E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f536a-itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.3.2. Stop Mode	90
8.3.3. Suspend Mode	
9. Memory Organization and SFRs	92
9.1. Program Memory	
9.2. Data Memory	
9.3. General Purpose Registers	93
9.4. Bit Addressable Locations	93
9.5. Stack	93
9.6. Special Function Registers	93
10. Interrupt Handler	98
10.1. MCU Interrupt Sources and Vectors	98
10.2. Interrupt Priorities	
10.3. Interrupt Latency	98
10.4. Interrupt Register Descriptions	100
10.5. External Interrupts	104
11. Reset Sources	
11.1. Power-On Reset	
11.2. Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)	108
11.2.1. VDD Monitor Thresholds and Minimum VDD	108
11.3. External Reset	
11.4. Missing Clock Detector Reset	
11.5. Comparator Reset	110
11.6. PCA Watchdog Timer Reset	110
11.7. Flash Error Reset	110
11.8. Software Reset	111
12. Flash Memory	113
12.1. Programming The Flash Memory	
12.1.1. Flash Lock and Key Functions	
12.1.2. Flash Erase Procedure	
12.1.3. Flash Write Procedure	
12.2. Flash Write and Erase Guidelines	-
12.2.1. V _{DD} Maintenance and the V _{DD} monitor	
12.2.2. PSWE Maintenance	
12.2.3. System Clock	
12.3. Non-volatile Data Storage	
12.4. Security Options	
13. Port Input/Output	
13.1. Priority Crossbar Decoder	
13.2. Port I/O Initialization	
13.3. General Purpose Port I/O	
14. Oscillators	
14.1. Programmable Internal Oscillator	
14.1.1. Internal Oscillator Suspend Mode	
14.2. External Oscillator Drive Circuit	
14.2.1. Clocking Timers Directly Through the External Oscillator	139

1.9. Port Input/Output

C8051F52x/F52xA/F53x/F53xA devices include up to 16 I/O pins. Port pins are organized as two bytewide ports. The port pins behave like typical 8051 ports with a few enhancements. Each port pin can be configured as a digital or analog I/O pin. Pins selected as digital I/O can be configured for push-pull or open-drain operation. The "weak pullups" that are fixed on typical 8051 devices may be globally disabled to save power.

The Digital Crossbar allows mapping of internal digital system resources to port I/O pins. On-chip counter/timers, serial buses, hardware interrupts, and other digital signals can be configured to appear on the port pins using the Crossbar control registers. This allows the user to select the exact mix of general-purpose port I/O, digital, and analog resources needed for the application.

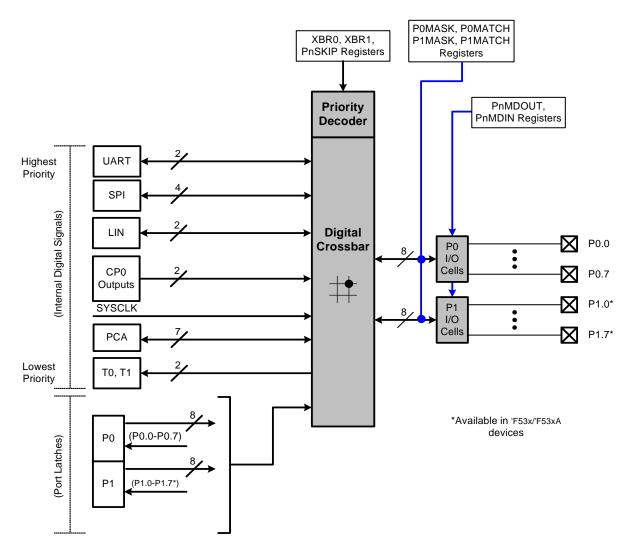


Figure 1.9. Port I/O Functional Block Diagram

Table 2.6. Voltage Regulator Electrical Specifications

 V_{DD} = 2.1 or 2.6 V; -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range (V _{REGIN})	C8051F52x/53x C8051F52xA/53xA	2.7 ¹	_	5.25	V
	V _{DD} connected to V _{REGIN}	1.8	—	2.7	
	V _{DD} not connected to V _{REGIN} C8051F52x-C/53x-C	2.2 ²	—	5.25	
	V _{DD} connected to V _{REGIN}	2.0	_	2.75	
	V _{DD} not connected to V _{REGIN}	2.2 ²	—	5.25	
Dropout Voltage (V _{DO})	Output Current = 1-50 mA	—	10		mV/mA
Output Voltage (V _{DD})	Output Current = 1 to 50 mA				V
	REG0MD = 0	2.0	2.1	2.25	
	REG0MD = 1	2.5	2.6	2.75	
Bias Current	2.1 V operation (REG0MD = 0; T = 25 °C)	—	1	5	μA
	2.6 V operation (REG0MD = 1; T = 25 °C)	_	1	5	
Dropout Indicator Detection Threshold		—	75	_	mV
Output Voltage Temperature Coefficient		—	0.25	_	mV/ºC
VREG Settling Time	50 mA load with V_{REGIN} = 2.4 V and V_{DD} load capacitor of 4.8 µF	—	250	_	μs
Notes: 1. The minimum input voltage is 2. The minimum input voltage is	s 2.7 V or V _{DD} + V _{DO} (max load), whichever is s 2.2 V or V _{DD} + V _{DO} (max load), whichever is	s greater. s greater.			

Table 2.7. Comparator Electrical Characteristics

 $V_{\text{REGIN}} = 2.7-5.25$ V, -40 to +125 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ - CP0- = 100 mV		780	—	ns
Mode 0, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV	_	980	_	ns
Response Time:	CP0+ - CP0- = 100 mV	_	850	_	ns
Mode 1, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV	—	1120	—	ns
Response Time:	CP0+ - CP0- = 100 mV	—	870	—	ns
Mode 2, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV	_	1310	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	1980	—	ns
Mode 3, Vcm ¹ = 1.5 V	CP0+ - CP0- = -100 mV	_	4770	—	ns
Common-Mode Rejection Ratio			3	9	mV/V
Positive Hysteresis 1	CP0HYP1-0 = 00	_	0.7	2	mV
Positive Hysteresis 2	CP0HYP1-0 = 01	2	5	10	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	5	10	20	mV
Positive Hysteresis 4	CP0HYP1-0 = 11	13	20	40	mV
Negative Hysteresis 1	CP0HYN1-0 = 00		0.7	2	mV
Negative Hysteresis 2	CP0HYN1-0 = 01	2	5	10	mV
Negative Hysteresis 3	CP0HYN1-0 = 10	5	10	20	mV
Negative Hysteresis 4	CP0HYN1-0 = 11	13	20	40	mV
Inverting or Non-Inverting Input Voltage Range ²		-0.25		V _{DD} + 0.25	V
Input Capacitance ²		—	4	—	pF
Input Bias Current		_	0.5	—	nA
Input Offset Voltage		-15		15	mV
Input Impedance		_	1.5	—	kΩ
Power Supply					
Power Supply Rejection ²		_	0.2	4	mV/V
Power-up Time		-	2.3	—	μs
	Mode 0	— —	6	30	μA
Supply Current at DC	Mode 1	—	3	15	μA
Supply Current at DC	Mode 2	— —	2	7.5	μA
	Mode 3		0.3	3.8	μA

1. Vcm is the common-mode voltage on CP0+ and CP0-.

2. Guaranteed by design and/or characterization.

4.2. Temperature Sensor

An on-chip temperature sensor is included on the C8051F52x/F52xA/F53x/F53xA devices which can be directly accessed via the ADC0 multiplexer. To use ADC0 to measure the temperature sensor, the ADC multiplexer channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 5.2. The output voltage (V_{TEMP}) is the positive ADC input selected by bits AD0MX[4:0] in register ADC0MX. The TEMPE bit in register REF0CN enables/disables the temperature sensor, as described in SFR Definition 5.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 5.1 for the slope and offset parameters of the temperature sensor.

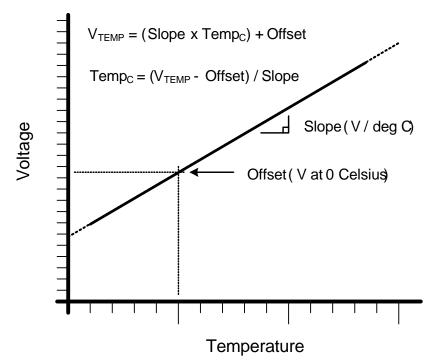
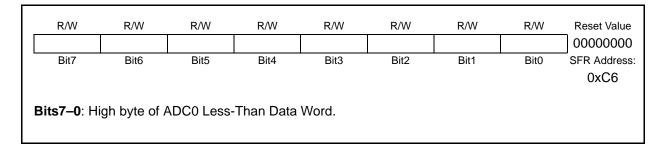
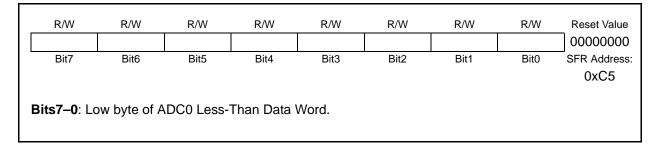


Figure 4.2. Typical Temperature Sensor Transfer Function



SFR Definition 4.8. ADC0CN: ADC0 Control


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
AD0EN		ADOINT	ADOBUSY		ADOLJST	AD0CM1	AD0CM0	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
Ditt	(bit addressable) 0xE8												
Bit7:	ADOEN: ADO	0 Enable	Bit										
2	0: ADC0 Disabled. ADC0 is in low-power shutdown.												
	1: ADC0 Enabled. ADC0 is active and ready for data conversions.												
Bit6:	BURSTEN: A												
	0: ADC0 Bur	st Mode Di	isabled.										
	1: ADC0 Bur	st Mode Er	nabled.										
Bit5:	ADOINT: ADO	C0 Conver	sion Comple	ete Interrup	t Flag.								
	0: ADC0 has	not compl	eted a data	conversion	since the la	ast time AD	DINT was cl	eared.					
	1: ADC0 has			version.									
Bit4:	AD0BUSY: A	ADC0 Busy	/ Bit.										
	Read:		_		_								
	0: ADC0 con				on is not cu	rrently in pro	ogress. AD	DINT is set					
	to logic 1 on												
	1: ADC0 con Write:	version is i	n progress.										
	0: No Effect.												
	1: Initiates Al		arcian if AD	$0 \le 1 \le $	10 h								
Bit3:	ADOWINT: A												
Dito.	This bit must				lug.								
	0: ADC0 Win				not occurre	ed since this	s flag was la	ast cleared.					
	1: ADC0 Win						- J						
Bit2:	ADOLJST: A												
	0: Data in AD	COH:ADC	0L registers	s is right just	tified.								
	1: Data in AD	C0H:ADC	0L registers	s is left justif	ied. This op	tion should	not be use	d with a					
	repeat count	-	•			b, or 11b).							
Bits1-0:	AD0CM1-0:												
	00: ADC0 co					BUSY.							
	01: ADC0 co												
	10: ADC0 co					INVSTR.							
	11: ADC0 co	nversion in	intiated on o	vertiow of 1	imer 2.								

SFR Definition 4.12. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 4.13. ADC0LTL: ADC0 Less-Than Data Low Byte

4.5.1. Window Detector In Single-Ended Mode

Figure 4.7 shows two example window comparisons for right-justified data with ADC0LTH:ADC0LTL = 0x0200 (512d) and ADC0GTH:ADC0GTL = 0x0100 (256d). The input voltage can range from 0 to V_{RFF} x (4095/4096) with respect to GND, and is represented by a 12-bit unsigned integer value. The repeat count is set to one. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0100 < ADC0H:ADC0L < 0x0200). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0100 or ADC0H:ADC0L > 0x0200). Figure 4.8 shows an example using left-justified data with the same comparison values.

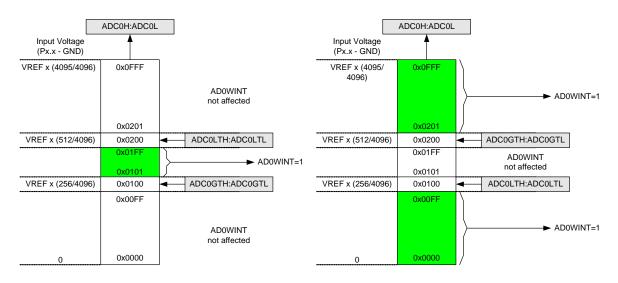


Figure 4.7. ADC Window Compare Example: Right-Justified Single-Ended Data

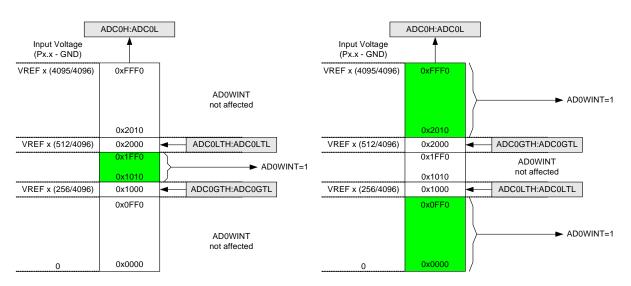


Figure 4.8. ADC Window Compare Example: Left-Justified Single-Ended Data

8.3.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system.

8.3.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout period of 100 μ s.

8.3.3. Suspend Mode

The C8051F52x/F52xA/F53x/F53xA devices feature a low-power Suspend mode, which stops the internal oscillator until a wakening event occurs. See Section Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

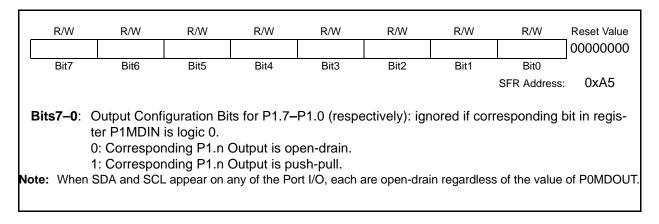
Note: When entering Suspend mode, firmware must set the ZTCEN bit in REF0CN (SFR Definition 5.1).

SFR Definition 10.4. EIP1: Extended Interrupt Priority 1

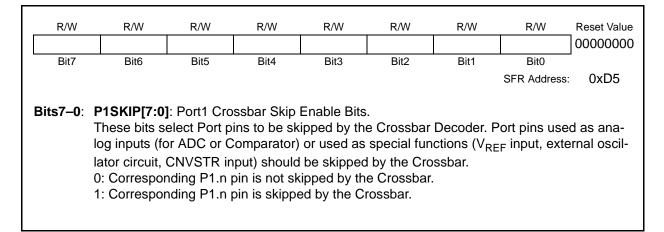
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PMAT	PREG0	PLIN	PCPR	PCPF	PPAC0	PREG0	PWADC0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address:	0xF6
Bit7:	PMAT. Port M							
	This bit sets				rupt.			
	0: Port Match							
Bit6:	1: Port Match PREG0: Volt		• •					
5110.	This bit sets	0 0		•				
	0: Voltage Re			• •	•			
	1: Voltage Re	•	•	•				
Bit5:	PLIN: LIN Int	•	•	• •	ty level.			
Bitto.	This bit sets	•						
	0: LIN interru							
	1: LIN interru							
Bit4:	PCPR: Com				rity Control.			
	This bit sets							
	0: Comparate							
	1: Comparate	or interrupt	set to high	priority leve	el.			
Bit3:	PCPF: Comp	parator falli	ng Edge Int	errupt Prior	ity Control.			
	This bit sets	the priority	of the Fallin	ng Edge Co	mparator in	terrupt.		
	0: Comparate							
	1: Comparate							
Bit2:	PPAC0: Prog			,	Interrupt P	riority Cont	rol.	
	This bit sets							
	0: PCA0 inte							
	1: PCA0 inte							
Bit1:	PREGO: ADO							
	This bit sets				•	•		
	0: ADC0 Cor			•				
D:40.	1: ADC0 Cor			•	• • •			
Bit0:	PWADC0: A							
	This bit sets							
	0: ADC0 Win			•				
	1: ADC0 Win	noom comp	ansoninter	rupt set to	ingri priority	ievei.		

FR Defi	nition 10.5. IT01C	F: INT0/INT1 Configurat	ion									
R/W	R/W R/W	R/W R/W R	W R/W R/W Reset Value									
IN1PL	IN1SL2 IN1SL1	IN1SLO INOPL INO	SL2 IN0SL1 IN0SL0 0000001									
Bit7	Bit6 Bit5	Bit4 Bit3 B	it2 Bit1 Bit0									
			SFR Address: 0xE4									
Note: Refer	to SFR Definition 18.1. "TO	CON: Timer Control" on page 186 for I	NT0/1 edge- or level-sensitive interrupt selection.									
Bit 7:	IN1PL: INTO Polarity											
	0: INTO input is active 1: INTO input is active											
Bits 6–4 [.]	IN1SL2–0: INTO Port											
			. Note that this pin assignment is inde-									
	pendent of the Crossbar; INTO will monitor the assigned Port pin without disturbing the											
			ne Crossbar. The Crossbar will not									
			skip the selected pin (accomplished by									
		ponding bit in register P0SKIP	'). _									
	IN1SL2-0	INT1 Port Pin										
	000	P0.0										
	001	P0.1	_									
	010	P0.2	_									
	011	P0.3	_									
	100	P0.4	_									
	101	P0.5	_									
	110	P0.6*	_									
	111	P0.7*	_									
	Note: Available in the	C80151F53x/C8051F53xA parts.										
Bit 3:	INOPL: INTO Polarity											
	0: INTO interrupt is ac											
D:40 0 0.	1: INT0 interrupt is ac INT0SL2-0: INT0 Po											
BITS Z-U			. Note that this pin assignment is inde-									
		¥	ned Port pin without disturbing the									
			ne Crossbar. The Crossbar will not									
	e .		skip the selected pin (accomplished by									
	setting to 1 the corres	ponding bit in register P0SKIP).									
	IN0SL2-0	INT0 Port Pin										
	000	P0.0										
	001	P0.1										
	010	P0.2										
	011	P0.3										
	100	P0.4										
	101	P0.5										
	110	P0.6*										
	111	P0.7*										
	Note: Available in the	C80151F53x/C8051F53xA parts.										

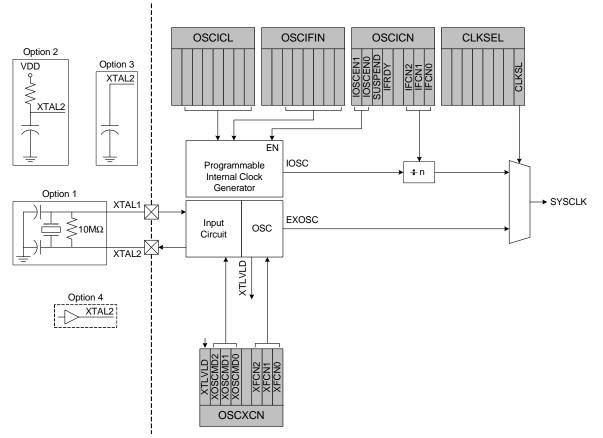
SFR Definition 13.2. XBR1: Port I/O Crossbar Register 1


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKPL	JD XBARE	T1E	TOE	ECIE	Reserved	PC	AOME	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0xE2
Bit7:	WEAKPUD:							
	0: Weak Pull	•	• •	or Ports wh	nose I/O are c	onfigured	l as analog i	nput).
5.40	1: Weak Pull	•						
Bit6:	XBARE: Cro		le.					
	0: Crossbar o 1: Crossbar e							
Bit5:	T1E : T1 Enal							
DILJ.	0: T1 unavail		t nin					
	1: T1 routed		, pin					
Bit4:	TOE: TO Enal	•						
	0: T0 unavail	able at Por	t pin.					
	1: T0 routed	to Port pin.	•					
Bit3:	ECIE: PCA0	External Co	ounter Inpu	t Enable				
	0: ECI unava	ilable at Po	rt pin.					
	1: ECI routed							
Bit2:	Reserved. M		~ .					
Bits1–0:	PCA0ME: PC							
	00: All PCA I			pins.				
	01: CEX0 rou			•				
	10: CEX0, CI 11: CEX0, CI							
		$_{\Lambda 1}, OLAZ$		ort pins.				

13.3. General Purpose Port I/O


Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports P0–P1 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

SFR Definition 13.11. P1MDOUT: Port1 Output Mode


SFR Definition 13.12. P1SKIP: Port1 Skip

14. Oscillators

C8051F52x/F52xA/F53x/F53xA devices include a programmable internal oscillator, an external oscillator drive circuit. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 14.1. The system clock (SYSCLK) can be derived from the internal oscillator, external oscillator circuit. Oscillator electrical specifications are given in Table 2.11 on page 34.

14.1. Programmable Internal Oscillator

All C8051F52x/53x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL and OSCIFIN registers, shown in SFR Definition 14.2 and SFR Definition 14.3. On C8051F52x/53x devices, OSCICL and OSCIFIN are factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 2.11 on page 34. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, 8, 16, 32, 64, or 128 as defined by the IFCN bits in register OSCICN. The divide value defaults to 128 following a reset.

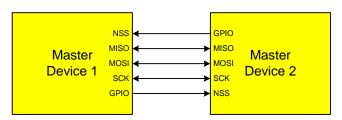


Figure 16.2. Multiple-Master Mode Connection Diagram

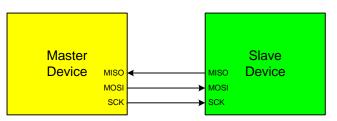
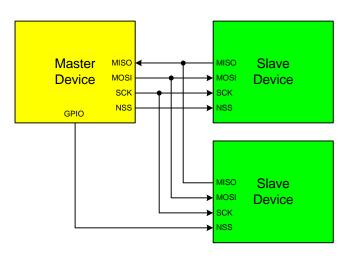



Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram

16.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted into the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

17.4. LIN Slave Mode Operation

When the device is configured for slave mode operation, it must wait for a command from a master node. Access from the firmware to data buffer and ID registers of the LIN peripheral is only possible when a data request is pending (DTREQ bit (LIN0ST.4) is 1) and also when the LIN bus is not active (ACTIVE bit (LIN0ST.7) is set to 0).

The LIN peripheral in slave mode detects the header of the message frame sent by the LIN master. If slave synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time.

The LIN peripheral configured for slave mode will generated an interrupt in one of three situations:

- 1. After the reception of the IDENTIFIER FIELD.
- 2. When an error is detected.
- 3. When the message transfer is completed.

The application should perform the following steps when an interrupt is detected:

- 1. Check the status of the DTREQ bit (LIN0ST.4). This bit is set when the IDENTIFIER FIELD has been received.
- 2. If DTREQ (LIN0ST.4) is set, read the identifier from LIN0ID and process it. If DTREQ (LIN0ST.4) is not set, continue to step 7.
- 3. Set the TXRX bit (LIN0CTRL.5) to 1 if the current frame is a transmit operation for the slave and set to 0 if the current frame is a receive operation for the slave.
- 4. Load the data length into LIN0SIZE.
- 5. For a slave transmit operation, load the data to transmit into the data buffer.
- 6. Set the DTACK bit (LIN0CTRL.4). Continue to step 10.
- 7. If DTREQ (LIN0ST.4) is not set, check the DONE bit (LIN0ST.0). The transmission was successful if the DONE bit is set.
- 8. If the transmission was successful and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
- 9. If the transmission was not successful, check LIN0ERR to determine the nature of the error. Further error handling has to be done by the application.
- 10.Set the RSTINT (LIN0CTRL.3) and RSTERR bits (LIN0CTRL.2) to reset the interrupt request and the error flags.

In addition to these steps, the application should be aware of the following:

- 1. If the current frame is a transmit operation for the slave, steps 1 through 5 must be completed during the IN-FRAME RESPONSE SPACE. If it is not completed in time, a timeout will be detected by the master.
- 2. If the current frame is a receive operation for the slave, steps 1 through 5 have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN peripheral will be overwritten and a timeout error will be detected in the LIN peripheral.
- 3. The LIN module does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LINOCTRL.7) instead of setting the DTACK (LINOCTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN peripheral stops the processing of the LIN communication until the next SYNC BREAK is received.
- 4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is

in progress. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.

17.5. Sleep Mode and Wake-Up

To reduce the system's power consumption, the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode Frame from the Identifier and data bytes. After that, the LIN slave node must be put into the Sleep Mode by setting the SLEEP bit (LINOCTRL.6).

If the SLEEP bit (LIN0CTRL.6) of the LIN slave application is not set and there is no bus activity for four seconds (specified bus idle timeout), the IDLTOUT bit (LIN0ST.6) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit (LIN0CTRL.6).

Sending a Wakeup signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a Wakeup signal, the application has to set the WUPREQ bit (LIN0CTRL.1). After successful transmission of the wakeup signal, the DONE bit (LIN0ST.0) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the Wakeup signal but it generates an interrupt request if the master does not respond to the Wakeup signal within 150 milliseconds. In that case, the ERROR bit (LIN0ST.2) and TOUT bit (LIN0ERR.2) are set. The application then has to decide whether or not to transmit another Wakeup signal.

All LIN nodes that detect a wakeup signal will set the WAKEUP (LIN0ST.1) and DONE bits (LIN0ST.0) and generate an interrupt request. After that, the application has to clear the SLEEP bit (LIN0CTRL.6) in the LIN slave.

17.6. Error Detection and Handling

The LIN peripheral generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing LIN0ERR. After that, it has to reset the error register and the ERROR bit (LIN0ST.2) by writing a 1 to the RSTERR bit (LIN0CTRL.2). Starting a new message with the LIN peripheral selected as master or sending a Wakeup signal with the LIN peripheral selected as a master or slave is possible only if ERROR bit (LIN0ST.2) is set to 0.

SFR Definition 17.3. LINCF Control Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
LINEN	MODE	ABAUD						00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	, ,
							SFR Address:	0x95
Bit7:	LINEN: LIN		nable bit					
	0: LIN0 is di							
-	1: LIN0 is er							
Bit6:	MODE: LIN							
	0: LIN0 ope							
	1: LIN0 ope	rates in Mas	ter mode.					
Bit5:	ABAUD: LIN	N Mode Auto	omatic Bau	d Rate Sele	ction (slave	e mode or	nly).	
	0: Manual b				,		•	
		1 1 4		مممامم				
	1: Automation	c baud rate s	Selection is	enabled				

SFR Definition 17.12. LIN0CTRL: LIN0 Control Register

W	W	W	R/W	R/W	R/W	R/W	R/W	Reset Value				
STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	7				
	Address: 0x08 (indirec											
		. .				<u>.</u> .						
Bit7:	STOP: Stop			•		• /						
	This bit is to					•						
	until the next SYNCH BREAK signal. It is used when the application is handling a data request interrupt and cannot use the frame content with the received identifier (always reads											
	0).	rupt and ca	nnot use tri	e frame cor		e received ic		vays reaus				
Bit6:	SLEEP: Slee	on Mode W	arning									
Bitto.	This bit is to	•	•	on to warn t	the peripher	ral that a Sle	ep Mode F	rame was				
	received and						•					
	The applicat			•								
Bit5:	TXRX: Trans	smit/Receiv	e Selection	Bit.		-						
	This bit dete				nsmit frame	e or a receive	e frame.					
	0: Current fra											
D 144	1: Current fra		•									
Bit4:	DTACK: Dat		•		• /							
	Set to 1 after matically be	•			to acknowle	edge the trai	nster. The c	oit will auto-				
Bit3:	RSTINT: Inte			Controller.								
Dito.	This bit alwa											
	0: No effect.											
	1: Reset the	LININT bit	(LIN0ST.3)									
Bit2:	RSTERR: EI	rror Reset E	Sit.									
	This bit alwa	ys reads as	s 0.									
	0: No effect.											
	1: Reset the			nd LIN0ERF	र.							
Bit1:	WUPREQ: V			P				C II . I .				
	Set to 1 to te			y sending a	wakeup się	gnal. The bit	will automa	atically be				
Bit0:	cleared to 0 STREQ: Sta			mode only	<i>(</i>)							
DILU.	1: Start a LIN					oading the ic	lentifier da	ta lenath				
	and data buf				only alter i		ionanoi, ua	alongin				
	The bit is res			sion comple	tion or erro	r detection.						

SFR Definition 17.13. LIN0ST: LIN0 STATUS Register

R	R	R	R	R/W	R	R	R	Reset Value				
ACTIVE	IDLTOUT	ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_				
							Address	: 0x09 (indirect)				
Bit7:	ACTIVE: LIN											
	0: No transm											
5.40	1: Transmission activity detected on the LIN bus. IDLTOUT: Bus Idle Timeout Bit (slave mode only).											
Bit6:			•		only).							
	0: The bus h				oconde bu	t the bus is n	at vot in Sl	oon modo				
Bit5:	ABORT: Abo						or yer in Si	eep mode.				
Bito.						topped. This	bit is reset	to 0 after				
						ding transmis						
						st transmissi		STOP bit				
	(LIN0CTRL.	,										
Bit4:	DTREQ: Dat											
	0: Data ident											
D:40.	1: Data ident			J.								
Bit3:	LININT: Inter			hit is cloars	d by cotting	g RSTINT (L		2)				
	1: There is a				iu by setting	g KSTINT (L)				
Bit2:	ERROR: Co											
					ed by settir	ng RSTERR	(LIN0CTR	L.2)				
	1: An error h					0	,	,				
Bit1:	WAKEUP: V	•										
						een received	ł.					
5.40	1: A wakeup				been recei	ived.						
Bit0:	DONE: Tran					d This hit is	alaarad at	the start of				
	a transmissio		in progress	or has not	been starte	ed. This bit is	cleared at	the start of				
	1: The current		sion is com	nlete								

