



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                          |
|----------------------------|-----------------------------------------------------------------|
| Core Processor             | 8051                                                            |
| Core Size                  | 8-Bit                                                           |
| Speed                      | 25MHz                                                           |
| Connectivity               | SPI, UART/USART                                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT              |
| Number of I/O              | 16                                                              |
| Program Memory Size        | 4KB (4K x 8)                                                    |
| Program Memory Type        | FLASH                                                           |
| EEPROM Size                | -                                                               |
| RAM Size                   | 256 x 8                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.25V                                                    |
| Data Converters            | A/D 16x12b                                                      |
| Oscillator Type            | Internal                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                              |
| Mounting Type              | Surface Mount                                                   |
| Package / Case             | 20-VFQFN Exposed Pad                                            |
| Supplier Device Package    | 20-QFN (4x4)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f534a-im |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Table 2.11. Internal Oscillator Electrical Characteristics

 $V_{DD}$  = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified; Using factory-calibrated settings.

| Parameter                            | Conditions                                                          | Min         | Тур               | Max         | Units                 |
|--------------------------------------|---------------------------------------------------------------------|-------------|-------------------|-------------|-----------------------|
| Oscillator Frequency <sup>1</sup>    | $\frac{\text{IFCN} = 111\text{b}}{\text{VDD} \ge \text{VREGMIN}^2}$ | 24.5 - 0.5% | 24.5 <sup>3</sup> | 24.5 + 0.5% | MHz                   |
|                                      | IFCN = 111b<br>VDD < VREGMIN <sup>2</sup>                           | 24.5 – 1.0% | 24.5 <sup>3</sup> | 24.5 + 1.0% |                       |
|                                      | Oscillator On<br>OSCICN[7:6] = 11b                                  |             | 800               | 1100        | μA                    |
|                                      | Oscillator Suspend<br>OSCICN[7:6] = 00b<br>ZTCEN = 1                |             |                   |             |                       |
|                                      | T = 25 °C                                                           |             | 67                | _ '         | μA                    |
| Oscillator Supply Current            | T = 85 °C                                                           |             | 77                | _ '         | μA                    |
| (from V <sub>DD</sub> )              | T = 125 °C                                                          |             | 117               | 300         | μA                    |
|                                      | Oscillator Suspend<br>OSCICN[7:6] = 00b<br>ZTCEN = 0                |             |                   |             |                       |
|                                      | T = 25 °C                                                           |             | 2                 | _ '         | μA                    |
|                                      | T = 85 °C                                                           |             | 3                 | _ '         | μA                    |
|                                      | T = 125 °C                                                          |             | 50                | _ '         | μA                    |
| Wake-Up Time From Sus-<br>pend       | $OSCICN[7:6] = 00b$ $ZTCEN = 0^{4}$                                 | —           | _                 | 1           | μs                    |
|                                      | OSCICN[7:6] = 00b<br>ZTCEN = 1                                      | —           | 5                 |             | Instruction<br>Cycles |
| Power Supply Sensitivity             | Constant Temperature                                                |             | 0.10              |             | %/V                   |
| Temperature Sensitivity <sup>5</sup> | Constant Supply                                                     |             | ĺ                 |             |                       |
|                                      | TC <sub>1</sub>                                                     |             | 5.0               | _ '         | ppm/°C                |
|                                      | TC <sub>2</sub>                                                     |             | -0.65             | _ '         | ppm/°C <sup>2</sup>   |

Notes:

1. See Section "11.2.1. VDD Monitor Thresholds and Minimum VDD" on page 108 for minimum  $V_{DD}$  requirements.

- VREGMIN is the minimum output of the voltage regulator for its low setting (REG0CN: REG0MD = 0b). See Table 2.6, "Voltage Regulator Electrical Specifications," on page 30.
- 3. This is the average frequency across the operating temperature range.
- 4. See "20.7. Internal Oscillator Suspend Mode" on page 212 for ZTCEN setting in older silicon revisions.
- 5. Use temperature coefficients  $TC_1$  and  $TC_2$  to calculate the new internal oscillator frequency using the following equation:

$$f(T) = f0 x (1 + TC_1 x (T - T0) + TC_2 x (T - T0)^2)$$

where f0 is the internal oscillator frequency at 25 °C and T0 is 25 °C.



#### 4.3.4. Burst Mode

Burst Mode is a power saving feature that allows ADC0 to remain in a very low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a very low power state, accumulates 1, 4, 8, or 16 samples using an internal Burst Mode Oscillator, then re-enters a very low power state. Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions then enter a very low power state within a single system clock cycle, even if the system clock is slow (e.g. 32.768 kHz), or suspended.

Burst Mode is enabled by setting BURSTEN to logic 1. When in Burst Mode, AD0EN controls the ADC0 idle power state (i.e., the state ADC0 enters when not tracking or performing conversions). If AD0EN is set to logic 0, ADC0 is powered down after each burst. If AD0EN is set to logic 1, ADC0 remains enabled after each burst. On each convert start signal, ADC0 is awakened from its Idle Power State. If AD0C0 is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the AD0PWR bits. Otherwise, ADC0 will start tracking and converting immediately. Figure 4.5 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4.

Important Note: When Burst Mode is enabled, only Post-Tracking and Dual-Tracking modes can be used.

When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADC0 End of Conversion Interrupt Flag (AD0INT) will be set after "repeat count" conversions have been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

**Note:** When using Burst Mode, care must be taken to issue a convert start signal no faster than once every four SYSCLK periods. This includes external convert start signals.



### SFR Definition 4.4. ADC0MX: ADC0 Channel Select

| R/W      | R/W        | R/W     | R/W             | R/W          | R/W   | R/W  | R/W  | Reset Value  |
|----------|------------|---------|-----------------|--------------|-------|------|------|--------------|
| -        | -          | -       |                 |              | ADUMX |      |      | 00011111     |
| Bit7     | Bit6       | Bit5    | Bit4            | Bit3         | Bit2  | Bit1 | Bit0 | SFR Address: |
|          |            |         |                 |              |       |      |      | 0xBB         |
| Bits7_5  | UNUSED R   | ad – 00 | )0h· Write – c  | lon't care   |       |      |      |              |
| Bits4–0: |            | AMUX0   | Positive Inpu   | ut Selection | า     |      |      |              |
|          |            |         |                 |              |       |      |      |              |
|          | AD0MX4–0   |         | ADC0 Input      | Channel      |       |      |      |              |
|          | 00000      |         | P0.0            |              |       |      |      |              |
|          | 00001 P0.1 |         |                 |              |       |      |      |              |
|          | 00010      |         | P0.2            |              |       |      |      |              |
|          | 00011      |         | P0.3            |              |       |      |      |              |
|          | 00100      |         | P0.4            |              |       |      |      |              |
|          | 00101      |         | P0.5            |              |       |      |      |              |
|          | 00110      |         | P0.6*           |              |       |      |      |              |
|          | 00111      |         | P0.7*           |              |       |      |      |              |
|          | 01000      |         | P1.0*           |              |       |      |      |              |
|          | 01001      |         | P1.1*           |              |       |      |      |              |
|          | 01010      |         | P1.2*           |              |       |      |      |              |
|          | 01011      |         | P1.3*           |              |       |      |      |              |
|          | 01100      |         | P1.4*           |              |       |      |      |              |
|          | 01101      |         | P1.5*           |              |       |      |      |              |
|          | 01110      |         | P1.6*           |              |       |      |      |              |
|          | 01111      |         | P1.7*           |              |       |      |      |              |
|          | 11000      |         | Temp Senso      | or           |       |      |      |              |
|          | 11001      |         | V <sub>DD</sub> |              |       |      |      |              |
|          | 11010 1111 | 1       |                 |              |       |      |      |              |



### SFR Definition 4.8. ADC0CN: ADC0 Control

| R/W      | R/W                                              | R/W           | R/W           | R/W              | R/W            | R/W            | R/W            | Reset Value  |  |  |
|----------|--------------------------------------------------|---------------|---------------|------------------|----------------|----------------|----------------|--------------|--|--|
| AD0EN    | BURSTEN                                          | <b>AD0INT</b> | AD0BUSY       | <b>AD0WINT</b>   | <b>AD0LJST</b> | AD0CM1         | AD0CM0         | 00000000     |  |  |
| Bit7     | Bit6                                             | Bit5          | Bit4          | Bit3             | Bit2           | Bit1           | Bit0           | SFR Address: |  |  |
|          |                                                  |               |               |                  |                | (bi            | t addressable) | ) 0xE8       |  |  |
|          |                                                  |               |               |                  |                |                |                |              |  |  |
| Bit7:    | AD0EN: AD0                                       | C0 Enable I   | Bit.          |                  |                |                |                |              |  |  |
|          | 0: ADC0 Disabled. ADC0 is in low-power shutdown. |               |               |                  |                |                |                |              |  |  |
|          | 1: ADC0 Ena                                      | abled. ADC    | 0 is active a | and ready fo     | or data conv   | versions.      |                |              |  |  |
| Bit6:    | BURSTEN: /                                       | ADC0 Burs     | t Mode Ena    | ble Bit.         |                |                |                |              |  |  |
|          | 0: ADC0 Bur                                      | st Mode Di    | sabled.       |                  |                |                |                |              |  |  |
| D:45     | 1: ADC0 Bur                                      | st Mode Er    | habled.       |                  |                |                |                |              |  |  |
| BI()     |                                                  | DU Convers    | sion Comple   |                  | Flag.          | not time AD(   |                | loorod       |  |  |
|          | 1: ADC0 has                                      | completed     | eleu a uala   | version          | Since the la   |                | UNIT Was C     | ieareu.      |  |  |
| Rit4     |                                                  |               | Rit           |                  |                |                |                |              |  |  |
| DITT.    | Read:                                            | (DOC Duby     | Dit.          |                  |                |                |                |              |  |  |
|          | 0: ADC0 con                                      | version is a  | complete or   | a conversio      | on is not cu   | rrently in pro | ogress. AD     | 0INT is set  |  |  |
|          | to logic 1 on                                    | the falling e | edge of AD    | OBUSY.           |                | , ,            | 0              |              |  |  |
|          | 1: ADC0 con                                      | version is i  | n progress.   |                  |                |                |                |              |  |  |
|          | Write:                                           |               |               |                  |                |                |                |              |  |  |
|          | 0: No Effect.                                    |               |               |                  |                |                |                |              |  |  |
| -        | 1: Initiates A                                   | DC0 Conve     | ersion if AD  | 0CM1 - 0 = 0     | )0b            |                |                |              |  |  |
| Bit3:    | ADOWINT: A                                       | DC0 Windo     | ow Compar     | e Interrupt H    | -lag.          |                |                |              |  |  |
|          |                                                  | be cleared    | t by soπwar   | e.<br>Matak kaa  | not occurre    | nd ainaa thir  | a flog woo k   | oot algored  |  |  |
|          | 1: ADC0 Win                                      | dow Comp      | arison Data   | a match has      | occurred       |                | s liay was lo  | ast cleared. |  |  |
| Bit2:    | ADOLJST: A                                       | DC0 Left J    | ustifv Selec  | t maton nao      | ooouncu.       |                |                |              |  |  |
|          | 0: Data in AD                                    | COH:ADC       | 0L registers  | is right just    | ified.         |                |                |              |  |  |
|          | 1: Data in AD                                    | COH:ADC       | 0L registers  | s is left justif | ied. This op   | tion should    | not be use     | d with a     |  |  |
|          | repeat count                                     | greater that  | an 1 (when a  | AD0RPT1-         | 0 is 01b, 10   | b, or 11b).    |                |              |  |  |
| Bits1-0: | AD0CM1-0:                                        | ADC0 Star     | t of Conver   | sion Mode S      | Select.        |                |                |              |  |  |
|          | 00: ADC0 co                                      | nversion in   | itiated on e  | very write o     | f 1 to AD0B    | BUSY.          |                |              |  |  |
|          | 01: ADC0 co                                      | nversion in   | itiated on o  | verflow of T     | imer 1.        |                |                |              |  |  |
|          | 10: ADC0 co                                      | nversion in   | itiated on ri | sing edge o      | f external C   | NVSTR.         |                |              |  |  |
|          | TT: ADCU CO                                      | nversion in   | itiated on o  | vernow of 1      | imer 2.        |                |                |              |  |  |
|          |                                                  |               |               |                  |                |                |                |              |  |  |
|          |                                                  |               |               |                  |                |                |                |              |  |  |
|          |                                                  |               |               |                  |                |                |                |              |  |  |



**Important Note About the V<sub>REF</sub> Pin:** Port pin P0.0 is used as the external V<sub>REF</sub> input and as an output for the internal V<sub>REF</sub>. When using either an external voltage reference or the internal reference circuitry, P0.0 should be configured as an analog pin, and skipped by the Digital Crossbar. To configure P0.0 as an analog pin, clear Bit 0 in register P0MDIN to 0. To configure the Crossbar to skip P0.0, set Bit 0 in register P0SKIP to 1. Refer to Section "13. Port Input/Output" on page 120 for complete Port I/O configuration details.

The TEMPE bit in register REF0CN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

| R/W       | R/W                                          | R/W                        | R/W           | R/W             | R/W                 | R/W           | R/W           | Reset Value  |  |
|-----------|----------------------------------------------|----------------------------|---------------|-----------------|---------------------|---------------|---------------|--------------|--|
| Reserve   | d Reserved                                   | ZTCEN                      | REFLV         | REFSL           | TEMPE               | BIASE         | REFBE         | 00000000     |  |
| Bit7      | Bit6                                         | Bit5                       | Bit4          | Bit3            | Bit2                | Bit1          | Bit0          | SFR Address: |  |
|           |                                              |                            |               |                 |                     |               |               | 0xD1         |  |
|           |                                              |                            |               |                 |                     |               |               |              |  |
| Bits7–6:  | RESERVED                                     | . Read = 00                | )b. Must wri  | te 00b.         |                     |               |               |              |  |
| Bit5:     | <b>ZTCEN</b> : Zero-TempCo Bias Enable Bit*. |                            |               |                 |                     |               |               |              |  |
|           | 0: ZeroTC B                                  | ias Genera                 | tor automat   | ically enable   | ed when ne          | eded.         |               |              |  |
| D'44      | 1: Zero IC B                                 | las Genera                 | tor forced o  | n.              |                     |               |               |              |  |
| Bit4:     | <b>REFLV</b> : Volta                         | age Refere                 | nce Output    | Level Selec     | X.<br>internel volt | laga rafara   |               |              |  |
|           |                                              | us the outp                | ut voltage i  |                 | internal von        | lage referen  | ice.          |              |  |
|           | 1. Internal vo                               | ltage refer                | ence set to   | 1.5 v.<br>2 2 V |                     |               |               |              |  |
| Bit3      | REFSL: Volt                                  | age Refere                 | nce Select    | <i></i> v.      |                     |               |               |              |  |
|           | This bit sele                                | cts the sour               | ce for the ir | nternal volta   | ge referenc         | e.            |               |              |  |
|           | 0: V <sub>RFF</sub> pin u                    | used as vol                | tage referer  | nce.            | 0                   |               |               |              |  |
|           | 1: V <sub>DD</sub> used                      | as voltage                 | reference.    |                 |                     |               |               |              |  |
| Bit2:     | TEMPE: Ten                                   | nperature S                | ensor Enab    | ole Bit.        |                     |               |               |              |  |
|           | 0: Internal Te                               | emperature                 | Sensor off.   |                 |                     |               |               |              |  |
|           | 1: Internal Te                               | emperature                 | Sensor on.    |                 |                     |               |               |              |  |
| Bit1:     | BIASE: Inter                                 | nal Analog                 | Bias Gener    | rator Enable    | e Bit.              |               |               |              |  |
|           | 0: Internal A                                | nalog Bias                 | Generator a   | automaticall    | y enabled w         | vhen neede    | ed.           |              |  |
| D'40      | 1: Internal A                                | nalog Bias                 | Generator o   | n.              |                     |               |               |              |  |
| Bit0:     | REFBE: Inte                                  | ernal Refere               | nce Butter    | Enable Bit.     |                     |               |               |              |  |
|           | 1. Internal R                                | elelence Bi<br>eference Bi | ullei ulsable | od Internal v   | voltano rofo        | ronco drivo   | n on the V.   | nin          |  |
|           |                                              |                            |               |                 | illaye rele         |               |               | REF PIII.    |  |
| *Note: Se | e Section "20.7                              | / Internal Oc              | cillator Susp | and Mode" o     | n naga 212 f        | or a note rel | ated to the 7 | TCEN bit in  |  |
| 11010.00  | older silicon re                             | evisions.                  | onator ousp   |                 | 11 page 2121        |               |               |              |  |
|           |                                              |                            |               |                 |                     |               |               |              |  |
|           |                                              |                            |               |                 |                     |               |               |              |  |

### SFR Definition 5.1. REF0CN: Reference Control



### SFR Definition 6.1. REG0CN: Regulator Control

|         | DAM                                            | P             | DAM             | P             | P       |      | 5            | Deschilde   |  |  |
|---------|------------------------------------------------|---------------|-----------------|---------------|---------|------|--------------|-------------|--|--|
| R/W     | R/W                                            | R             | R/W             | ĸ             | R       | ĸ    | R            | Reset Value |  |  |
| REGDIS  | Reserved                                       | —             | REG0MD          | —             | —       | —    | DROPOUT      | 01010000    |  |  |
| Bit7    | Bit6                                           | Bit5          | Bit4            | Bit3          | Bit2    | Bit1 | Bit0         |             |  |  |
|         |                                                |               |                 |               |         |      | SFR Address: | 0xC9        |  |  |
|         |                                                |               |                 |               |         |      |              |             |  |  |
| Bit7:   | <b>REGDIS</b> : Voltage Regulator Disable Bit. |               |                 |               |         |      |              |             |  |  |
|         | This bit disat                                 | oles/enable   | s the Voltag    | e Regulato    | r.      |      |              |             |  |  |
|         | 0: Voltage Re                                  | egulator Er   | abled.          | , 0           |         |      |              |             |  |  |
|         | 1: Voltage Re                                  | equlator Di   | sabled.         |               |         |      |              |             |  |  |
| Bit6:   | RESERVED                                       | . Read = 1k   | . Must write    | ə 1b.         |         |      |              |             |  |  |
| Bit5:   | UNUSED. R                                      | ead = 0b. V   | Vrite = don'i   | t care.       |         |      |              |             |  |  |
| Bit4:   | REGOMD: Vo                                     | oltage Reg    | ulator Mode     | Select Bit.   |         |      |              |             |  |  |
|         | This bit selec                                 | cts the Volta | age Regulat     | tor output vo | oltage. |      |              |             |  |  |
|         | 0: Voltage Re                                  | egulator ou   | tout is 2.1 \   | ·. ·          | 5       |      |              |             |  |  |
|         | 1: Voltage Re                                  | egulator ou   | tput is $2.6$ \ | / (default).  |         |      |              |             |  |  |
| Bits3-1 |                                                | ead = 000h    | Write = $dc$    | n't care      |         |      |              |             |  |  |
| Bit0    | DROPOUT                                        | Voltage Re    | gulator Dro     | nut Indicat   | or Bit  |      |              |             |  |  |
| Bitt.   | 0: Voltage R                                   | oulator is    | not in drong    |               | or Bit. |      |              |             |  |  |
|         | 1: Voltage R                                   | aulator is    | in or noor d    | ropout        |         |      |              |             |  |  |
|         | i. voltage Re                                  | eguiator is   | in or near u    | iopoul.       |         |      |              |             |  |  |



| R/W                     | R/W                                                                                                                                                                       | R/W                                                                                                                                                                     | / R/W                                                                                                                                                                                                                                                   | R/W                                                                                                                                        | R/W                                                                                                                | R/W                                                     | R                                  | Reset Valu       |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------|------------------|
| CY                      | AC                                                                                                                                                                        | F0                                                                                                                                                                      | RS1                                                                                                                                                                                                                                                     | RS0                                                                                                                                        | OV                                                                                                                 | F1                                                      | PARITY                             | 0000000          |
| Bit7                    | Bit6                                                                                                                                                                      | Bit5                                                                                                                                                                    | Bit4                                                                                                                                                                                                                                                    | Bit3                                                                                                                                       | Bit2                                                                                                               | Bit1                                                    | Bit0                               | Bit<br>Addressah |
|                         |                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                    |                                                         | SFR Address                        | : 0xD0           |
| Bit7:                   | CY: Carry                                                                                                                                                                 | / Flag.                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                    |                                                         |                                    |                  |
|                         | This bit is                                                                                                                                                               | set when                                                                                                                                                                | the last arithmet                                                                                                                                                                                                                                       | ic operatio                                                                                                                                | n resulted i                                                                                                       | n a carry (a                                            | addition) or a                     | a borrow         |
|                         | (subtracti                                                                                                                                                                | on). It is cl                                                                                                                                                           | eared to 0 by all                                                                                                                                                                                                                                       | other arith                                                                                                                                | metic opera                                                                                                        | ations.                                                 | ,                                  |                  |
| it6:                    | AC: Auxil                                                                                                                                                                 | iary Carry                                                                                                                                                              | Flag                                                                                                                                                                                                                                                    |                                                                                                                                            |                                                                                                                    |                                                         |                                    |                  |
|                         | This bit is                                                                                                                                                               | set when                                                                                                                                                                | the last arithmeti                                                                                                                                                                                                                                      | c operatior                                                                                                                                | resulted in                                                                                                        | n a carry int                                           | o (addition)                       | or a borro       |
|                         | from (sub                                                                                                                                                                 | traction) th                                                                                                                                                            | ne high order nib                                                                                                                                                                                                                                       | ble. It is cle                                                                                                                             | eared to 0 b                                                                                                       | by all other                                            | arithmetic o                       | perations        |
| it5:                    | F0: User                                                                                                                                                                  | Flag 0.                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                    |                                                         |                                    |                  |
|                         | This is a l                                                                                                                                                               | bit-address                                                                                                                                                             | sable, general pu                                                                                                                                                                                                                                       | urpose flag                                                                                                                                | for use une                                                                                                        | der softwar                                             | e control.                         |                  |
| its4–3:                 | RS1-RS(                                                                                                                                                                   | ): Register                                                                                                                                                             | Bank Select.                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                    |                                                         |                                    |                  |
|                         | I hese bit                                                                                                                                                                | s select wi                                                                                                                                                             | hich register ban                                                                                                                                                                                                                                       | k is used d                                                                                                                                | uring regis                                                                                                        | ter accesse                                             | es.                                |                  |
|                         |                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                    |                                                         |                                    |                  |
|                         |                                                                                                                                                                           |                                                                                                                                                                         | Desister Deals                                                                                                                                                                                                                                          | ٨٩٩٣                                                                                                                                       |                                                                                                                    |                                                         |                                    |                  |
|                         | RS1                                                                                                                                                                       | RS0                                                                                                                                                                     | Register Bank                                                                                                                                                                                                                                           | Addr                                                                                                                                       | ess                                                                                                                |                                                         |                                    |                  |
|                         | RS1<br>0                                                                                                                                                                  | RS0<br>0                                                                                                                                                                | Register Bank                                                                                                                                                                                                                                           | Addr<br>0x00–0x0                                                                                                                           | ess<br>7                                                                                                           |                                                         |                                    |                  |
|                         | RS1<br>0<br>0                                                                                                                                                             | RS0<br>0<br>1                                                                                                                                                           | Register Bank<br>0<br>1                                                                                                                                                                                                                                 | Addr<br>0x00-0x0<br>0x08-0x0                                                                                                               | ess<br>7<br>F                                                                                                      |                                                         |                                    |                  |
|                         | RS1<br>0<br>0<br>1                                                                                                                                                        | RS0<br>0<br>1<br>0                                                                                                                                                      | Register Bank<br>0<br>1<br>2                                                                                                                                                                                                                            | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1                                                                                                   | ess<br>7<br>F<br>7                                                                                                 |                                                         |                                    |                  |
|                         | RS1<br>0<br>0<br>1<br>1                                                                                                                                                   | RS0<br>0<br>1<br>0<br>1                                                                                                                                                 | Register Bank<br>0<br>1<br>2<br>3                                                                                                                                                                                                                       | Addr<br>0x00-0x0<br>0x08-0x0<br>0x10-0x1<br>0x18-0x1                                                                                       | ess<br>7<br>F<br>7<br>F                                                                                            |                                                         |                                    |                  |
|                         | RS1<br>0<br>1<br>1                                                                                                                                                        | RS0<br>0<br>1<br>0<br>1                                                                                                                                                 | Register Bank<br>0<br>1<br>2<br>3                                                                                                                                                                                                                       | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1                                                                                       | ess<br>7<br>F<br>7<br>F                                                                                            |                                                         |                                    |                  |
| lit2:                   | RS1<br>0<br>1<br>1<br>0<br>1<br>0<br>V: Over                                                                                                                              | RS0<br>0<br>1<br>0<br>1<br>1                                                                                                                                            | Register Bank<br>0<br>1<br>2<br>3                                                                                                                                                                                                                       | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1                                                                                       | ess<br>7<br>F<br>7<br>F                                                                                            |                                                         |                                    |                  |
| Sit2:                   | RS1           0           1           1           OV: Over           This bit is                                                                                          | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u                                                                                                                     | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin                                                                                                                                                                                                  | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumst                                                                         | ess<br>7<br>F<br>7<br>F<br>ances:                                                                                  |                                                         |                                    |                  |
| Sit2:                   | RS1           0           1           1           OV: Over           This bit is           • An ADD                                                                       | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>, ADDC, o                                                                                                        | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instructio                                                                                                                                                                            | Addr<br>0x00-0x0<br>0x08-0x0<br>0x10-0x1<br>0x18-0x1<br>g circumsta                                                                        | ess<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai                                                                   | nge overflo                                             | w.                                 |                  |
| Sit2:                   | RS1<br>0<br>0<br>1<br>1<br>1<br><b>OV</b> : Over<br>This bit is<br>• An ADD<br>• A MUL i                                                                                  | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>b, ADDC, o<br>nstruction                                                                                         | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instruction<br>results in an over                                                                                                                                                     | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumsta<br>on causes<br>erflow (resu                                           | ess<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai                                                                   | nge overflo<br>r than 255)                              | PW.                                |                  |
| Sit2:                   | RS1<br>0<br>0<br>1<br>1<br>1<br><b>OV</b> : Over<br>This bit is<br>• An ADD<br>• A MUL i<br>• A DIV in                                                                    | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>0, ADDC, o<br>nstruction<br>struction                                                                            | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instruction<br>results in an over<br>causes a divide-b                                                                                                                                | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumsta<br>on causes<br>erflow (resu                                           | ess<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai<br>It is greate<br>ndition.                                       | nge overflo<br>r than 255)                              | w.                                 |                  |
| Sit2:                   | RS1<br>0<br>1<br>1<br>1<br>0V: Over<br>This bit is<br>• An ADD<br>• A MUL i<br>• A DIV in<br>The OV b                                                                     | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>b, ADDC, o<br>nstruction<br>struction o<br>it is cleare                                                          | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instruction<br>results in an over<br>causes a divide-b<br>causes a divide-b                                                                                                           | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumstr<br>on causes<br>erflow (resu<br>by-zero cor<br>D, ADDC,                | ess<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai<br>ilt is greate<br>ndition.<br>SUBB, MU                          | nge overflo<br>r than 255)<br>L, and DIV                | w.<br>instructions                 | in all oth       |
| Sit2:                   | RS1<br>0<br>0<br>1<br>1<br>2<br>0V: Over<br>This bit is<br>• An ADD<br>• A MUL i<br>• A DIV in<br>The OV b<br>cases.                                                      | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>5 set to 1 u<br>b, ADDC, o<br>nstruction<br>ostruction<br>ostruction<br>ostruction                                             | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instruction<br>results in an over<br>causes a divide-b<br>causes a divide-b<br>causes a divide-b                                                                                      | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumst<br>on causes<br>erflow (resu<br>by-zero cor<br>D, ADDC,                 | ess<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai<br>alt is greate<br>ndition.<br>SUBB, MU                          | nge overflo<br>r than 255)<br>L, and DIV                | ow.<br>instructions                | in all oth       |
| iit2:<br>iit1:          | RS1<br>0<br>0<br>1<br>1<br>1<br>OV: Over<br>This bit is<br>• An ADD<br>• A MUL i<br>• A DIV in<br>The OV b<br>cases.<br>F1: User                                          | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>b, ADDC, o<br>nstruction<br>struction<br>istruction<br>it is cleare<br>Flag 1.                                   | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instruction<br>results in an over<br>causes a divide-b<br>causes a divide-b                                                                                                           | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumsta<br>on causes<br>erflow (resu<br>by-zero cor<br>D, ADDC,                | ess<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai<br>alt is greate<br>adition.<br>SUBB, MU                          | nge overflo<br>r than 255)<br>L, and DIV                | w.<br>instructions                 | in all oth       |
| lit2:<br>lit1:          | RS1<br>0<br>0<br>1<br>1<br>1<br>OV: Over<br>This bit is<br>• An ADD<br>• A MUL i<br>• A DIV in<br>The OV b<br>cases.<br>F1: User<br>This is a l<br>PARITY                 | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>b, ADDC, o<br>nstruction<br>struction<br>struction<br>it is cleare<br>Flag 1.<br>bit-address<br>Parity Flag      | Register Bank<br>0<br>1<br>2<br>3<br>nder the followin<br>or SUBB instruction<br>results in an over<br>causes a divide-b<br>ed to 0 by the AD<br>sable, general pu                                                                                      | Addr<br>0x00–0x0<br>0x08–0x0<br>0x10–0x1<br>0x18–0x1<br>g circumsta<br>on causes<br>erflow (resu<br>by-zero cor<br>D, ADDC,<br>urpose flag | ess<br>7<br>F<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai<br>lt is greate<br>ndition.<br>SUBB, MU<br>for use und  | nge overflo<br>r than 255)<br>L, and DIV<br>der softwar | ow.<br>instructions<br>re control. | in all oth       |
| 3it2:<br>3it1:<br>3it0: | RS1<br>0<br>0<br>1<br>1<br>1<br>0V: Over<br>This bit is<br>• An ADD<br>• A MUL i<br>• A DIV in<br>The OV b<br>cases.<br>F1: User<br>This is a l<br>PARITY:<br>This bit is | RS0<br>0<br>1<br>0<br>1<br>flow Flag.<br>set to 1 u<br>b, ADDC, o<br>nstruction<br>istruction o<br>it is cleare<br>Flag 1.<br>bit-address<br>Parity Flag<br>set to 1 if | Register Bank         0         1         2         3         ander the followin         or SUBB instruction         results in an over         causes a divide-back         ad to 0 by the AD         sable, general pugat         the sum of the exit | Addr<br>0x00-0x0<br>0x08-0x0<br>0x10-0x1<br>0x18-0x1<br>g circumsta<br>on causes<br>erflow (resu<br>by-zero cor<br>D, ADDC,<br>urpose flag | ess<br>7<br>F<br>7<br>F<br>7<br>F<br>ances:<br>a sign-chai<br>ilt is greate<br>ndition.<br>SUBB, MU<br>for use und | nge overflo<br>r than 255)<br>L, and DIV<br>der softwar | w.<br>instructions<br>re control.  | in all oth       |





### 11.1. Power-On Reset

During power-up, the device is held in a reset state and the  $\overline{RST}$  pin is driven low until V<sub>DD</sub> settles above V<sub>RST</sub>. V<sub>DD</sub> ramp time is defined as how fast V<sub>DD</sub> ramps from 0 V to V<sub>RST</sub>. An additional delay (T<sub>PORDelay</sub>) occurs before the device is released from reset. The V<sub>RST</sub> threshold and T<sub>PORDelay</sub> are specified in Table 2.8, "Reset Electrical Characteristics," on page 32. Figure 11.2 plots the power-on and V<sub>DD</sub> monitor reset timing.

**Note:** Please refer to Section "20.4. VDD Monitors and VDD Ramp Time" on page 211 for definition of  $V_{RST}$  and  $V_{DD}$  ramp time in older silicon revisions A and B.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The contents of internal data memory should be assumed to be undefined after a power-on reset. Both the V<sub>DD</sub> monitors (VDDMON0 and VDDMON1) are enabled following a power-on reset.





Figure 11.2. Power-On and V<sub>DD</sub> Monitor Reset Timing



#### 12.3. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

**Note**: See Section "12.1. Programming The Flash Memory" on page 113 for minimum V<sub>DD</sub> and temperature requirements for flash erase and write operations.

#### 12.4. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the 1's complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are 1) and locked when any other Flash pages are locked (any bit of the Lock Byte is 0). See example below.

| Security Lock Byte:<br>1's Complement: | 1111101b<br>00000010b                                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flash pages locked:                    | 3 (First two Flash pages + Lock Byte Page)                                                                                                                                                                        |
| Addresses locked:                      | 0x0000 to 0x03FF (first two Flash pages)<br>0x1C00 to 0x1DFF in 'F520/0A/1/1A and 'F530/0A/1/1A<br>0x0C00 to 0x0FFF in 'F523/3A/4/4A and 'F533/3A/4/4A and<br>0x0600 to 0x07FF in 'F526/6A/7/7A and 'F536/6A/7/7A |



Figure 12.1. Flash Program Memory Map





Figure 13.2. Port I/O Cell Block Diagram



### SFR Definition 13.2. XBR1: Port I/O Crossbar Register 1

| R/W               | R/W            | R/W                        | R/W              | R/W         | R/W           | R/W        | R/W         | Reset Value |
|-------------------|----------------|----------------------------|------------------|-------------|---------------|------------|-------------|-------------|
| WEAKP             | JD XBARE       | T1E                        | TOE              | ECIE        | Reserved      | PC         | AOME        | 00000000    |
| Bit7              | Bit6           | Bit5                       | Bit4             | Bit3        | Bit2          | Bit1       | Bit0        |             |
|                   |                |                            |                  |             |               |            | SFR Addres  | s: 0xE2     |
|                   |                |                            |                  |             |               |            |             |             |
| Bit7:             | WEAKPUD:       | Port I/O We                | eak Pullup I     | Disable.    |               |            |             |             |
|                   | 0: Weak Pull   | ups enable                 | d (except fo     | or Ports wh | ose I/O are o | configured | i as analog | input).     |
| D'40              | 1: Weak Pull   | ups disable                | d.               |             |               |            |             |             |
| Bit6:             | XBARE: Cros    | ssbar Enab                 | le.              |             |               |            |             |             |
|                   | 1: Crossbar d  | isabled.                   |                  |             |               |            |             |             |
| Bit5              | TIE: TIEnal    | nabieu.                    |                  |             |               |            |             |             |
| Dito.             | 0. T1 unavail  | able at Por                | t pin            |             |               |            |             |             |
|                   | 1: T1 routed t | to Port pin.               |                  |             |               |            |             |             |
| Bit4:             | TOE: TO Enal   | ble                        |                  |             |               |            |             |             |
|                   | 0: T0 unavail  | able at Por                | t pin.           |             |               |            |             |             |
|                   | 1: T0 routed t | to Port pin.               |                  |             |               |            |             |             |
| Bit3:             | ECIE: PCA0     | External Co                | ounter Inpu      | t Enable    |               |            |             |             |
|                   | 0: ECI unava   | ilable at Po               | rt pin.          |             |               |            |             |             |
| D:40.             | 1: ECI routed  | to Port pin                | h                |             |               |            |             |             |
| BITZ:<br>Bito1 0: |                | UST VVIITE U               | D.<br>1/O Enchla | Dito        |               |            |             |             |
| DILS I-U.         |                | /A iviouule<br>/A unavaila | hle at Port      | nins        |               |            |             |             |
|                   | 01: CEX0 rou   | ited to Port               | nin              | pino.       |               |            |             |             |
|                   | 10: CEX0. CE   | EX1 routed                 | to Port pin:     | S.          |               |            |             |             |
|                   | 11: CEX0, CE   | EX1, CEX2                  | routed to F      | Port pins.  |               |            |             |             |
|                   |                |                            |                  | -           |               |            |             |             |
|                   |                |                            |                  |             |               |            |             |             |

### 13.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports P0–P1 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.



#### SFR Definition 13.13. P0SKIP: Port0 Skip



#### SFR Definition 13.14. P1MAT: Port1 Match



### SFR Definition 13.15. P1MASK: Port1 Mask





#### 15.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).



Figure 15.6. UART Multi-Processor Mode Interconnect Diagram



## 16. Enhanced Serial Peripheral Interface (SPI0)

The Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.







### 16.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between a rising edge or a falling edge. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 16.5.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 16.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.





#### 16.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.





\* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.





\* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

#### Figure 16.9. SPI Slave Timing (CKPHA = 1)



### 17.7. LIN Registers

The following Special Function Registers (SFRs) are available:

#### 17.7.1. LIN Direct Access SFR Registers Definition

#### SFR Definition 17.1. LINADDR: Indirect Address Register



### SFR Definition 17.2. LINDATA: LIN Data Register

| [ | R/W             | R/W                                                             | R/W                                           | R/W                                               | R/W                                            | R/W                           | R/W          | R/W            | Reset Value              |
|---|-----------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------|-------------------------------|--------------|----------------|--------------------------|
| L | Bit7            | Bit6                                                            | Bit5                                          | Bit4                                              | Bit3                                           | Bit2                          | Bit1         | Bit0           | J                        |
|   |                 |                                                                 |                                               |                                                   |                                                |                               |              | SFR Address:   | 0x93                     |
|   | <b>3it7–0</b> : | LINDATA7-0<br>When this re<br>LINADDR.<br>When this re<br>ADDR. | : LIN Indire<br>gister is rea<br>gister is wr | ect Data Re<br>ad, it will re<br>itten, it will v | gister Bits.<br>ad the conte<br>write the valu | ents of the L<br>ue to the LI | LINO core re | egister pointe | ed to by<br>I to by LIN- |



### SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register

| R/W     | R/W                                            | R/W          | R/W           | R/W            | R/W          | R/W           | R/W            | Reset Value       |
|---------|------------------------------------------------|--------------|---------------|----------------|--------------|---------------|----------------|-------------------|
| PRE     | SCL[1:0]                                       |              | l             | _INMUL[4:0     |              |               | DIV9           | 00000000          |
| Bit7    | Bit6                                           | Bit5         | Bit4          | Bit3           | Bit2         | Bit1          | Bit0           | _                 |
|         |                                                |              |               |                |              |               | Address        | : 0x0D (indirect) |
|         |                                                |              |               |                |              |               |                |                   |
| Bit7-6: | PRESCL1-0                                      | : LIN Baud   | Rate Preso    | caler Bits.    |              |               |                |                   |
|         | These bits a                                   | re the baud  | l rate presca | aler bits.     |              |               |                |                   |
| Bit5–1: | LINMUL4–0                                      | : LIN Baud   | Rate Multip   | lier Bits.     |              |               |                |                   |
|         | These bits a                                   | re the baud  | l rate multip | lier bits. The | ese bits are | not used in   | n slave mode   | э.                |
| Bit0:   | DIV9: LIN Ba                                   | aud Rate D   | ivider Most   | Significant I  | Bit.         |               |                |                   |
|         | The most sig                                   | nificant bit | of the baud   | I rate divide  | r. The 8 lea | st significan | nt bits are in | LIN0DIV.          |
|         | The valid range for the divider is 200 to 511. |              |               |                |              |               |                |                   |
|         |                                                | -            |               |                |              |               |                |                   |
|         |                                                |              |               |                |              |               |                |                   |

#### SFR Definition 17.18. LIN0ID: LIN0 ID Register





clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 18.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "10.4. Interrupt Register Descriptions" on page 100), facilitating pulse width measurements.

| TR0         | GATE0 | INT0 | Counter/Timer |
|-------------|-------|------|---------------|
| 0           | Х     | Х    | Disabled      |
| 1           | 0     | Х    | Enabled       |
| 1           | 1     | 0    | Disabled      |
| 1           | 1     | 1    | Enabled       |
| X = Don't C | are   |      |               |

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the INT0 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration).



Figure 18.1. T0 Mode 0 Block Diagram



183

#### Revision 1.2 to 1.3

- Updated "System Overview" on page 13 with a voltage range specification for the internal oscillator.
- Updated Table 2.11 on page 34 with new conditions for the internal oscillator accuracy. The internal
  oscillator accuracy is dependent on the operating voltage range.
- Updated Section 2 to remove the internal oscillator curve across temperature diagram.
- Updated Figure "4.5 12-Bit ADC Burst Mode Example with Repeat Count Set to 4" on page 58 with new timing diagram when using CNVSTR pin.
- Updated SFR Definition 5.1 (REF0CN) with oscillator suspend requirement for ZTCEN.
- Updated SFR Definition 6.1 (REG0CN) with a new definition for Bit 6. The bit 6 reset value is 1b and must be written to 1b.
- Updated Section "8.3.3. Suspend Mode" on page 90 with note regarding ZTCEN.
- Updated Section "17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)" on page 164 with a voltage range specification for the internal oscillator.

### Revision 1.3 to 1.4

- Added 'AEC-Q100' qualification information on page 1.
- Changed page headers throughout the document from 'C8051F52x/F52xA/F53x/F53xA' to 'C8051F52x/53x'.
- Updated supply voltage to "2.0 to 5.25 V" on page 1 and in Section 1 on page 13.
- Corrected reference to development kit (C8051F530DK) in Section "1.2.4. On-Chip Debug Circuitry" on page 18.
- Updated minimum Supply Input Voltage (V<sub>REGIN</sub>) for C8051F52x-C/F53x-C devices in Table 2.2 on page 26 and Table 2.6 on page 30.
- Updated digital supply current (I<sub>DD</sub> and Idle I<sub>DD</sub>) typical values for condition 'Clock = 25 MHz' in Table 2.2 on page 26.
- Updated I<sub>DD</sub> Frequency Sensitivity and Idle I<sub>DD</sub> Frequency Sensitivity values in Table 2.2 on page 26; removed Figure 2.1 and Figure 2.2 that used to provide the same frequency sensitivity slopes. Also removed IDD Supply Sensitivity and Idle IDD Supply Sensitivity typical values.
- Added Digital Supply Current (Stop or Suspend Mode) values at multiple temperatures Table 2.2 on page 26.
- Added a note in Table 2.3, "ADC0 Electrical Characteristics," on page 28 with reference to Section "4.4. Selectable Gain" on page 60; also added note to indicate that additional tracking time may be necessary if VDD is less than the minimum specified VDD.
- Split off temperature sensor specifications from Table 2.3 into a separate table Table 2.4; Updated temperature sensor gain and added supply current values.
- Added temperature condition for Bias Current specification in Table 2.6 on page 30.
- Updated Comparator Input Offset Voltage values in Table 2.7 on page 31.
- Updated VDD Monitor (VDDMON0) Low Threshold (V<sub>RST-LOW</sub>) minimum value for C8051F52xA/F52x-C/F53xA/F53x-C devices in Table 2.8 on page 32.
- Updated VDD Monitor (VDDMON0) supply current values in Table 2.8 on page 32.
- Added specifications for the new level-sensitive VDD monitor (VDDMON1) to Table 2.8, "Reset Electrical Characteristics," on page 32 and also added notes to clarify the applicable V<sub>RST</sub> theshold level.
- Added note in Table 2.9, "Flash Electrical Characteristics," on page 33 to describe the minimum flash programming temperature for –I (Industrial Grade) devices; Also added the same note and references to it in Section "12.1. Programming The Flash Memory" on page 113, Section "12.3. Non-volatile Data Storage" on page 117, and in SFR Definition 12.1 (PSCTL).

