E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f533a-it

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2.9. Flash Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V; –40 to +125 °C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
Flash Size	'F520/0A/1/1A and 'F530/0A/1/1A	7680			bytes
	'F523/3A/4/4A and 'F533/3A/4/4A	4096			
	'F526/6A/7/7A and 'F536/6A/7/7A	2048			
Endurance ²	$V_{DD} \ge V_{RST-HIGH}^{1}$	20 k	150 k		Erase/Write
Erase Cycle Time		27	32	38	ms
Write Cycle Time		57	65	74	μs
V _{DD}	Write/Erase Operations	V _{RST-HIGH} ¹	—	—	V

Notes:

 See Table 2.8 on page 32 for the V_{RST-HIGH} specification.
 For –I (industrial Grade) parts, flash should be programmed (erase/write) at a minimum temperature of 0 °C for reliable flash operation across the entire temperature range of -40 to +125 °C. This minimum programming temperature does not apply to -A (Automotive Grade) parts.

Table 2.10. Port I/O DC Electrical Characteristics

V_{REGIN} = 2.7 to 5.25 V, -40 to +125 °C unless otherwise specified

Parameters	Conditions	Min	Тур	Max	Units
Output High	I _{OH} = –3 mA, Port I/O push-pull	V _{REGIN} – 0.4		_	V
Voltage	I _{OH} = −10 μA, Port I/O push-pull	V _{REGIN} – 0.02	—	—	
	I _{OH} = –10 mA, Port I/O push-pull	—	V _{REGIN} -0.7	—	
Output Low	V _{REGIN} = 2.7 V:				
Voltage	I _{OL} = 70 μA	—	—	45	
	I _{OL} = 8.5 mA	—	—	550	m\/
	V _{REGIN} = 5.25 V:				1110
	I _{OL} = 70 μA	—	—	40	
	I _{OL} = 8.5 mA		—	400	
Input High		V _{REGIN} x 0.7	—	—	V
Voltage					
Input Low		—	—	V _{REGIN} x	V
Voltage				0.3	
Input	Weak Pullup Off	—	—	±2	
Leakage					
Current	C8051F52xA/53xA:				
	Weak Pullup On, $V_{IN} = 0 V$; $V_{REGIN} = 1.8 V$	—	5	15	пΔ
					μΛ
	C8051F52x/52xA/53x/53xA:				
	Weak Pullup On, $V_{IN} = 0 V$; $V_{REGIN} = 2.7 V$	—	20	50	
	Weak Pullup On, $V_{IN} = 0 V$; $V_{REGIN} = 5.25 V$	—	65	115	

Figure 3.2. DFN-10 Package Diagram

Dimension	Min	Nom	Max
A	0.80	0.90	1.00
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D			
D2	1.50	1.65	1.80
е		0.50 BSC.	
E		3.00 BSC.	
E2	2.23	2.38	2.53
L	0.30	0.40	0.50
L1	0.00	—	0.15
aaa	—	—	0.15
bbb	—	—	0.15
ddd	—	—	0.05
eee	—	—	0.08

Table 3.2. DFN-10 Package Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to JEDEC outline MO-220, variation VEED except for custom features D2, E2, and L, which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Co	nvert Start —	≻													
								Pre	-Tracki	ng Moo	de				
(Time		F	S1	S2] .	[S12	S13	F					
ł	ADC0 State					Con	ver	t							
	AD0INT Flag														
				F	Post-Tr	acki	ng d	or Dua	Il-Track	ing Mc	odes (A	D0TK =	= '0	0')	
ſ	Time		F	S1	S2	F	F	S1	S2]	S12	S13	F		
\langle	ADC0 State			Tra	ack					Convei	rt				
Ĺ	AD0INT Flag														
			Ke	y]	Equal	to c	one	period	of FCL	_K.					

F

Sn

Each Sn is equal to one period of the SAR clock.

Figure 4.4. 12-Bit ADC Tracking Mode Example

4.3.6. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion.

Figure 4.6 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 4.1. When measuring the Temperature Sensor output, use the settling time specified in Table 2.3 on page 28. See Table 2.3 on page 28 for ADC0 minimum settling time requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 4.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (12).

Figure 4.6. ADC0 Equivalent Input Circuits

4.4. Selectable Gain

ADC0 on the C8051F52x/52xA/53x/53xA family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.

For example, three analog sources to be measured have full-scale outputs of 5.0 V, 4.0 V, and 3.0 V, respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting signal one (5.0 V full-scale), a gain value of 0.44 (5 V full scale * 0.44 = 2.2 V full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V. Likewise, a gain value of 0.55 (4 V full scale * 0.55 = 2.2 V full scale) for the second source and 0.73 (3 V full scale * 0.73 = 2.2 V full scale) for the third source provide full-scale ADCO measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.

SFR Definition 4.6. ADC0H: ADC0 Data Word MSB

SFR Definition 4.7. ADC0L: ADC0 Data Word LSB

5. Voltage Reference

The Voltage reference MUX on C8051F52x/F52xA/F53x/F53xA devices is configurable to use an externally connected voltage reference, the internal reference voltage generator, or the V_{DD} power supply voltage (see Figure 5.1). The REFSL bit in the Reference Control register (REF0CN) selects the reference source. For an external source or the internal reference applied to the V_{REF} pin, REFSL should be set to 0. To use V_{DD} as the reference source, REFSL should be set to 1.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and internal oscillators. This bit is forced to logic 1 when any of the aforementioned peripherals are enabled. The bias generator may be enabled manually by writing a 1 to the BIASE bit in register REFOCN; see SFR Definition 5.1 for REFOCN register details. The electrical specifications for the voltage reference circuit are given in Table 2.5 on page 29.

The internal voltage reference circuit consists of a temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The output voltage is selectable between 1.5 V and 2.2 V. The internal voltage reference can be driven out on the V_{REF} pin by setting the REFBE bit in register REF0CN to a 1 (see Figure 5.1). The load seen by the V_{REF} pin must draw less than 200 µA to GND. When using the internal voltage reference, bypass capacitors of 0.1 µF and 4.7 µF are recommended from the V_{REF} pin to GND. If the internal reference is not used, the REFBE bit should be cleared to 0. Electrical specifications for the internal voltage reference are given in Table 2.5 on page 29.

Figure 5.1. Voltage Reference Functional Block Diagram

6. Voltage Regulator (REG0)

C8051F52x/F52xA/F53x/F53xAdevices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the V_{REGIN} pin can be as high as 5.25 V. The output can be selected by software to 2.1 V or 2.6 V. When enabled, the output of REG0 appears on the V_{DD} pin, powers the microcontroller core, and can be used to power external devices. On reset, REG0 is enabled and can be disabled by software.

The input (V_{REGIN}) and output (V_{DD}) of the voltage regulator should both be bypassed with a large capacitor (4.7 μ F + 0.1 μ F) to ground. These capacitors are required for regulator stability, and will eliminate power spikes and provide any immediate power required by the microcontroller. The settling time associated with the voltage regulator is shown in Table 2.6 on page 30.

Important Note: The bypass capacitors are required for the stability of the voltage regulator.

The voltage regulator can also generate an interrupt (if enabled by EREG0, EIE1.6) that is triggered whenever the V_{REGIN} input voltage drops below the dropout threshold (see Table 2.6 on page 30). This dropout interrupt has no pending flag. The recommended procedure to use the interrupt is as follows:

- 1. Wait enough time to ensure the V_{REGIN} input voltage is stable.
- 2. Enable the dropout interrupt (EREG0, EIE1.6) and select the proper priority (PREG0, EIP1.6).
- 3. If triggered, disable the interrupt in the Interrupt Service Routine (clear EREG0, EIE1.6) and execute all necessary procedures to put the system in "safe mode," leaving the interrupt disabled.
- 4. The main application, now running in safe mode, should regularly check the DROPOUT bit (REG0CN.0). Once it is cleared by the regulator hardware, the application can re-enable the interrupt (EREG0, EIE1.6) and return to normal mode operation.

Figure 6.1. External Capacitors for Voltage Regulator Input/Output

less than 100 nA. See Section "13.1. Priority Crossbar Decoder" on page 122 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{REGIN}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 2.7 on page 31.

The Comparator response time may be configured in software via the CPTnMD register (see SFR Definition 7.3). Selecting a longer response time reduces the Comparator supply current. See Table 2.7 on page 31 for complete timing and current consumption specifications.

Figure 7.2. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPT0CN. The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3–0 in the Comparator Control Register CPT0CN (shown in SFR Definition 7.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Table 2.7 on page 31, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "10. Interrupt Handler" on page 98). The CP0FIF flag is set to logic 1 upon a Comparator falling-edge detect, and the CP0RIF flag is set to logic 1 upon the Comparator rising-edge detect. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CP0OUT bit. The Comparator is enabled by setting the CP0EN bit to logic 1 and is disabled by clearing this bit to logic 0. When the Comparator is enabled, the internal oscillator is awakened from SUSPEND mode if the Comparator output is logic 0.

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	2
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

SFR Definition 8.5. ACC: Accumulator

R/W ACC.7	R/W ACC.6	R/W ACC.5	R/W ACC.4	R/W ACC.3	R/W ACC.2	R/W ACC.1	R/W ACC.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address	: 0xE0
Bits7–0: A ⊺	ACC: Accum This register	nulator. is the accu	mulator for	arithmetic c	operations.			

SFR Definition 8.6. B: B Register

8.3. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. SFR Definition 8.7 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.

The C8051F52x/F52xA/F53x/F53xA devices feature a low-power SUSPEND mode, which stops the internal oscillator until a wakening event occurs. See Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

8.3.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system.

8.3.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout period of 100 μ s.

8.3.3. Suspend Mode

The C8051F52x/F52xA/F53x/F53xA devices feature a low-power Suspend mode, which stops the internal oscillator until a wakening event occurs. See Section Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

Note: When entering Suspend mode, firmware must set the ZTCEN bit in REF0CN (SFR Definition 5.1).

SFR Definition 10.3. EIE1: Extended Interrupt Enable 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EMAT	EREG0	ELIN	ECPR	ECPF	EPCA0	EADC0	EWADC0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address	: 0xE6
Bit7:	EMAT: Enab	le Port Mat	ch Interrupt					
	This bit sets	the maskin	g of the Por	t Match inte	errupt.			
	0: Disable th	e Port Mate	ch interrupt.					
Bit6.	T: Enable the	e Port Matc	n interrupt.	Intorrunt				
Dito.	This hit sets	the maskin	a of the Vol	tade Redul	ator Dropou	t interrunt		
	0: Disable th	e Voltage F	Regulator Dr	opout inter	rupt.	e interrupt.		
	1: Enable the	e Voltage R	egulator Dr	opout interi	upt.			
Bit5:	ELIN: Enable	e LIN Interr	upt.	•	•			
	This bit sets	the maskin	g of the LIN	interrupt.				
	0: Disable LI	N interrupts	S.					
D '//	1: Enable LI	N interrupt	requests.	– 1 1. (.				
Bit4:	ECPR: Enac	the monking	ator U Rising	g Edge Inte	rrupt Igo intorrupt			
	0. Disable C	PO Risina F	dae Interru	o Rising Eu	ige interrupt			
	1: Enable CF	20 Rising E	dae Interrur	pt. Dt.				
Bit3:	ECPF: Enab	le Compara	ator 0 Falling	g Edge Inte	rrupt			
	This bit sets	the maskin	g of the CP	0 Falling Ed	dge interrup	t.		
	0: Disable C	P0 Falling I	Edge Interru	ıpt.				
-	1: Enable CF	P0 Falling E	dge Interru	pt.	(
Bit2:	EPCA0: Ena	able Program	mmable Co	unter Array	(PCA0) Inte	errupt.		
	0: Disable al	The maskin	g of the PC	AU Interrup	IS.			
	1: Enable int	errunt requ	ests denera	ted by PCA	0			
Bit1:	EADCO: Ena	able ADC0	Conversion	Complete I	nterrupt.			
	This bit sets	the maskin	g of the AD	C0 Convers	sion Comple	ete interrup	ot.	
	0: Disable A	DC0 Conve	rsion Comp	lete interru	pt.	-		
	1: Enable int	errupt requ	ests genera	ted by the	AD0INT flag] .		
Bit0:	EWADC0: E	nable ADC	0 Window C	Comparison	Interrupt.			
	I his bit sets	the maskin	g of the AD	CO Window	Compariso	on interrupt	•	
	1. Enable int	errunt requ	ests denera	ited by the	n. AD0WINT fl	ad		
		.on aptroqu	seto genera			~9.		

Note: 4-Wire SPI Only.

Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 16.9. SPI Slave Timing (CKPHA = 1)

SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PRESCL[1:0]			l	_INMUL[4:0			DIV9	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							Address	: 0x0D (indirect)
Bit7-6:	PRESCL1-0	: LIN Baud	Rate Preso	caler Bits.				
	These bits a	re the baud	l rate presca	aler bits.				
Bit5–1:	LINMUL4–0	: LIN Baud	Rate Multip	lier Bits.				
	These bits a	re the baud	l rate multip	lier bits. The	ese bits are	not used in	n slave mode	э.
Bit0:	DIV9: LIN Ba	aud Rate D	ivider Most	Significant I	Bit.			
	The most sig	nificant bit	of the baud	I rate divide	r. The 8 lea	st significan	nt bits are in	LIN0DIV.
	The valid rar	nge for the	divider is 20)0 to 511.				
		-						

SFR Definition 17.18. LIN0ID: LIN0 ID Register

clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 18.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "10.4. Interrupt Register Descriptions" on page 100), facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer
0	Х	Х	Disabled
1	0	Х	Enabled
1	1	0	Disabled
1	1	1	Enabled
X = Don't C	are		

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the INT0 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration).

Figure 18.1. T0 Mode 0 Block Diagram

183

19.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 19.5. PCA Software Timer Mode Diagram

19.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 19.6. PCA High-Speed Output Mode Diagram

Note: The initial state of the Toggle output is logic 1 and is initialized to this state when the module enters High Speed Output Mode.

SFR Definition 19.2. PCA0MD: PCA Mode

R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	Reset Value		
CIDL	WDTE	WDLC	K -	-	CPS2	CPS1	CPS0	ECF	01000000		
Bit7	Bit6	Bit5	Bit	t4	Bit3	Bit2	Bit1	Bit0			
								SFR Address	s: 0xD9		
Bit7:	CIDL: PC	A Counter/	Timer Idle	e Con	trol.						
	Specifies	PCA behav	vior when	CPU	is in Idle M	lode.					
	0: PCA co	ntinues to	function r	norma	ally while the	e system co	ontroller is in	n Idle Mode			
D:40	1: PCA op	peration is a	suspende	ed whi	le the syste	em controlle	er is in Idle N	Mode.			
BITO:	If this hit is	atchoog H siset PCA	Module 2	Die Die Lie	ed as the v	vatchdog tir	ner				
	0: Watchd	log Timer d	lisabled.	- 10 00		atonaog til					
	1: PCA M	odule 2 ena	abled as V	Watch	ndog Timer.						
Bit5:	WDLCK:	WDLCK : Watchdog Timer Lock									
	Timer may	CKS/UNIOCKS	s the Wat	Chdo	J limer Ena	able. When	WDLCK is	set, the Wa	tchdog		
	0: Watchd	og Timer E	Enable un	locke	d.	1116361.					
	1: Watchd	og Timer E	Enable loc	cked.							
Bit4:	UNUSED.	Read = 0k	o, Write =	don't	care.						
Bits3–1:	CPS2-CP	'SO : PCA C	Counter/Ti	imer F	Pulse Selec	it.					
	I nese bits	s select the	timebase	e soui	rce for the H	CA counte	er.				
	CPS2	CPS1	CPS0			Т	imebase				
	CPS2	CPS1	CPS0	Syste	em clock di	T vided by 12	imebase				
	CPS2 0 0	CPS1 0 0	CPS0 0 1	Syste Syste	em clock di em clock di	T vided by 12 vided by 4	imebase				
	CPS2 0 0 0	CPS1 0 0 1	CPS0 0 1 0	Syste Syste Time	em clock di em clock di er 0 overflov	T vided by 12 vided by 4 v	imebase				
	CPS2 0 0 0 0 0	CPS1 0 0 1	CPS0 0 1 0 1 1	Syste Syste Time High divid	em clock di em clock di er 0 overflov -to-low tran ed by 4)	T vided by 12 vided by 4 v sitions on E	imebase 2 ECI (max ra	te = system	l clock		
	CPS2 0 0 0 0 1	CPS1 0 0 1 1 1 0	CPS0 0 1 0 1 0	Syste Syste Time High divid Syste	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock	T vided by 12 vided by 4 v sitions on E	imebase 2 ECI (max ra	te = system	I clock		
	CPS2 0 0 0 0 1 1	CPS1 0 1 1 0 0 0	CPS0 0 1 0 1 0 1 1	Syste Syste Time High divid Syste Exte	em clock di em clock di r 0 overflov -to-low tran ed by 4) em clock rnal clock c	T vided by 12 vided by 4 v sitions on F ivided by 8	imebase 2 ECI (max ra	te = system	I clock		
	CPS2 0 0 0 1 1	CPS1 0 1 1 0 0 0 1	CPS0 0 1 0 1 0 1 0 1 0	Syste Syste Time High divid Syste Exte Rese	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved	T vided by 12 vided by 4 v sitions on E ivided by 8	imebase 2 ECI (max ra *	te = system	I clock		
	CPS2 0 0 0 1 1 1 1	CPS1 0 1 1 0 0 0 1 1 1	CPS0 0 1 0 1 0 1 0 1 0 1	Syste Syste Time High divid Syste Exte Rese	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved	T vided by 12 vided by 4 v sitions on B livided by 8	imebase 2 ECI (max ra *	te = system) clock		
	CPS2 0 0 0 1 1 1 1 Note: Ext	CPS1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1	CPS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Syste Syste Time High divid Syste Exte Rese 8 is syste	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved ynchronized	T vided by 12 vided by 4 v sitions on E livided by 8 with the syst	ECI (max ra	te = system	I clock		
	CPS2 0 0 0 1 1 1 1 1 Note: Ext	CPS1 0 1 1 0 0 1 1 ternal clock	CPS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0	Syste Syste High divid Syste Exte Rese 8 is sy	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved ynchronized	T vided by 12 vided by 4 v sitions on B livided by 8 with the syst	ECI (max ra	te = system	I clock		
Bit0:	CPS2 0 0 0 1 1 1 1 ECF: PCA This hit as	CPS1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 cernal clock Counter/T to the mode	CPS0 0 1 0 1 0 1 0 1 divided by	Syste Syste Time High divid Syste Exte Rese 8 is syste 8 is syste	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock d erved erved ynchronized	T vided by 12 vided by 4 v sitions on B livided by 8 with the system nable.	ECI (max ra	te = system	I Clock		
Bit0:	CPS2 0 0 0 0 1 1 1 1 ECF: PCA This bit se 0: Disable	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by Fimer Ove sking of th errupt	Syste Syste Time High divid Syste Exte Rese 8 is syste 8 is syste rflow	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock d erved erved ynchronized Interrupt E A Counter/	T vided by 12 vided by 4 v sitions on B livided by 8 with the system nable. Fimer Overf	ECI (max ra cem clock.	te = system	I clock		
Bit0:	CPS2 0 0 0 0 1	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by Fimer Ove sking of th errupt. unter/Tim	Syste Syste Time High divid Syste Exte Rese 8 is sy erflow he PC/	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock d erved erved ynchronized Interrupt E A Counter/ erflow inter	T vided by 12 vided by 4 v sitions on B livided by 8 with the system nable. Fimer Overfinet rupt request	ECI (max ra ECI (max ra tem clock.	te = system terrupt.	/) is set.		
Bit0:	CPS2 0 0 0 0 1	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by fimer Ove sking of th errupt. unter/Tim	Syste Syste Time High divid Syste Exte Rese 8 is sy erflow he PC,	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved ynchronized Interrupt E A Counter/ erflow inter	T vided by 12 vided by 4 v sitions on B livided by 8 with the syst mable. Fimer Overf rupt reques	ECI (max ra cem clock. low (CF) int	te = system terrupt. (PCA0CN.7	/) is set.		

Revision 1.2 to 1.3

- Updated "System Overview" on page 13 with a voltage range specification for the internal oscillator.
- Updated Table 2.11 on page 34 with new conditions for the internal oscillator accuracy. The internal
 oscillator accuracy is dependent on the operating voltage range.
- Updated Section 2 to remove the internal oscillator curve across temperature diagram.
- Updated Figure "4.5 12-Bit ADC Burst Mode Example with Repeat Count Set to 4" on page 58 with new timing diagram when using CNVSTR pin.
- Updated SFR Definition 5.1 (REF0CN) with oscillator suspend requirement for ZTCEN.
- Updated SFR Definition 6.1 (REG0CN) with a new definition for Bit 6. The bit 6 reset value is 1b and must be written to 1b.
- Updated Section "8.3.3. Suspend Mode" on page 90 with note regarding ZTCEN.
- Updated Section "17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)" on page 164 with a voltage range specification for the internal oscillator.

Revision 1.3 to 1.4

- Added 'AEC-Q100' qualification information on page 1.
- Changed page headers throughout the document from 'C8051F52x/F52xA/F53x/F53xA' to 'C8051F52x/53x'.
- Updated supply voltage to "2.0 to 5.25 V" on page 1 and in Section 1 on page 13.
- Corrected reference to development kit (C8051F530DK) in Section "1.2.4. On-Chip Debug Circuitry" on page 18.
- Updated minimum Supply Input Voltage (V_{REGIN}) for C8051F52x-C/F53x-C devices in Table 2.2 on page 26 and Table 2.6 on page 30.
- Updated digital supply current (I_{DD} and Idle I_{DD}) typical values for condition 'Clock = 25 MHz' in Table 2.2 on page 26.
- Updated I_{DD} Frequency Sensitivity and Idle I_{DD} Frequency Sensitivity values in Table 2.2 on page 26; removed Figure 2.1 and Figure 2.2 that used to provide the same frequency sensitivity slopes. Also removed IDD Supply Sensitivity and Idle IDD Supply Sensitivity typical values.
- Added Digital Supply Current (Stop or Suspend Mode) values at multiple temperatures Table 2.2 on page 26.
- Added a note in Table 2.3, "ADC0 Electrical Characteristics," on page 28 with reference to Section "4.4. Selectable Gain" on page 60; also added note to indicate that additional tracking time may be necessary if VDD is less than the minimum specified VDD.
- Split off temperature sensor specifications from Table 2.3 into a separate table Table 2.4; Updated temperature sensor gain and added supply current values.
- Added temperature condition for Bias Current specification in Table 2.6 on page 30.
- Updated Comparator Input Offset Voltage values in Table 2.7 on page 31.
- Updated VDD Monitor (VDDMON0) Low Threshold (V_{RST-LOW}) minimum value for C8051F52xA/F52x-C/F53xA/F53x-C devices in Table 2.8 on page 32.
- Updated VDD Monitor (VDDMON0) supply current values in Table 2.8 on page 32.
- Added specifications for the new level-sensitive VDD monitor (VDDMON1) to Table 2.8, "Reset Electrical Characteristics," on page 32 and also added notes to clarify the applicable V_{RST} theshold level.
- Added note in Table 2.9, "Flash Electrical Characteristics," on page 33 to describe the minimum flash programming temperature for –I (Industrial Grade) devices; Also added the same note and references to it in Section "12.1. Programming The Flash Memory" on page 113, Section "12.3. Non-volatile Data Storage" on page 117, and in SFR Definition 12.1 (PSCTL).

