

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f534-c-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.3.2. Stop Mode	. 90
8.3.3. Suspend Mode	. 90
9. Memory Organization and SFRs	. 92
9.1. Program Memory	92
9.2. Data Memory	. 93
9.3. General Purpose Registers	. 93
9.4. Bit Addressable Locations	. 93
9.5. Stack	93
9.6 Special Function Registers	. 93
10 Interrunt Handler	98
10.1 MCU Interrupt Sources and Vectors	98
10.2 Interrupt Priorities	98
10.3 Interrupt Latency	98
10.1 Interrupt Register Descriptions	100
10.5 External Interrunts	100
11 Poset Sources	104
11.1 Dowor On Pocot	107
11.2 Power-Eail Poset / V/DD Monitors (V/DDMON0 and V/DDMON1)	107
11.2. Fower-Fail Reset / VDD Monitors (VDDMONO and VDDMONT)	100
11.2 External Paset	1100
11.4 Missing Clock Detector Poset	110
11.5. Comparator Paget	110
11.6. DCA Wetchdog Timer Poset	110
11.7 Elash Error Docot	110
11.9 Softwara Pasat	110
12 Elash Momory	112
12. FidShi Melliul y	113
12.1. Flogial line Flash Wellions	112
12.1.1. Flash Lock and Key Functions	113
12.1.2. Flash Write Dreadure	114
12.1.3. Flash Write and Fraze Quidelines	114
12.2. FldSh While and Eldse Guidelines	115
12.2.1. V _{DD} Maintenance and the V _{DD} monitor	115
12.2.2. PSWE Maintenance	110
12.2.3. System Clock	110
12.3. Non-volalle Data Storage	117
12.4. Security Options	11/
12.1 Drivity Crossbor Decoder	120
13.1. Phonly Clossbal Decoder	122
13.2. Poil I/O Initialization	120
13.3. General Purpose Port I/O	120
14. USCIIIdIOIS	133
14.1. Flogrammable internal Oscillator	135
14.1.1. Internal Oscillator Suspend Mode	130
14.2. External Oscillator Drive Circuit	139
14.2.1. Clocking Timers Directly Through the External Oscillator	139

SFR	Definition	13.13. P0SKIP: Port0 Skip	134
SFR	Definition	13.14. P1MAT: Port1 Match	134
SFR	Definition	13.15. P1MASK: Port1 Mask	134
SFR	Definition	14.1. OSCICN: Internal Oscillator Control	137
SFR	Definition	14.2. OSCICL: Internal Oscillator Calibration	138
SFR	Definition	14.3. OSCIFIN: Internal Fine Oscillator Calibration	138
SFR	Definition	14.4. OSCXCN: External Oscillator Control	142
SFR	Definition	14.5. CLKSEL: Clock Select	143
SFR	Definition	15.1. SCON0: Serial Port 0 Control	149
SFR	Definition	15.2. SBUF0: Serial (UART0) Port Data Buffer	150
SFR	Definition	16.1. SPI0CFG: SPI0 Configuration	157
SFR	Definition	16.2. SPI0CN: SPI0 Control	158
SFR	Definition	16.3. SPI0CKR: SPI0 Clock Rate	159
SFR	Definition	16.4. SPI0DAT: SPI0 Data	160
SFR	Definition	17.1. LINADDR: Indirect Address Register	172
SFR	Definition	17.2. LINDATA: LIN Data Register	172
SFR	Definition	17.3. LINCF Control Mode Register	173
SFR	Definition	17.4. LIN0DT1: LIN0 Data Byte 1	174
SFR	Definition	17.5. LIN0DT2: LIN0 Data Byte 2	175
SFR	Definition	17.6. LIN0DT3: LIN0 Data Byte 3	175
SFR	Definition	17.7. LIN0DT4: LIN0 Data Byte 4	175
SFR	Definition	17.8. LIN0DT5: LIN0 Data Byte 5	176
SFR	Definition	17.9. LIN0DT6: LIN0 Data Byte 6	176
SFR	Definition	17.10. LIN0DT7: LIN0 Data Byte 7	176
SFR	Definition	17.11. LIN0DT8: LIN0 Data Byte 8	176
SFR	Definition	17.12. LIN0CTRL: LIN0 Control Register	177
SFR	Definition	17.13. LINOST: LINO STATUS Register	178
SFR	Definition	17.14. LIN0ERR: LIN0 ERROR Register	179
SFR	Definition	17.15. LIN0SIZE: LIN0 Message Size Register	180
SFR	Definition	17.16. LIN0DIV: LIN0 Divider Register	180
SFR	Definition	17.17. LINOMUL: LINO Multiplier Register	181
SFR	Definition	17.18. LIN0ID: LIN0 ID Register	181
SFR	Definition	18.1. TCON: Timer Control	186
SFR	Definition	18.2. TMOD: Timer Mode	187
SFR	Definition	18.3. CKCON: Clock Control	188
SFR	Definition	18.4. TL0: Timer 0 Low Byte	189
SFR	Definition	18.5. TL1: Timer 1 Low Byte	189
SFR	Definition	18.6. TH0: Timer 0 High Byte	189
SFR	Definition	18.7. TH1: Timer 1 High Byte	189
SFR	Definition	18.8. TMR2CN: Timer 2 Control	193
SFR	Definition	18.9. TMR2RLL: Timer 2 Reload Register Low Byte	194
SFR	Definition	18.10. TMR2RLH: Timer 2 Reload Register High Byte	194
SFR	Definition	18.11. TMR2L: Timer 2 Low Byte	194
SFR	Definition	18.12. TMR2H Timer 2 High Byte	194
SFR	Definition	19.1. PCA0CN: PCA Control	206

Figure 3.5. TSSOP-20 Package Diagram

Symbol	Min	Nom	Max				
А	—	_	1.20				
A1	0.05	_	0.15				
A2	0.80	1.00	1.05				
b	0.19		0.30				
С	0.09		0.20				
D	6.40	6.50	6.60				
е		0.65 BSC.					
E		6.40 BSC.					
E1	4.30	4.40	4.50				
L	0.45	0.60	0.75				
θ1	0°		8°				
aaa		0.10					
bbb	0.10						
ddd		0.20					
Notes:							

Table 3.5. TSSOP-20 Package Diagram Dimensions

1. All dimensions shown are in millimeters (mm).

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-153, variation AC.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Co	nvert Start —	≻													
								Pre	-Tracki	ng Moo	de				
(Time		F	S1	S2] .	[S12	S13	F					
ł	ADC0 State					Con	ver	t							
	AD0INT Flag														
				F	Post-Tr	acki	ng d	or Dua	Il-Track	ing Mc	odes (A	D0TK =	= '0	0')	
ſ	Time		F	S1	S2	F	F	S1	S2]	S12	S13	F		
\langle	ADC0 State			Tra	ack					Convei	rt				
Ĺ	AD0INT Flag														
			Ke	y]	Equal	to c	one	period	of FCL	_K.					

F

Sn

Each Sn is equal to one period of the SAR clock.

Figure 4.4. 12-Bit ADC Tracking Mode Example

4.3.5. Output Conversion Code

The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code. When the repeat count is set to 1, conversion codes are represented in 12-bit unsigned integer format and the output conversion code is updated after each conversion. Inputs are measured from 0 to $V_{REF} \times 4095/4096$. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.2). Unused bits in the ADC0H and ADC0L registers are set to 0. Example codes are shown below for both right-justified and left-justified data.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
V _{REF} x 4095/4096	0x0FFF	0xFFF0
V _{REF} x 2048/4096	0x0800	0x8000
V _{REF} x 2047/4096	0x07FF	0x7FF0
0	0x0000	0x0000

When the ADC0 Repeat Count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. Sets of 4, 8, or 16 consecutive samples can be accumulated and represented in unsigned integer format. The repeat count can be selected using the AD0RPT bits in the ADC0CF register. The value must be right-justified (AD0LJST = "0"), and unused bits in the ADC0H and ADC0L registers are set to '0'. The following example shows right-justified codes for repeat counts greater than 1. Notice that accumulating 2^n samples is equivalent to left-shifting by *n* bit positions when all samples returned from the ADC have the same value.

Input Voltage	Repeat Count = 4	Repeat Count = 8	Repeat Count = 16
V _{REF} x 4095/4096	0x3FFC	0x7FF8	0xFFF0
V _{REF} x 2048/4096	0x2000	0x4000	0x8000
V _{REF} x 2047/4096	0x1FFC	0x3FF8	0x7FF0
0	0x0000	0x0000	0x0000

4.3.6. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion.

Figure 4.6 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 4.1. When measuring the Temperature Sensor output, use the settling time specified in Table 2.3 on page 28. See Table 2.3 on page 28 for ADC0 minimum settling time requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 4.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (12).

Figure 4.6. ADC0 Equivalent Input Circuits

4.4. Selectable Gain

ADC0 on the C8051F52x/52xA/53x/53xA family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.

For example, three analog sources to be measured have full-scale outputs of 5.0 V, 4.0 V, and 3.0 V, respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting signal one (5.0 V full-scale), a gain value of 0.44 (5 V full scale * 0.44 = 2.2 V full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V. Likewise, a gain value of 0.55 (4 V full scale * 0.55 = 2.2 V full scale) for the second source and 0.73 (3 V full scale * 0.73 = 2.2 V full scale) for the third source provide full-scale ADCO measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.

SFR Definition 6.1. REG0CN: Regulator Control

	DAM	P	DAM	P	P		5	Deschilde		
R/W	R/W	R	R/W	ĸ	R	ĸ	R	Reset Value		
REGDIS	Reserved	—	REG0MD	—	—	—	DROPOUT	01010000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Address:	0xC9		
Bit7:	REGDIS: Vo	ltage Regu	lator Disabl	e Bit.						
	This bit disables/enables the Voltage Regulator.									
	0: Voltage Regulator Enabled.									
	1: Voltage Re	equlator Di	sabled.							
Bit6:	RESERVED	. Read = 1k	. Must write	ə 1b.						
Bit5:	UNUSED. R	ead = 0b. V	Vrite = don'i	t care.						
Bit4:	REGOMD: Vo	oltage Reg	ulator Mode	Select Bit.						
	This bit selec	cts the Volta	age Regulat	tor output vo	oltage.					
	0: Voltage Re	egulator ou	tout is 2.1 \	· /.	5					
	1: Voltage Re	egulator ou	tput is 2.6 \	/ (default).						
Bits3-1	UNUSED R	ead = 000h	Write = dc	n't care						
Bit0	DROPOUT	Voltage Re	gulator Droi	nut Indicat	or Bit					
Bitt.	0: Voltage R	oulator is	not in drong		or Bit.					
	1: Voltage R	aulator is	in or noor d	ropout						
	i. voltage Re	eguiator is	in or near u	iopoul.						

Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 2.7 on page 31.

SFR Definition 7.1. CPT0CN: Comparator0 Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
CP0EN	CPOOUT	CPORIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0x9B				
Bit7:	CP0EN: Cor	nparator0 E	nable Bit.									
	0: Comparat): Comparator0 Disabled.										
	1: Comparat	: Comparator0 Enabled.										
Bit6:	CPOOUT: Co	P0OUT : Comparator0 Output State Flag.										
	0: Voltage or	n CP0+ < C	P0–.									
	1: Voltage or	ר CP0+ > C	P0–.									
Bit5:	CPORIF: Col	mparator0 I	Rising-Edg	e Flag.								
	0: No Compa	aratoru Risi	ng Edge ha	as occurred	since this fl	ag was last	cleared.					
D:44.	1: Comparat	oru Rising I	Edge nas o Folling Edg	ccurrea.								
BIT4:	CPUFIF: COR	nparatoru F	railing-Eog ing Edgo b	e Flag.	ainaa thia f		talaarad					
	1: Comparat	aratoro Fall or0 Falling-	Edge bas (as occurred	Since this i	iay was ias	t cleared.					
Bits3_2	CP0HYP1_0	Comparat	Luye has t tor0 Positiv	o Hystorosi	Control Bi	te						
Ditoo 2.	00 [.] Positive	Hvsteresis	Disabled	e riysteresk								
	01: Positive	Hvsteresis	= 5 mV.									
	10: Positive	Hysteresis	= 10 mV.									
	11: Positive I	Hysteresis ⊧	= 20 mV.									
Bits1-0:	CP0HYN1-0): Compara	tor0 Negati	ve Hysteres	is Control E	Bits.						
	00: Negative	Hysteresis	Disabled.	-								
	01: Negative	Hysteresis	s = 5 mV.									
	10: Negative	Hysteresis	s = 10 mV.									
	11: Negative	Hysteresis	= 20 mV.									

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

K/W K/W CMX0N3 CMX0N2 C Bit7 Bit6 Bits7-4: CMX0N3-CM2 These bits sele CMX0N3 CMX0N3 CM2 0 C 0 <th>IXON0: C Bit5 IXON0: C lect whic MX0N2 0 0 0 0 0 0 0 0 0 0</th> <th>Comparato ch Port pin</th> <th>r0 Negative</th> <th>Bit2 Bit2 Bit2 Bit2 Bit2</th> <th>ECT.</th> <th>CMX0P0 Bit0</th> <th>O1110111 SFR Address: 0x9F</th>	IXON0: C Bit5 IXON0: C lect whic MX0N2 0 0 0 0 0 0 0 0 0 0	Comparato ch Port pin	r0 Negative	Bit2 Bit2 Bit2 Bit2 Bit2	ECT.	CMX0P0 Bit0	O1110111 SFR Address: 0x9F
Bit7 Bit6 Bit7 Bit6 Bit7 Bit6 CMX0N3-CM2 CM2 These bits sele CMX0N3 0 0	Bit5 IXON0: C lect whic 0 0 0	Bit4 Comparato ch Port pin	Bit3 r0 Negative is used as	Bit2 Bit2 Input MUX Sel	Bit1 ect. 0 negative	Bit0	SFR Address: 0x9F
Bits7-4: CMX0N3-CM2 These bits sele CMX0N3 CN 0 0 0 0 0 0 0 0 0 0 0 0 0	IXONO : C lect whic MXON2 0 0 0	Comparato ch Port pin	r0 Negative is used as	Input MUX Sel	ect. 0 negative	e input.	0x9F
Bits7-4: CMX0N3-CMX These bits sele 0 <tr< td=""><td>IXONO: C lect whic MXON2 0 0 0</td><td>Comparato ch Port pin CMX0N1</td><td>r0 Negative is used as</td><td>Input MUX Sel the Comparator</td><td>ect. 0 negative</td><td>e input.</td><td>U.C.I</td></tr<>	IXONO: C lect whic MXON2 0 0 0	Comparato ch Port pin CMX0N1	r0 Negative is used as	Input MUX Sel the Comparator	ect. 0 negative	e input.	U.C.I
Bits7-4: CMX0N3-CM2 These bits sele CMX0N3 CM 0 0 0 0 0 0 0 0 0 0 0 0 0	IXONO: C lect whic MXON2 0 0 0	Comparato th Port pin	r0 Negative is used as	Input MUX Sel the Comparator	ect. 0 negative	e input.	
CMXON3 CM 0 0	MX0N2 0 0 0	cMX0N1	is used as	the Comparator	0 negative	e input.	
CMX0N3 CM 0 0	MX0N2 0 0 0	CMX0N1		-	-		
CMXON3 CM 0 0	MX0N2 0 0 0	CMX0N1					
0 0 0 0	0 0 0		CMX0N0	Negative Inpu	ut		
0 0 0 0	0 0	0	0	P0.1			
0 0 0 0	0	0	1	P0.3			
0 0 0 0		1	0	P0.5			
0 0	0	1	1	P0.7*			
0 0	1	0	0	P1.1*			
0 0 0 0 0 Bits1–0: CMX0P3–CM) These bits sele 0 0	1	0	1	P1.3*			
0 lote: Available only on the C Bits1–0: CMX0P3–CMX These bits sele 0	1	1	0	P1.5*			
lote: Available only on the C Bits1–0: CMX0P3–CM2 These bits sele 0 0 0 0 0 0 0 0	1	1	1	P1.7*			
CMX0P3 CN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IX0P0: C	comparator	o Positive is used as	Input MUX Sele the Comparator	ct. 0 positive	input.	
0 0 0 0 0 0	MX0P2	CMX0P1	CMX0P0	Positive Inpu	It		
0 0 0 0	0	0	0	P0.0			
0 0 0 0	0	0	1	P0.2			
0 0 0	0	1	0	P0.4			
0	0	1	1	P0.6*			
0	1	0	0	P1.0*			
	1	0	1	P1.2*			
0	1	1	0	P1.4*			
0		1	1	P1.6*			
	1						

SFR Definition 10.2. IP: Interrupt Priority R/W R/W R/W R/W R/W R/W Reset Value R R/W PT2 PS0 -PSPI0 PT1 PX1 PT0 PX0 10000000 Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Addressable SFR Address: 0xB8 Bit7: **UNUSED**. Read = 1b: Write = don't care. Bit6: PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control. This bit sets the priority of the SPI0 interrupt. 0: SPI0 interrupt set to low priority level. 1: SPI0 interrupt set to high priority level. Bit5: PT2: Timer 2 Interrupt Priority Control. This bit sets the priority of the Timer 2 interrupt. 0: Timer 2 interrupt set to low priority level. 1: Timer 2 interrupt set to high priority level. Bit4: **PS0**: UARTO Interrupt Priority Control. This bit sets the priority of the UART0 interrupt. 0: UART0 interrupt set to low priority level. 1: UART0 interrupt set to high priority level. Bit3: PT1: Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupt. 0: Timer 1 interrupt set to low priority level. 1: Timer 1 interrupt set to high priority level. Bit2: **PX1**: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 1. 0: INT1 interrupt set to low priority level. 1: INT1 interrupt set to high priority level. PT0: Timer 0 Interrupt Priority Control. Bit1: This bit sets the priority of the Timer 0 interrupt. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level. Bit0: **PX0**: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 0. 0: INT0 interrupt set to low priority level. 1: INT0 interrupt set to high priority level.

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 12.1 summarizes the Flash security features of the 'F52x/'F53x/'F53xA devices.

Action	C2 Debug	User Firmware executing from:			
	Interface	an unlocked page	a locked page		
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted		
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	Flash Error Reset	Permitted		
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted		
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted		
Erase page containing Lock Byte (if no pages are locked)	Permitted	Flash Error Reset	Flash Error Reset		
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset		
Lock additional pages (change 1s to 0s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset		
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset		
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset		

Table 12.1. Flash Security Summary

C2 Device Erase—Erases all Flash pages including the page containing the Lock Byte.

Flash Error Reset—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is 1 after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).

- Locking any Flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.

- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

Figure 13.2. Port I/O Cell Block Diagram

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1–NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

13.2. Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- 4. Assign Port pins to desired peripherals using the XBRn registers.
- 5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 13.4 for the PnMDIN register details.

Important Note: Port 0 and Port 1 pins are 5.25 V tolerant across the operating range of V_{REGIN}.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. When the WEAKPUD bit in XBR1 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 and for pins configured for analog input mode to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. **Port output drivers** are disabled while the Crossbar is disabled.

SFR Definition 13.9. P1: Port1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address:	0x90
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when con 0: P1.n pin is 1: P1.n pin is	ut appears o Output. n Output (hi ys reads 0 i nfigured as s logic low. s logic high.	on I/O pins gh impedar if selected a digital input	per Crossbance if corres as analog in t.	ar Registers ponding P1 put in regist	s. IMDOUT.n ter P1MDIN	bit = 0). I. Directly re	ads Port

SFR Definition 13.10. P1MDIN: Port1 Input Mode

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

The equation for determining the load capacitance for two capacitors is:

$$C_L = \frac{C_A \times C_B}{C_A + C_B} + C_S$$

Where:

 C_{A} and C_{B} are the capacitors connected to the crystal leads.

 C_S is the total stray capacitance of the PCB.

The stray capacitance for a typical layout where the crystal is as close as possible to the pins is 2-5 pF per pin.

If C_A and C_B are the same (C), then the equation becomes:

$$C_L = \frac{C}{2} + C_S$$

For example, a tuning-fork crystal of 32 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 14.1, Option 1. With a stray capacitance of 3 pF per pin (6 pF total), the 13 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.

Figure 14.2. 32 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

16.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

16.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

16.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift register.

16.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

16.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

- 1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point communication between a master and one slave.
- NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be used on the same SPI bus.
- 3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only be used when operating SPI0 as a master device.

See Figure 16.2, Figure 16.3, and Figure 16.4 for typical connection diagrams of the various operational modes. **Note that the setting of NSSMD bits affects the pinout of the device.** When in 3-wire master or 3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "13. Port Input/Output" on page 120 for general purpose port I/O and crossbar information.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 16.9. SPI Slave Timing (CKPHA = 1)

18.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in Capture Mode to measure the RTC0 clock frequency or the External Oscillator clock frequency.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external oscillator source divided by 8 is synchronized with the system clock.

18.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 18.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

Figure 18.4. Timer 2 16-Bit Mode Block Diagram

19.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 19.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 19.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Figure 19.7. PCA Frequency Output Mode

Revision 1.2 to 1.3

- Updated "System Overview" on page 13 with a voltage range specification for the internal oscillator.
- Updated Table 2.11 on page 34 with new conditions for the internal oscillator accuracy. The internal
 oscillator accuracy is dependent on the operating voltage range.
- Updated Section 2 to remove the internal oscillator curve across temperature diagram.
- Updated Figure "4.5 12-Bit ADC Burst Mode Example with Repeat Count Set to 4" on page 58 with new timing diagram when using CNVSTR pin.
- Updated SFR Definition 5.1 (REF0CN) with oscillator suspend requirement for ZTCEN.
- Updated SFR Definition 6.1 (REG0CN) with a new definition for Bit 6. The bit 6 reset value is 1b and must be written to 1b.
- Updated Section "8.3.3. Suspend Mode" on page 90 with note regarding ZTCEN.
- Updated Section "17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)" on page 164 with a voltage range specification for the internal oscillator.

Revision 1.3 to 1.4

- Added 'AEC-Q100' qualification information on page 1.
- Changed page headers throughout the document from 'C8051F52x/F52xA/F53x/F53xA' to 'C8051F52x/53x'.
- Updated supply voltage to "2.0 to 5.25 V" on page 1 and in Section 1 on page 13.
- Corrected reference to development kit (C8051F530DK) in Section "1.2.4. On-Chip Debug Circuitry" on page 18.
- Updated minimum Supply Input Voltage (V_{REGIN}) for C8051F52x-C/F53x-C devices in Table 2.2 on page 26 and Table 2.6 on page 30.
- Updated digital supply current (I_{DD} and Idle I_{DD}) typical values for condition 'Clock = 25 MHz' in Table 2.2 on page 26.
- Updated I_{DD} Frequency Sensitivity and Idle I_{DD} Frequency Sensitivity values in Table 2.2 on page 26; removed Figure 2.1 and Figure 2.2 that used to provide the same frequency sensitivity slopes. Also removed IDD Supply Sensitivity and Idle IDD Supply Sensitivity typical values.
- Added Digital Supply Current (Stop or Suspend Mode) values at multiple temperatures Table 2.2 on page 26.
- Added a note in Table 2.3, "ADC0 Electrical Characteristics," on page 28 with reference to Section "4.4. Selectable Gain" on page 60; also added note to indicate that additional tracking time may be necessary if VDD is less than the minimum specified VDD.
- Split off temperature sensor specifications from Table 2.3 into a separate table Table 2.4; Updated temperature sensor gain and added supply current values.
- Added temperature condition for Bias Current specification in Table 2.6 on page 30.
- Updated Comparator Input Offset Voltage values in Table 2.7 on page 31.
- Updated VDD Monitor (VDDMON0) Low Threshold (V_{RST-LOW}) minimum value for C8051F52xA/F52x-C/F53xA/F53x-C devices in Table 2.8 on page 32.
- Updated VDD Monitor (VDDMON0) supply current values in Table 2.8 on page 32.
- Added specifications for the new level-sensitive VDD monitor (VDDMON1) to Table 2.8, "Reset Electrical Characteristics," on page 32 and also added notes to clarify the applicable V_{RST} theshold level.
- Added note in Table 2.9, "Flash Electrical Characteristics," on page 33 to describe the minimum flash programming temperature for –I (Industrial Grade) devices; Also added the same note and references to it in Section "12.1. Programming The Flash Memory" on page 113, Section "12.3. Non-volatile Data Storage" on page 117, and in SFR Definition 12.1 (PSCTL).

