E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

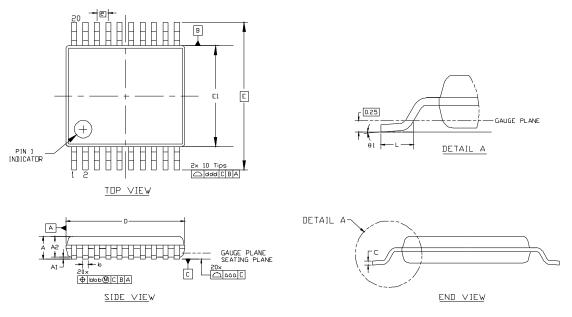
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f534-c-itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


SFR Definition 19.2. PCA0MD: PCA Mode	207
SFR Definition 19.3. PCA0CPMn: PCA Capture/Compare Mode	208
SFR Definition 19.4. PCA0L: PCA Counter/Timer Low Byte	209
SFR Definition 19.5. PCA0H: PCA Counter/Timer High Byte	209
SFR Definition 19.6. PCA0CPLn: PCA Capture Module Low Byte	209
SFR Definition 19.7. PCA0CPHn: PCA Capture Module High Byte	209
C2 Register Definition 21.1. C2ADD: C2 Address	214
C2 Register Definition 21.2. DEVICEID: C2 Device ID	214
C2 Register Definition 21.3. REVID: C2 Revision ID	
C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control	215
C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data	215

Name	Pin Numbers		Туре	Description
	ʻF53xA ʻF53x-C			
P0.4/TX*	19		D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.4/RX*	—	19	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.3	20	_	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
P0.3/TX*		20	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
*Note: Please	refer to S	ection "	20. Device	Specific Behavior" on page 210.

Table 3.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20) (Continued)

Figure 3.5. TSSOP-20 Package Diagram

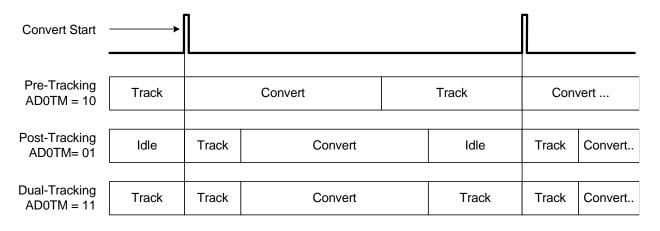
Symbol	Min	Nom	Мах
A			1.20
A1	0.05		0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09	—	0.20
D	6.40	6.50	6.60
е		0.65 BSC.	
E		6.40 BSC.	
E1	4.30	4.40	4.50
L	0.45	0.60	0.75
θ1	0°	—	8°
aaa		0.10	
bbb		0.10	
ddd		0.20	
otes:			

Table 3.5. TSSOP-20 Package Diagram Dimensions

1. All dimensions shown are in millimeters (mm).

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-153, variation AC.

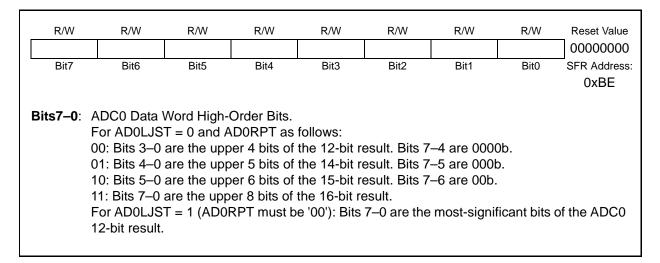

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Post-Tracking Mode is selected when AD0TM is set to 01b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 does not track the input. Rather, the sampling capacitor remains disconnected from the input making the input pin high-impedance until the next convert start signal.

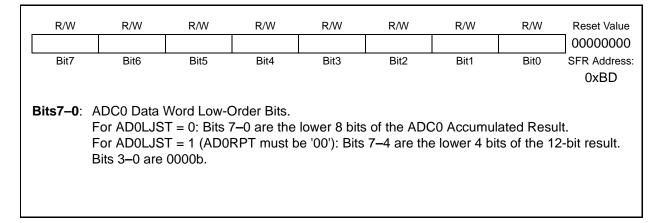
Dual-Tracking Mode is selected when AD0TM is set to 11b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 tracks continuously until the next conversion is started.

Depending on the output connected to the ADC input, additional tracking time, more than is specified in Table 2.3 on page 28, may be required after changing MUX settings. See the settling time requirements described in Section "4.3.6. Settling Time Requirements" on page 60.

4.3.3. Timing


ADC0 has a maximum conversion speed specified in Table 2.3 on page 28. ADC0 is clocked from the ADC0 Subsystem Clock (FCLK). The source of FCLK is selected based on the BURSTEN bit. When BURSTEN is logic 0, FCLK is derived from the current system clock. When BURSTEN is logic 1, FCLK is derived from the Burst Mode Oscillator, which is an independent clock source whose maximum frequency is specified in Table 2.3 on page 28.

When ADC0 is performing a conversion, it requires a clock source that is typically slower than FCLK. The ADC0 SAR conversion clock (SAR clock) is a divided version of FCLK. The divide ratio can be configured using the AD0SC bits in the ADC0CF register. The maximum SAR clock frequency is listed in Table 2.3 on page 28.


ADC0 can be in one of three states at any given time: tracking, converting, or idle. Tracking time depends on the tracking mode selected. For Pre-Tracking Mode, tracking is managed by software and ADC0 starts conversions immediately following the convert start signal. For Post-Tracking and Dual-Tracking Modes, the tracking time after the convert start signal is equal to the value determined by the AD0TK bits plus 2 FCLK cycles. Tracking is immediately followed by a conversion. The ADC0 conversion time is always 13 SAR clock cycles plus an additional 2 FCLK cycles to start and complete a conversion. Figure 4.4 shows timing diagrams for a conversion in Pre-Tracking Mode and tracking plus conversion in Post-Tracking or Dual-Tracking Mode. In this example, repeat count is set to one.

SFR Definition 4.6. ADC0H: ADC0 Data Word MSB

SFR Definition 4.7. ADC0L: ADC0 Data Word LSB

8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/F52xA/F53x/F53xA family has a superset of all the peripherals included with a standard 8051. See Section "1. System Overview" on page 13 for more information about the available peripherals. The CIP-51 includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 8.1 for a block diagram). The CIP-51 core includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput
- 256 Bytes of Internal RAM
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- Integrated Debug Logic
- Program and Data Memory Security

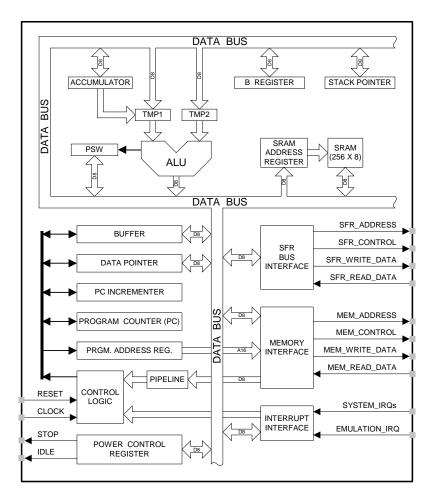


Figure 8.1. CIP-51 Block Diagram

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire (C2) interface. Note that the re-programmable Flash can also be read and written a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Laboratories, Inc. and third party vendors. Silicon Laboratories provides an integrated development environment (IDE) including editor, evaluation compiler, assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the on-chip debug logic to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

8.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

8.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 8.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

SFR Definition 10.4. EIP1: Extended Interrupt Priority 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PMAT	PREG0	PLIN	PCPR	PCPF	PPAC0	PREG0	PWADC0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address:	0xF6
Bit7:	PMAT. Port M							
	This bit sets				rupt.			
	0: Port Match							
Bit6:	1: Port Match		• •					
5110	PREG0: Volt	0 0						
	This bit sets 0: Voltage Re			• •	•			
	1: Voltage Re	•	•	•				
Bit5:	PLIN: LIN Int	•	•	• •	ty level.			
Bito.	This bit sets	•						
	0: LIN interru							
	1: LIN interru							
Bit4:	PCPR: Com				ritv Control.			
	This bit sets							
	0: Comparate							
	1: Comparate	or interrupt	set to high	priority leve	el.			
Bit3:	PCPF: Comp	parator falli	ng Edge Int	errupt Prior	ity Control.			
	This bit sets	the priority	of the Fallin	ng Edge Co	mparator in	terrupt.		
	0: Comparate							
	1: Comparate							
Bit2:	PPAC0: Prog			• • •	Interrupt P	riority Cont	rol.	
	This bit sets							
	0: PCA0 inte							
	1: PCA0 inte							
Bit1:	PREGO: ADO							
	This bit sets				•	•		
	0: ADC0 Cor							
D:40.	1: ADC0 Cor			•	• • •			
Bit0:	PWADC0: A							
	This bit sets							
	0: ADC0 Win			•				
	1: ADC0 Win	noom comp	ansoninter	rupt set to	ingri priority	ievei.		

ramp or during a brownout condition even when V_{DD} is below the specified minimum of 2.0 V. There are two possible ways to handle this transitional period as described below:

If using the on-chip regulator (REG0) at the 2.6 V setting (default), it is recommended that user software set the VDDMON0 threshold to its high setting ($V_{RST-HIGH}$) as soon as possible after reset by setting the VDMLVL bit to 1 in SFR Definition 11.1 (VDDMON). In this typical configuration, no external hardware or additional software routines are necessary to monitor the V_{DD} level.

Note: Please refer to Section "20.5. VDD Monitor (VDDMON0) High Threshold Setting" on page 212 for important notes related to the VDD Monitor high threshold setting in older silicon revisions A and B.

If using the on-chip regulator (REG0) at the 2.1 V setting or if directly driving V_{DD} with REG0 disabled, the user system (software/hardware) should monitor V_{DD} at power-on and also during device operation. The two key parameters that can be affected when $V_{DD} < 2.0$ V are: internal oscillator frequency (Table 2.11 on page 34) and minimum ADC tracking time (Table 2.3 on page 28).

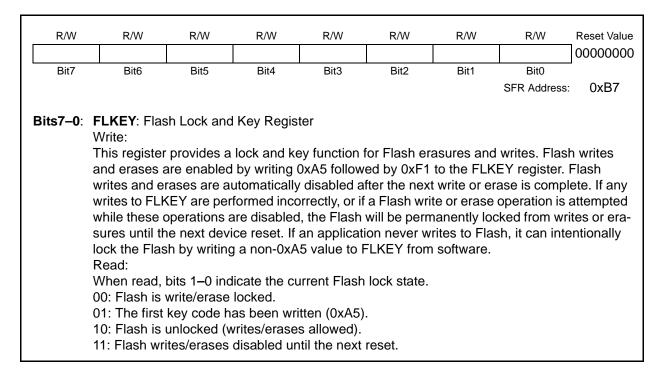
SFR Definition 11.1. VDDMON: V_{DD} Monitor Control

R/W	R	R/W	R	R	R	R	R	Reset Value			
VDMEN	VDDSTAT	VDMLVL	VDM1EN	Reserved	Reserved	Reserved	Reserved	1v010000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
		SFR Address: 0xFF									
Bit7:	VDMEN: V _{DI}	-			.,						
	This bit turns										
	resets until it										
	The V _{DD} Mo										
	ing the V _{DD}							a system			
	reset. See T			r the minim	um V _{DD} Mo	nitor turn-o	n time.				
	0: V _{DD} Monit										
	1: V _{DD} Monit		(default).								
Bit6:	VDDSTAT: V	66									
	This bit indic		•			•	t).				
	0: V _{DD} is at o					nold.					
	1: V _{DD} is abo	ove the V _{DE}	Monitor (V	/DDMON0)	Threshold.						
Bit5:	VDMLVL: V	_{DD} Level Se	lect.								
	0: V _{DD} Monit										
	1: V _{DD} Monit	tor (VDDM0	ON0) Thres	hold is set to	o V _{RST-HIGH}	_I . This settir	ng is require	∍d for any			
	system that i	includes co	de that write	es to and/or	erases Fla	sh.					
Bit4:	VDM1EN [*] : L	evel-sensit	ive V _{DD} Mo	nitor Enable	e (VDDMON	I 1).					
	This bit turns	s the V _{DD} m	ionitor circu	it on/off. If t	urned on, it	is also sele	ected as a re	eset			
	source, and	can genera	te a system	n reset.							
	0: Level-sen										
	1: Level-sen			•	,						
Bits3–0:	RESERVED	. Read = Va	ariable. Writ	e = don't ca	ire.						
*Note: Availa	able only on the	e C8051F52	<-C/F53x-C c	levices							

5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

12.2.3. System Clock

- 1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.


Additional Flash recommendations and example code can be found in application note "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

SFR Definition 12.1. PSCTL: Program Store R/W Control

R	R	R	R	R	R	R/W	R/W	Reset Value
—	—	—	—	—	_	PSEE	PSWE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0x8F
Bits7–2: Bit1:	UNUSED: R PSEE: Progr Setting this b to be erased	am Store Ei bit (in combir	rase Enabl nation with	e PSWE) allo	ws an entir			
	Flash memo tion addresse 0: Flash prog 1: Flash prog	ry using the ed by the Mo gram memol gram memol	MOVX ins OVX instru ry erasure ry erasure	truction will iction. The v disabled. enabled.	erase the e	entire page	that contair	ns the loca-
Bit0:	PSWE : Prog Setting this b write instruct 0: Writes to F 1: Writes to F memory.	bit allows wri ion. The Fla Flash progra	iting a byte ish locatior am memory	e of data to th n should be y disabled.	erased befo	ore writing o	data.	
Note: See	Section "12.1. requirements		-	-	page 113 for	⁻ minimum V _l	_{DD} and temp	erature

SFR Definition 12.2. FLKEY: Flash Lock and Key

SF Signals DFN10	ΈF		XTAL1	XTAL2		CNVSTR
PIN I/O	<u>ч</u>	1	2	3	4	້ວ 5
TX0			_			
RX0						
ТХО	-					
RX0						
SCK						
MISO			l			
MOSI						
NSS*						
LIN-TX						
LIN_RX			l			
CP0						
CP0A						
/SYSCLK						
CEX0						
CEX1						
CEX2						
ECI						
Т0						
T1						
	0	0	0	0	0	0

Note: 4-Wire SPI Only.

Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1–NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

13.2. Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- 4. Assign Port pins to desired peripherals using the XBRn registers.
- 5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 13.4 for the PnMDIN register details.

Important Note: Port 0 and Port 1 pins are 5.25 V tolerant across the operating range of V_{REGIN}.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. When the WEAKPUD bit in XBR1 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 and for pins configured for analog input mode to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. **Port output drivers** are disabled while the Crossbar is disabled.

SFR Definition 14.4. OSCXCN: External Oscillator Control

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
XTLVLD		XOSCMD1 X		eserved	XFCN2	XFCN1	XFCN0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Address	:: 0xB1				
Bit7:	0: Crystal O 1: Crystal O	ystal Oscillat scillator is un scillator is rur	used or not y nning and sta	/et stable. able.		(OSCMD :	= 11x.)					
Bits6–4:	XOSCMD2–0 : External Oscillator Mode Bits. 00x: External Oscillator circuit off.											
B:42	010: Externa 011: Externa 100: RC Ose 101: Capaci 110: Crystal 111: Crystal	al CMOS Cloo al CMOS Cloo cillator Mode. tor Oscillator Oscillator Mo Oscillator Mo	ck Mode. ck Mode with Mode. ode. ode with divid	de by 2 sta	-							
Bita2		P. Read = 0b;			al Dita							
Bits2–0:		External Oscil e table below	•	ncy Contr	ol Bits.							
	XFCN	Crystal (XC	SCMD = 11	x) RC	(XOSCMD	= 10x)	C (XOSCM	/ID = 10x)				
	000	f ≤ 2	20 kHz		f ≤ 25 kH	lz	K Factor = 0.87					
	001	20 kHz <	< f ≤ 58 kHz	25	kHz < f ≤ 5	50 kHz	K Factor = 2.6					
	010	58 kHz <	$f \le 155 \text{ kHz}$	50 I	$Hz < f \le 1$	00 kHz	K Factor = 7.7					
	011	155 kHz <	< f ≤ 415 kHz	100	kHz < f ≤ 2	200 kHz	K Factor = 22					
	100	415 kHz <	: f ≤ 1.1 MHz	200	kHz < f ≤ 4	l00 kHz	K Facto	or = 65				
	101	1.1 MHz <	< f ≤ 3.1 MHz	400	$kHz < f \le 8$	800 kHz	K Facto	r = 180				
	110	3.1 MHz <	< f ≤ 8.2 MHz	800	$kHz < f \le 1$.6 MHz	K Factor = 664					
	111	8.2 MHz «	< f ≤ 25 MHz	1.6	ИHz < f ≤ З	3.2 MHz	K Factor	= 1590				
-	Choose XFC (Circuit from	from Figure 1 CN value to m n Figure 14.1,	natch crystal Option 2; X	or resona OSCMD =	tor freque = 10x)	ncy.						
	_	CN value to m	•	ncy range	:							
	•)/(R x C), w										
	•	y of clock in N or value in pF										
	•	esistor value										
C Mode (Circuit from I	-igure 14.1, C	Option 3; XO		,							
		actor (KF) for		on freque	ncy desire	d:						
	-	x V _{DD}), where y of clock in N										
		or value the X		ρF								
	•	r Supply on N	•	F								

15.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 15.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

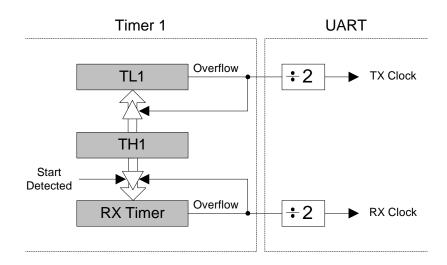


Figure 15.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 184). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. The UART0 baud rate is determined by Equation 15.1-A and Equation 15.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 15.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (8-bit auto-reload mode reload value). Timer 1 clock frequency is selected as described in Section "18. Timers" on page 182. A quick reference for typical baud rates and system clock frequencies is given in Table 15.1. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

SFR Definition 17.14. LIN0ERR: LIN0 ERROR Register

R	R	R	R	R	R	R	R	Reset Value					
K		n	SYNCH	PRTY	TOUT	СНК	BITERR						
D'17	Dite	Dite	Bit4	Bit3	Bit2	Bit1		0000000					
Bit7	Bit6	Bit5	Bit0										
	Address: 0x0A (indire												
Rite7_5	UNUSED. R	aad - 000k	o. Write − de	n't care									
Bit4:	•••••	000			le only)								
DIL4.	SYNCH: Synchronization Error Bit (slave mode only). 0: No error with the SYNCH FIELD has been detected.												
	1: Edges of t		-			m tolerance	`						
Bit3:	PRTY: Parity												
Bito.	0: No parity												
	1: A parity er												
Bit2:	TOUT: Time			•									
	0: A timeout	error has r	not been det	ected.									
	1: A timeout	error has b	been detecte	ed. This erro	or is detecte	d wheneve	r one of the	followina					
	conditions is							5					
	•The master	is expectir	ng data from	a slave an	d the slave	does not re	spond.						
	•The slave is	•	-				•						
	•A frame is r												
	•The applica end of th		ot set the D n of the first				it (LIN0CTR	L.7) until the					
Bit1:	CHK: Check	•											
	0: Checksun	n error has	not been de	etected.									
	1: Checksun	n error has	been detect	ted.									
Bit0:	BITERR: Bit	Transmiss	ion Error Bit	t.									
	0: No error ir	n transmiss	sion has bee	n detected									
	1: The bit va	lue monito	red during tr	ansmissior	is different	than the bit	t value sent.						
			-										

SFR Definition 18.3. CKCON: Clock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
—	_	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Addres	s: 0x8E			
Bit7–6:	RESERVED . Read = 0b; Must write 0b.										
Bit5:	T2MH : Timer 2 High Byte Clock Select.										
	This bit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8- bit timer mode. T2MH is ignored if Timer 2 is in any other mode.										
	bit timer mode. T2MH is ignored if Timer 2 is in any other mode. 0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.										
	1: Timer 2 high byte uses the system clock. T2ML : Timer 2 Low Byte Clock Select. This bit selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer										
Bit4:											
	mode, this bit selects the clock supplied to the lower 8-bit timer.										
	0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.										
Bit3:	1: Timer 2 low byte uses the system clock.										
DILJ.	T1M : Timer 1 Clock Select. This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1.										
	0: Timer 1 uses the clock defined by the prescale bits, SCA1–SCA0.										
	1: Timer 1 uses the system clock.										
Bit2:	TOM: Timer 0 Clock Select.										
	This bit selects the clock source supplied to Timer 0. T0M is ignored when C/T0 is set to										
	logic 1.	-		1.0.11			0040				
	0: Counter/Timer 0 uses the clock defined by the prescale bits, SCA1–SCA0.										
Bits1_0 [.]	1: Counter/Timer 0 uses the system clock. SCA1–SCA0 : Timer 0/1 Prescale Bits.										
Bitor o.					plied to Tin	ner 0 and Ti	mer 1 if cor	nfigured to			
	These bits control the division of the clock supplied to Timer 0 and Timer 1 if configured to use prescaled clock inputs.										
	SCA1	SCA0	Presc	aled Clock							
	0	0 S	ystem clock	divided by	12						
	0	1 S	ystem clock	divided by	4						
	1	0 S	ystem clock	divided by	48						
	1	1 E	xternal clock	divided by	8						
	Note: External clock divided by 8 is synchronized with										
	the system clock.										

19.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 19.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note that PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 19.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode	
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn	
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn	
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn	
Х	1	0	0	1	0	0	Х	Software Timer	
Х	1	0	0	1	1	0	Х	High Speed Output	
Х	1	0	0	Х	1	1	Х	Frequency Output	
0	1	0	0	Х	0	1	Х	8-Bit Pulse Width Modulator	
1	1	0	0	Х	0	1	Х	16-Bit Pulse Width Modulator	
X = Don't Care									

Table 19.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

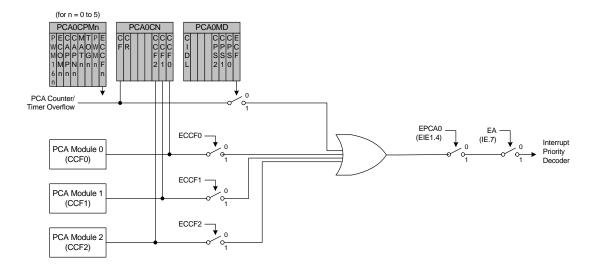


Figure 19.3. PCA Interrupt Block Diagram

DOCUMENT CHANGE LIST

Revision 0.3 to 0.4

- Updated all specification tables.
- Added 'F52xA and 'F53xA information.
- Updated the Selectable Gain section in the ADC section.
- Updated the External Crystal Example in the Oscillators section.
- Updated the LIN section.

Revision 0.4 to 0.5

- Updated all specification tables.
- Updated Figures 1.1, 1.2, 1.3, and 1.4.
- Updated Section 4 pinout diagrams and tables.

Revision 0.5 to 1.0

- Updated all specification tables and moved them to one section.
- Added Figure 3.1 and Figure 3.2.
- Updated Section 4 pinout diagrams and tables.
- Updated Figure 5.6.
- Added Figure 15.3.
- Updated equations in Section 17.
- Updated Figure 21.3.

Revision 1.0 to 1.1

- Updated Table 2.3, "ADC0 Electrical Characteristics," on page 28 with new Burst Mode Oscillator specification, new Power Supply Current maximum, and made corrections to Temperature Sensor Offset and Offset Error conditions.
- Updated Table 2.9, "Flash Electrical Characteristics," on page 33 with new Flash Write and Erase timing.
- Made correction in Equivalent Gain table in Section "4.4. Selectable Gain" on page 60.
- Updated Section "11.2. Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)" on page 108 regarding higher V_{DD} monitor threshold.

Revision 1.1 to 1.2

- Updated "Ordering Information" on page 14 and Table 1.1, "Product Selection Guide (Recommended for New Designs)," on page 14 to include -A (Automotive) devices and automotive qualification information.
- Updated Table 2.3, "ADC0 Electrical Characteristics," on page 28 to include Temperature Sensor tracking time requirement and update INL maximum specification.
- Updated Figure 3.2. 'DFN-10 Package Diagram' on page 38 with new Pin-1 detail drawing.
- Updated Table 8.1, "CIP-51 Instruction Set Summary," on page 83 with correct CJNE and CPL timing.
- Updated "Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)" on page 108 to clarify the recommendations for the VDD monitor.

Note: All items from the C8051F52xA-F53xA Errata dated August 26, 2009 are incorporated into this data sheet.

- Replaced minimum VDD value for Flash write/erase operations in Table 2.9 on page 33 with references to the V_{RST-HIGH} theshold specified in Table 2.8 on page 32.
- Removed Output Low Voltage values for condition 'V_{REGIN} = 1.8 V' from Table 2.10, "Port I/O DC Electrical Characteristics," on page 33.
- Corrected minor typo ("IFCN = 111b") in Table 2.11, "Internal Oscillator Electrical Characteristics," on page 34.
- Removed the typical value and added the maximum value for the 'Wake-up Time From Suspend' specification with the 'ZTCEN = 0' condition in Table 2.11, "Internal Oscillator Electrical Characteristics," on page 34.
- Added Internal Oscillator Supply current values at specific temperatures for conditions 'ZTCEN = 1' and 'ZTCEN = 0' in Table 2.11, "Internal Oscillator Electrical Characteristics," on page 34. Also updated the table name to clarify that the specifications apply to the internal oscillator.
- Updated Section "1.1. Ordering Information" on page 14 and Table 1.1 with new C8051F52x-C/F53x-C part numbers.
- Updated Table 1.2, "Product Selection Guide (Not Recommended for New Designs)," on page 15 to include C8051F52xA/F53xA part numbers.
- Updated Figure 1.1, Figure 1.2, Figure 1.3, and Figure 1.4 titles to clarify applicable silicon revisions.
- Added figure references to pinout diagrams (Figure 3.1, Figure 3.4, and Figure 3.7) and updated labels to clarify applicable part numbers.
- Updated Table 3.1, Table 3.4, and Table 3.7 to indicate pinouts applicable to C8051F52x-C/F53x-C devices.
- Added note in Section "6. Voltage Regulator (REG0)" on page 74 to indicate the need for bypass capacitors for voltage regulator stability.
- Updated Figure 11.1 on Page 106 and text in Section "11.1. Power-On Reset" on page 107 and Section "11.2. Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)" on page 108 to describe the new level-sensitive V_{DD} monitor (VDDMON1).
- Updated SFR Definition 11.1. "VDDMON: VDD Monitor Control" on page 109 to include the VDM1EN bit (bit 4) that controls the new level-sensitive V_{DD} monitor (VDDMON1).
- Added notes in Section 11.1 on page 107, Section 11.2 on page 108, and Section 11.3 on page 110 with references to relevant parts of Section "20. Device Specific Behavior" on page 210.
- Moved some notes related to VDD Monitor (VDDMON0) High Threshold setting (V_{RST-HIGH}) from Section 11.2 on page 108 to Section 20.5 on page 212 in Section "20. Device Specific Behavior".
- Added Section "11.2.1. VDD Monitor Thresholds and Minimum VDD" on page 108 to describe the recommendations for minimum V_{DD} as it relates to the V_{DD} monitor thresholds.
- Clarified text in Section "11.7. Flash Error Reset" on page 110.
- Clarified text in items 2, 3 and 4 in Section "12.2.1. V_{DD} Maintenance and the V_{DD} monitor" on page 115 to reference appropriate specification tables and specify "VDDMON0".

