r detection.		

SFR Definition 18.1. TCON: Timer Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addrossablo
							SFR Address:	Ox88
Bit7:	TF1: Timer 1	Overflow I	Flag.					
	Set by hardv	vare when	Timer 1 ove	rflows. This	flag can b	e cleared by	software bu	ut is auto-
	0: No Timor	ared when	the CPU ve	ectors to the	i imer 1 in	terrupt servi	ce routine.	
	1. Timer 1 ha	as overflow	ed					
Bit6:	TR1: Timer 1	Run Cont	rol.					
	0: Timer 1 di	sabled.						
	1: Timer 1 er	nabled.						
Bit5:	TF0: Timer C	Overflow I	Flag.	и. т і.	0		()	
	Set by hardy	vare when	the CPLLye	erriows. This	Timer 0 in	e cleared by	Software bu	ut is auto-
	0: No Timer	0 overflow	detected.			ionupi servi	ce routine.	
	1: Timer 0 ha	as overflow	ed.					
Bit4:	TRO: Timer () Run Cont	rol.					
	0: Timer 0 di	sabled.						
D:42.	1: Timer 0 er	habled.						
DILJ.	This flag is s	et by hardw	i. Vare when a	n edae/leve	of type de	fined by IT1	is detected	lt can be
	cleared by so	oftware but	is automati	cally cleare	d when the	CPU vector	s to the Exte	ernal Inter-
	rupt 1 servic	e routine if	IT1 = 1. Wh	nen ÍT1 = 0,	this flag is	set to 1 whe	en INT0 is a	ctive as
	defined by bi	it IN1PL in I	register IT0	1CF (see S	FR Definitio	on 10.5. "IT(01CF: INT0/	INT1 Con-
D'/0	figuration" or	n page 105).					
Bit2:	This bit solor	t 1 Type Se	elect.	urod INITO in	torrupt will	ha adaa ar l	oval consitiv	
	configured a	ctive low or	r high by the	e IN1PL bit	in the IT01	CF register (see SFR	C. INTO 13
	Definition 10	.5. "IT01C	F: INT0/INT	1 Configura	ation" on pa	age 105).	(
	0: <u>INT0</u> is lev	el triggere	d.					
D:44	1: INT0 is ec	lge triggere	ed.					
BITT	This flag is s	i interrupt (et by bardw). Vare when a	n edae/leva	al of type de	fined by IT() is detected	lt can be
	cleared by so	oftware but	is automati	callv cleare	d when the	CPU vector	s to the Exte	ernal Inter-
	rupt 0 servic	e routine if	IT0 = 1. Wh	nen ÍT0 = 0,	this flag is	set to 1 whe	en <mark>INT0</mark> is a	ctive as
	defined by bi	t IN0PL in	register IT0	1CF (see S	FR Definitio	on 10.5. "IT(01CF: INT0/	INT1 Con-
D:40.	figuration" or	n page 105). 					
BITU:	This bit select	t U Type Se	the configu	ured INITO in	torrunt will	ha adaa ar l	oval consitiv	INITO is
	configured a	ctive low or	r high by the	e INOPL bit	in reaister l	T01CF (see	SFR Defini	tion 10.5.
	"IT <u>01CF</u> : INT	F0/INT1 Co	nfiguration"	on page 10)5).	(
	0: <u>INT0</u> is lev	vel triggere	d.					
	1: INTO is ec	lge triggere	ed.					

19.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2-CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCA0CPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH2 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH2. Upon a PCA0CPH2 write, PCA0H plus the offset held in PCA0CPL2 is loaded into PCA0CPH2 (See Figure 19.10).

Figure 19.10. PCA Module 2 with Watchdog Timer Enabled

Note that the 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total offset is then given (in PCA clocks) by Equation 19.4, where PCA0L is the value of the PCA0L register at the time of the update.

 $Offset = (256 \times PCA0CPL2) + (256 - PCA0L)$

Equation 19.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. Software may force a WDT reset by writing a 1 to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

C2 Register Definition 21.3. REVID: C2 Revision ID

C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data

