

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f537-c-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.2.2. External Crystal Example	139
14.2.3. External RC Example	141
14.2.4. External Capacitor Example	141
14.3. System Clock Selection	143
15. UART0	
15.1. Enhanced Baud Rate Generation	
15.2. Operational Modes	
15.2.1. 8-Bit UART	
15.2.2. 9-Bit UART	
15.3. Multiprocessor Communications	
16. Enhanced Serial Peripheral Interface (SPI0)	
16.1. Signal Descriptions	152
16.1.1. Master Out, Slave In (MOSI)	
16.1.2. Master In, Slave Out (MISO)	
16.1.3. Serial Clock (SCK)	
16.1.4. Slave Select (NSS)	
16.2. SPI0 Master Mode Operation	
16.3. SPI0 Slave Mode Operation	
16.4. SPI0 Interrupt Sources	
16.5. Serial Clock Timing	
16.6. SPI Special Function Registers	
17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)	
17.1. Software Interface with the LIN Peripheral	
17.2. LIN Interface Setup and Operation	
17.2.1. Mode Definition	
17.2.2. Baud Rate Options: Manual or Autobaud	
17.2.3. Baud Rate Calculations—Manual Mode	
17.2.4. Baud Rate Calculations—Automatic Mode	
17.3. LIN Master Mode Operation	
17.4. LIN Slave Mode Operation	
17.5. Sleep Mode and Wake-Up	
17.6. Error Detection and Handling	
17.7. LIN Registers	
17.7.1. LIN Direct Access SFR Registers Definition	
17.7.2. LIN Indirect Access SFR Registers Definition	
18. Timers	
18.1. Timer 0 and Timer 1	
18.1.1. Mode 0: 13-bit Counter/Timer	
18.1.2. Mode 1: 16-bit Counter/Timer	
18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload	
18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	
18.2. Timer 2	
18.2.1. 16-bit Timer with Auto-Reload	
18.2.2. 8-bit Timers with Auto-Reload	101
18.2.3. External Capture Mode	

SFR Definition 13.13. P0SKIP: Port0 Skip	134
SFR Definition 13.14. P1MAT: Port1 Match	134
SFR Definition 13.15. P1MASK: Port1 Mask	
SFR Definition 14.1. OSCICN: Internal Oscillator Control	
SFR Definition 14.2. OSCICL: Internal Oscillator Calibration	138
SFR Definition 14.3. OSCIFIN: Internal Fine Oscillator Calibration	
SFR Definition 14.4. OSCXCN: External Oscillator Control	142
SFR Definition 14.5. CLKSEL: Clock Select	
SFR Definition 15.1. SCON0: Serial Port 0 Control	
SFR Definition 15.2. SBUF0: Serial (UART0) Port Data Buffer	
SFR Definition 16.1. SPI0CFG: SPI0 Configuration	157
SFR Definition 16.2. SPI0CN: SPI0 Control	
SFR Definition 16.3. SPI0CKR: SPI0 Clock Rate	
SFR Definition 16.4. SPI0DAT: SPI0 Data	
SFR Definition 17.1. LINADDR: Indirect Address Register	
SFR Definition 17.2. LINDATA: LIN Data Register	
SFR Definition 17.3. LINCF Control Mode Register	
SFR Definition 17.4. LIN0DT1: LIN0 Data Byte 1	
SFR Definition 17.5. LIN0DT2: LIN0 Data Byte 2	
SFR Definition 17.6. LIN0DT3: LIN0 Data Byte 3	
SFR Definition 17.7. LIN0DT4: LIN0 Data Byte 4	
SFR Definition 17.8. LIN0DT5: LIN0 Data Byte 5	176
SFR Definition 17.9. LIN0DT6: LIN0 Data Byte 6	
SFR Definition 17.10. LIN0DT7: LIN0 Data Byte 7	
SFR Definition 17.11. LIN0DT8: LIN0 Data Byte 8	
SFR Definition 17.12. LIN0CTRL: LIN0 Control Register	
SFR Definition 17.13. LIN0ST: LIN0 STATUS Register	
SFR Definition 17.14. LIN0ERR: LIN0 ERROR Register	
SFR Definition 17.15. LINOSIZE: LINO Message Size Register	180
SFR Definition 17.16. LIN0DIV: LIN0 Divider Register	
SFR Definition 17.17. LIN0MUL: LIN0 Multiplier Register	
SFR Definition 17.18. LIN0ID: LIN0 ID Register	
SFR Definition 18.1. TCON: Timer Control	
SFR Definition 18.2. TMOD: Timer Mode	
SFR Definition 18.3. CKCON: Clock Control	
SFR Definition 18.4. TL0: Timer 0 Low Byte	
SFR Definition 18.5. TL1: Timer 1 Low Byte	
SFR Definition 18.6. TH0: Timer 0 High Byte	
SFR Definition 18.7. TH1: Timer 1 High Byte	
SFR Definition 18.8. TMR2CN: Timer 2 Control	
SFR Definition 18.9. TMR2RLL: Timer 2 Reload Register Low Byte	
SFR Definition 18.10. TMR2RLH: Timer 2 Reload Register High Byte	
SFR Definition 18.11. TMR2L: Timer 2 Low Byte	
SFR Definition 18.12. TMR2H Timer 2 High Byte	194
SFR Definition 19.1. PCA0CN: PCA Control	206

Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package	Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package
C8051F520-IM	8	6	\checkmark	DFN-10	C8051F534-IM	4	16		QFN-20
C8051F520A-IM					C8051F534A-IM				
C8051F521-IM	8	6	—	DFN-10	C8051F536-IM	2	16	\checkmark	QFN-20
C8051F521A-IM					C8051F536A-IM				
C8051F523-IM	4	6	\checkmark	DFN-10	C8051F537-IM	2	16	-	QFN-20
C8051F523A-IM					C8051F537A-IM				
C8051F524-IM	4	6	_	DFN-10	C8051F530-IT	8	16	\checkmark	TSSOP-20
C8051F524A-IM					C8051F530A-IT				
C8051F526-IM	2	6	\checkmark	DFN-10	C8051F531-IT	8	16	_	TSSOP-20
C8051F526A-IM					C8051F531A-IT				
C8051F527-IM	2	6	_	DFN-10	C8051F533-IT	4	16	\checkmark	TSSOP-20
C8051F527A-IM					C8051F533A-IT				
C8051F530-IM	8	16	\checkmark	QFN-20	C8051F534-IT	4	16	—	TSSOP-20
C8051F530A-IM					C8051F534A-IT				
C8051F531-IM	8	16	—	QFN-20	C8051F536-IT	2	16	\checkmark	TSSOP-20
C8051F531A-IM					C8051F536A-IT				
C8051F533-IM	4	16	\checkmark	QFN-20	C8051F537-IT	2	16	—	TSSOP-20
C8051F533A-IM					C8051F537A-IT				

Table 1.2. Product Selection Guide (Not Recommended for New Designs)

The part numbers in Table 1.2 are not recommended for new designs. Instead, select the corresponding part number from Table 1.1 (silicon revision C) for your design. In Table 1.2, the part numbers in the format similar to C8051F520-IM are silicon revision A devices. The part numbers in the format similar to C8051F520A-IM are silicon revision B devices.

1.5. 12-Bit Analog to Digital Converter

The C8051F52x/F52xA/F53x/F53xA devices include an on-chip 12-bit SAR ADC with a maximum throughput of 200 ksps. The ADC system includes a configurable analog multiplexer that selects the positive ADC input, which is measured with respect to GND. Ports 0 and 1 are available as ADC inputs; additionally, the ADC includes an innovative programmable gain stage which allows the ADC to sample inputs sources greater than the VREF voltage. The on-chip Temperature Sensor output and the core supply voltage (V_{DD}) are also available as ADC inputs. User firmware may shut down the ADC or use it in Burst Mode to save power.

Conversions can be initiated in four ways: a software command, an overflow of Timer 1, an overflow of Timer 2, or an external convert start signal. This flexibility allows the start of conversion to be triggered by software events, a periodic signal (timer overflows), or external HW signals. Conversion completions are indicated by a status bit and an interrupt (if enabled) and occur after 1, 4, 8, or 16 samples have been accumulated by a hardware accumulator. The resulting 12-bit to 16-bit data word is latched into the ADC data SFRs upon completion of a conversion. When the system clock is slow, Burst Mode allows ADC0 to automatically wake from a low power shutdown state, acquire and accumulate samples, then re-enter the low power shutdown state without CPU intervention.

Window compare registers for the ADC data can be configured to interrupt the controller when ADC data is either within or outside of a specified range. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within/outside the specified range.

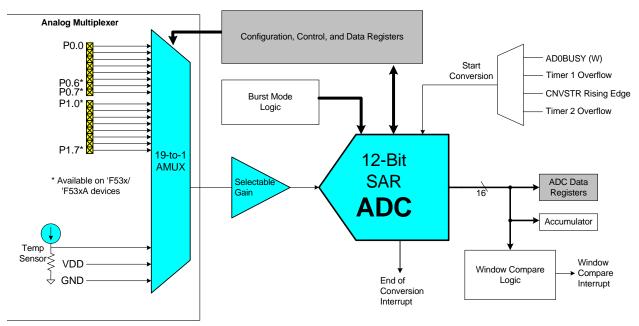


Figure 1.7. 12-Bit ADC Block Diagram

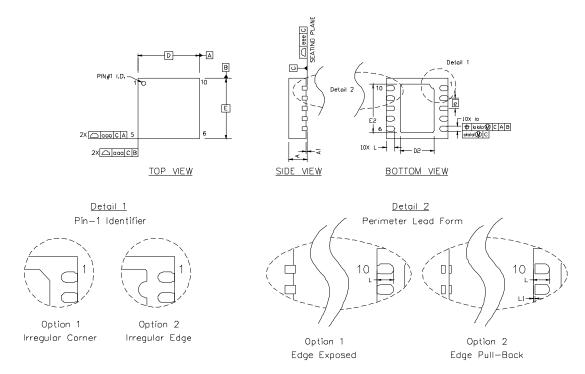


Figure 3.2. DFN-10 Package Diagram

Dimension	Min	Nom	Max			
Α	0.80	0.90	1.00			
A1	0.00	0.02	0.05			
b	0.18	0.25	0.30			
D		3.00 BSC.				
D2	1.50	1.65	1.80			
е	0.50 BSC.					
E	3.00 BSC.					
E2	2.23	2.38	2.53			
L	0.30	0.40	0.50			
L1	0.00	—	0.15			
aaa	—	—	0.15			
bbb	—	—	0.15			
ddd	—	—	0.05			
eee		—	0.08			

Table 3.2. DFN-10 Package Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to JEDEC outline MO-220, variation VEED except for custom features D2, E2, and L, which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.3.4. Burst Mode

Burst Mode is a power saving feature that allows ADC0 to remain in a very low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a very low power state, accumulates 1, 4, 8, or 16 samples using an internal Burst Mode Oscillator, then re-enters a very low power state. Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions then enter a very low power state within a single system clock cycle, even if the system clock is slow (e.g. 32.768 kHz), or suspended.

Burst Mode is enabled by setting BURSTEN to logic 1. When in Burst Mode, AD0EN controls the ADC0 idle power state (i.e., the state ADC0 enters when not tracking or performing conversions). If AD0EN is set to logic 0, ADC0 is powered down after each burst. If AD0EN is set to logic 1, ADC0 remains enabled after each burst. On each convert start signal, ADC0 is awakened from its Idle Power State. If AD0C0 is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the AD0PWR bits. Otherwise, ADC0 will start tracking and converting immediately. Figure 4.5 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4.

Important Note: When Burst Mode is enabled, only Post-Tracking and Dual-Tracking modes can be used.

When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADC0 End of Conversion Interrupt Flag (AD0INT) will be set after "repeat count" conversions have been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

Note: When using Burst Mode, care must be taken to issue a convert start signal no faster than once every four SYSCLK periods. This includes external convert start signals.

SFR Definition 6.1. REG0CN: Regulator Control

R/W	R/W	R	R/W	R	R	R	R	Reset Value					
REGDIS	8 Reserved		REG0MD				DROPOUT	01010000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
							SFR Address:	0xC9					
Bit7:													
	This bit disables/enables the Voltage Regulator.												
	0: Voltage Regulator Enabled.												
	1: Voltage Regulator Disabled.												
Bit6:	RESERVED . Read = 1b. Must write 1b.												
Bit5:	UNUSED. R	UNUSED . Read = $0b$. Write = don't care.											
Bit4:	REGOMD: V	oltage Reg	ulator Mode	Select Bit.									
	This bit selec	cts the Volt	age Regulat	or output vo	oltage.								
	0: Voltage R	egulator ou	tput is 2.1 V										
	1: Voltage R	egulator ou	tput is 2.6 V	' (default).									
Bits3–1:	UNUSED. R	ead = 000b	o. Write = do	n't care.									
Bit0:	DROPOUT:	Voltage Re	gulator Drop	out Indicat	or Bit.								
	0: Voltage R	egulator is	not in dropo	ut.									
	1: Voltage R	egulator is	in or near dı	ropout.									

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles	
ORL direct, #data	OR immediate to direct byte	3	3	
XRL A, Rn	Exclusive-OR Register to A	1	1	
XRL A, direct	Exclusive-OR direct byte to A	2	2	
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2	
XRL A, #data	Exclusive-OR immediate to A	2	2	
XRL direct, A	Exclusive-OR A to direct byte	2	2	
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3	
CLR A	Clear A	1	1	
CPL A	Complement A	1	2	
RL A	Rotate A left	1	1	
RLC A	Rotate A left through Carry	1	1	
RR A	Rotate A right	1	1	
RRC A	Rotate A right through Carry	1	1	
SWAP A	Swap nibbles of A	1	1	
Data Transfer				
MOV A, Rn	Move Register to A	1	1	
MOV A, direct	Move direct byte to A	2	2	
MOV A, @Ri	Move indirect RAM to A	1	2	
MOV A, #data	Move immediate to A	2	2	
MOV Rn, A	Move A to Register	1	1	
MOV Rn, direct	Move direct byte to Register	2	2	
MOV Rn, #data	Move immediate to Register	2	2	
MOV direct, A	Move A to direct byte	2	2	
MOV direct, Rn	Move Register to direct byte	2	2	
MOV direct, direct	Move direct byte to direct byte	3	3	
MOV direct, @Ri	Move indirect RAM to direct byte	2	2	
MOV direct, #data	Move immediate to direct byte	3	3	
MOV @Ri, A	Move A to indirect RAM	1	2	
MOV @Ri, direct	Move direct byte to indirect RAM	2	2	
MOV @Ri, #data	Move immediate to indirect RAM	2	2	
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3	
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3	
MOVC A, @A+PC	Move code byte relative PC to A	1	3	
MOVX A, @Ri	Move external data (8-bit address) to A	1	3	
MOVX @Ri, A	Move A to external data (8-bit address)	1	3	
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3	
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3	
PUSH direct	Push direct byte onto stack	2	2	
POP direct	Pop direct byte from stack	2	2	
XCH A, Rn	Exchange Register with A	1	1	
XCH A, direct	Exchange direct byte with A	2	2	
XCH A, @Ri	Exchange indirect RAM with A	1	2	
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2	

8.3.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system.

8.3.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout period of 100 μ s.

8.3.3. Suspend Mode

The C8051F52x/F52xA/F53x/F53xA devices feature a low-power Suspend mode, which stops the internal oscillator until a wakening event occurs. See Section Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

Note: When entering Suspend mode, firmware must set the ZTCEN bit in REF0CN (SFR Definition 5.1).

18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction, and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Table	10.1.	Interrupt	Summary
-------	-------	-----------	---------

Top 0 1 2 3 4 5 6	None IE0 (TCON.1) TF0 (TCON.5) IE1 (TCON.3) TF1 (TCON.7) RI0 (SCON0.0) TI0 (SCON0.1) TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5)	N/A Y Y Y Y Y Y	N/A Y Y Y Y N N	Always Enabled EX0 (IE.0) ET0 (IE.1) EX1 (IE.2) ET1 (IE.3) ES0 (IE.4) ET2 (IE.5) ESPI0 (IE.6)	Always Highest PX0 (IP.0) PT0 (IP.1) PX1 (IP.2) PT1 (IP.3) PS0 (IP.4) PT2 (IP.5)
1 2 3 4 5	TF0 (TCON.5) IE1 (TCON.3) TF1 (TCON.7) RI0 (SCON0.0) TI0 (SCON0.1) TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6)	Y Y Y Y Y	Y Y Y N	ET0 (IE.1) EX1 (IE.2) ET1 (IE.3) ES0 (IE.4) ET2 (IE.5) ESPI0	PT0 (IP.1) PX1 (IP.2) PT1 (IP.3) PS0 (IP.4) PT2 (IP.5) PSPI0
2 3 4 5	IE1 (TCON.3) TF1 (TCON.7) RI0 (SCON0.0) TI0 (SCON0.1) TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6)	Y Y Y Y	Y Y N N	EX1 (IE.2) ET1 (IE.3) ES0 (IE.4) ET2 (IE.5) ESPI0	PX1 (IP.2) PT1 (IP.3) PS0 (IP.4) PT2 (IP.5) PSPI0
3 4 5	TF1 (TCON.7) RI0 (SCON0.0) TI0 (SCON0.1) TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6)	Y Y Y	Y N N	ET1 (IE.3) ES0 (IE.4) ET2 (IE.5) ESPI0	PT1 (IP.3) PS0 (IP.4) PT2 (IP.5) PSPI0
4 5	RI0 (SCON0.0) TI0 (SCON0.1) TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6)	Y Y	N N	ES0 (IE.4) ET2 (IE.5) ESPI0	PS0 (IP.4) PT2 (IP.5) PSPI0
5	TI0 (SCON0.1) TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6)	Y	N	ET2 (IE.5) ESPI0	PT2 (IP.5) PSPI0
	TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6)			ESPI0	PSPI0
6	WCOL (SPI0CN.6)	Y	Ν		
	RXOVRN (SPI0CN.4)			(IE.6)	(IP.6)
7	ADOWINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.0)	PWADC0 (EIP1.0)
8	AD0INT (ADC0CN.5)	Y	N	EADC0 (EIE1.1)	PADC0 (EIP1.1)
9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	Ν	EPCA0 (EIE1.2)	PPCA0 (EIP1.2)
10	CP0FIF (CPT0CN.4)	N	Ν	ECPF (EIE1.3)	PCPF (EIP1.3)
11	CP0RIF (CPT0CN.5)	Ν	Ν	ECPR (EIE1.4)	PCPR (EIP1.4)
12	LININT (LINST.3)	N	N*	ELIN (EIE1.5)	PLIN (EIP1.5)
13	N/A	N/A	N/A	EREG0 (EIE1.6)	PREG0 (EIP1.6)
14	N/A	N/A	N/A	EMAT (EIE1.7)	PMAT (EIP1.7)
	11 12	11 CPORIF (CPT0CN.5) 12 LININT (LINST.3) 13 N/A	11 CPORIF (CPTOCN.5) N 12 LININT (LINST.3) N 13 N/A N/A	11 CPORIF (CPT0CN.5) N N 12 LININT (LINST.3) N N* 13 N/A N/A N/A	Image: 10 km s and 10 km s

SFR Definition 10.2. IP: Interrupt Priority R/W R/W R/W R/W R/W R/W Reset Value R R/W PT2 PS0 -PSPI0 PT1 PX1 PT0 PX0 10000000 Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Addressable SFR Address: 0xB8 Bit7: **UNUSED**. Read = 1b: Write = don't care. Bit6: PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control. This bit sets the priority of the SPI0 interrupt. 0: SPI0 interrupt set to low priority level. 1: SPI0 interrupt set to high priority level. Bit5: PT2: Timer 2 Interrupt Priority Control. This bit sets the priority of the Timer 2 interrupt. 0: Timer 2 interrupt set to low priority level. 1: Timer 2 interrupt set to high priority level. Bit4: **PS0**: UARTO Interrupt Priority Control. This bit sets the priority of the UART0 interrupt. 0: UART0 interrupt set to low priority level. 1: UART0 interrupt set to high priority level. Bit3: PT1: Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupt. 0: Timer 1 interrupt set to low priority level. 1: Timer 1 interrupt set to high priority level. Bit2: **PX1**: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 1. 0: INT1 interrupt set to low priority level. 1: INT1 interrupt set to high priority level. PT0: Timer 0 Interrupt Priority Control. Bit1: This bit sets the priority of the Timer 0 interrupt. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level. Bit0: **PX0**: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 0. 0: INT0 interrupt set to low priority level. 1: INT0 interrupt set to high priority level.

11. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to Section "14. Oscillators" on page 135 for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (Section "19.3. Watchdog Timer Mode" on page 203 details the use of the Watchdog Timer). Program execution begins at location 0x0000.

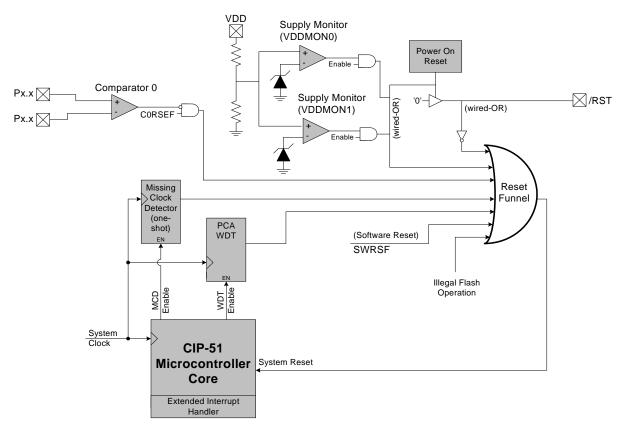


Figure 11.1. Reset Sources

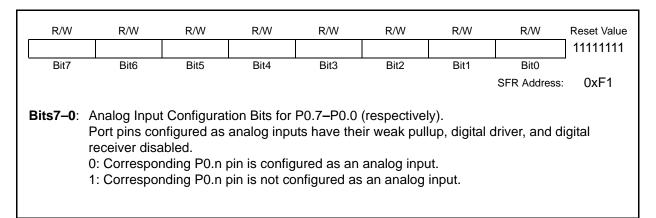
			P	0		
SF Signals DFN 10	VREF		o XTAL1	XTAL2	CNVSTR	
PIN I/O	0	1	2	3	4 5	
ТХ0						C8051F52xA/F52x-C
RX0						devices
ТХ0						C8051F52x devices
RX0						Coustin S2X devices
SCK						
MISO						
MOSI						
NSS*						
LIN-TX						
LIN-RX						
CP0						
CP0A						
/SYSCLK						
CEX0						
CEX1						
CEX2						
ECI						
ТО						
T1						
	0	1	1	0	0 0	
	-				= 0x06	
			. [9			1
	Poi	rt pir	n pot	tenti	ally as	ignable to peripheral
SF Signals	Spe	ecial	Fur	nctio	on Signa	als are not assigned by the crossbar.
	Wr	nen t	hese	e sig	gnals ar	e enabled, the Crossbar must be manually configured
						ding port pins.

Note: 4-Wire SPI Only.

Figure 13.6. Crossbar Priority Decoder with Some Pins Skipped (DFN 10)

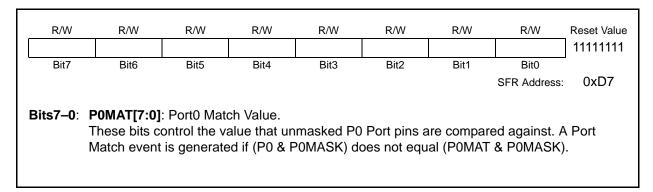
Registers XBR0 and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.3 or P0.4*; UART RX0 is always assigned to P0.4 or P0.5*. Standard Port I/Os appear contiguously starting at P0.0 after prioritized functions and skipped pins are assigned.

Note: Refer to Section "20. Device Specific Behavior" on page 210.

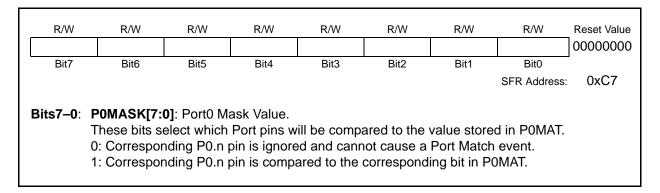


In addition to performing general purpose I/O, P0 and P1 can generate a port match event if the logic levels of the Port's input pins match a software controlled value. A port match event is generated if (P0 & P0MASK) does not equal (P0MATCH & P0MASK) or if (P1 & P1MASK) does not equal (P1MATCH & P1MASK). This allows Software to be notified if a certain change or pattern occurs on P0 or P1 input pins regardless of the XBRn settings. A port match event can cause an interrupt if EMAT (EIE2.1) is set to 1 or cause the internal oscillator to awaken from SUSPEND mode. See Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

SFR Definition 13.3. P0: Port0


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address:	0x80
Bits7–0:	P0.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alwa pin when con 0: P0.n pin is 1: P0.n pin is	y Output. h Output (hi ys reads 0 nfigured as s logic low.	gh impedar if selected a digital input	nce if corres as analog in	ponding PC)MDOUT.n	,	ads Port

SFR Definition 13.4. P0MDIN: Port0 Input Mode



SFR Definition 13.7. P0MAT: Port0 Match

SFR Definition 13.8. P0MASK: Port0 Mask

17.1. Software Interface with the LIN Peripheral

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LIN0 Control Mode (LIN0CF) register. The other LIN registers are accessed indirectly through the two SFRs LIN0 Address (LINADDR) and LIN0 Data (LINDATA). The LINADDR register selects which LIN register is targeted by reads/writes of the LINDATA register. The full list of indirectly-accessible LIN register is given in Table 17.4 on page 174.

17.2. LIN Interface Setup and Operation

The hardware based LIN peripheral allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the peripheral is to define the basic characteristics of the node:

- Mode—Master or Slave
- Baud Rate—Either defined manually or using the autobaud feature (slave mode only).
- Checksum Type—Select between classic or enhanced checksum, both of which are implemented in hardware.

17.2.1. Mode Definition

Following the LIN specification, the peripheral implements both the Slave and Master operating modes in hardware. The mode is configured using the MODE bit (LIN0CF.6).

17.2.2. Baud Rate Options: Manual or Autobaud

The LIN peripheral can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LIN0CF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

17.2.3. Baud Rate Calculations—Manual Mode

The baud rate used by the peripheral is a function of the System Clock (SYSCLK) and the bit-timing Registers according to the following equation:

$$baud_rate = \frac{SYSCLK}{2^{(prescaler + 1)} \times divider \times (multiplier + 1)}$$

The prescaler, divider and multiplier factors are part of the LIN0DIV and LIN0MUL registers and can assume values in the following range:

18.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

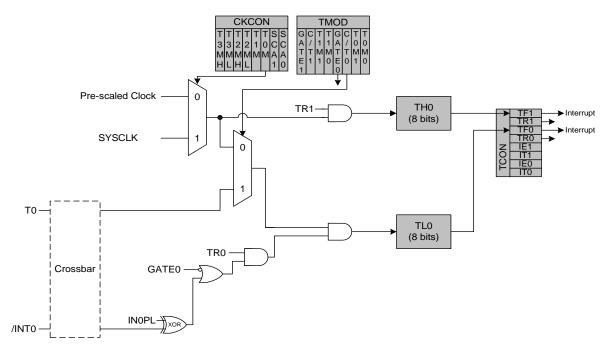
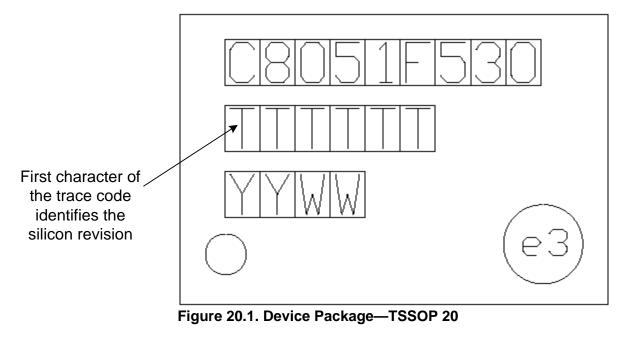


Figure 18.3. T0 Mode 3 Block Diagram

SFR Definition 19.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PWM16	Sn ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
SFR Addre	ess: PCA0CPM0: (0xDA, PCA0C	PM1: 0xDB, P	CA0CPM2: 0x	DC						
D'/7											
Bit7:	PWM16n: 16					mada ia am		///			
	This bit selec		bae when P	uise vvidtn	wodulation	mode is er	abled (PV)	/IVIN = 1).			
	0: 8-bit PWM 1: 16-bit PWN										
Bit6:	ECOMn: Cor		nction Engl	ماد							
Ditto.		•			on for PCA	module n					
	This bit enables/disables the comparator function for PCA module n. 0: Disabled.										
	1: Enabled.										
Bit5:	CAPPn: Cap	ture Positiv	e Function	Enable.							
	This bit enab				ture for PC/	A module n					
	0: Disabled.										
	1: Enabled.										
Bit4:	CAPNn: Cap	ture Negati	ve Function	Enable.							
	This bit enab	les/disables	the negativ	ve edge cap	oture for PC	A module i	า.				
	0: Disabled.										
	1: Enabled.										
Bit3:	MATn: Match										
	This bit enables/disables the match function for PCA module n. When enabled, matches of										
	the PCA counter with a module's capture/compare register cause the CCFn bit in PCA0MD										
	register to be	set to logic	:1.								
	0: Disabled.										
-	1: Enabled.										
Bit2:	TOGn: Toggl										
	This bit enables/disables the toggle function for PCA module n. When enabled, matches of										
	the PCA counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency										
	•			is also set			perates in	Frequency			
	Output Mode 0: Disabled.	•									
	1: Enabled.										
Bit1:	PWMn: Pulse	⊳ Width Mor	dulation Mo	de Enable							
Bitt.	This bit enabl				PCA modul	en Whene	enabled a	pulse width			
	modulated sig										
	mode is used										
	Frequency O			0							
	0: Disabled.										
	1: Enabled.										
Bit0:	ECCFn: Cap	ture/Compa	re Flag Inte	errupt Enab	le.						
	This bit sets t	•	-	•		CFn) interru	ıpt.				
	0: Disable CO										
	1: Enable a C			interrupt re	quest when	CCFn is se	et.				
					90.000						


20. Device Specific Behavior

This chapter contains behavioral differences between the silicon revisions of C8051F52x/52xA/F53x/53xA devices.

These differences do not affect the functionality or performance of most systems and are described below.

20.1. Device Identification

The Part Number Identifier on the top side of the device package can be used for decoding device information. The first character of the trace code identifies the silicon revision. On C8051F52x-C/53x-C devices, the trace code (second line on the TSSOP-20 and DFN-10 packages; third line on the QFN-20 package) will begin with the letter "C". The "A" suffix at the end of the part number such as "C8051F530A" is only present on Revision B devices. All other revisions do not include this suffix. Figures 20.1, 20.2, and 20.3 show how to find the part number on the top side of the device package.

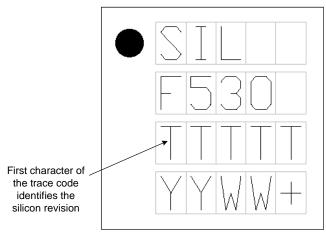
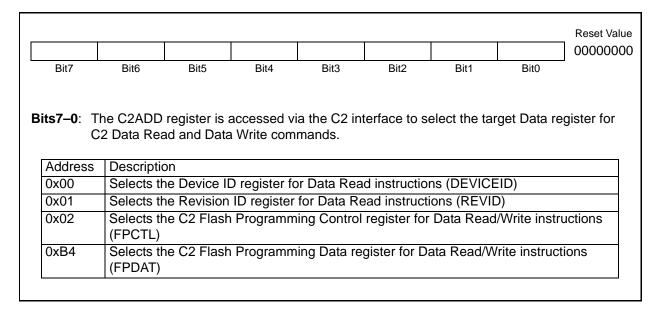
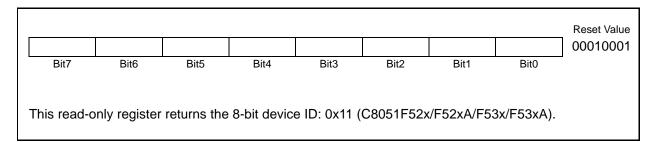


Figure 20.2. Device Package—QFN 20


21. C2 Interface

C8051F52x/F52xA/F53x/F53xA devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.


21.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 21.1. C2ADD: C2 Address

C2 Register Definition 21.2. DEVICEID: C2 Device ID

